Reasoning to Solve Equations and Inequalities


 Dominic Chambers
 5 years ago
 Views:
Transcription
1 Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing how operting cost nd ticket sle income were expected to relte to ticket price x. Cost: C(x) = 22, x Income: I(x) = 2,500x 50x 2 A grph of those two functions looks like this: 40,000 ConcertTicket Income nd Operting Cost 30,000 20,000 10, Concert Ticket Price 60 Think Aout This Sitution Questions importnt to plnning the concert cn e nswered y solving equtions nd inequlities involving the cost nd income functions. Wht would you lern from solutions of the following? I(x) = C(x) I(x) > C(x) I(x) < C(x) How would you solve the eqution nd inequlities in Prt using the following tools? Technology Resoning out the symolic function rules (without the help of clcultor tles or grphs) LESSON 4 REASONING TO SOLVE EQUATIONS AND INEQUALITIES 225
2 INVESTIGATION 1 Resoning out Liner Equtions nd Inequlities Situtions involving comprison of usiness plns often involve liner functions, leding to questions requiring the solution of liner equtions nd inequlities. For exmple, pizz compny considering lese options for delivery truck might hve choices like those shown elow. In ech cse, the lese cost (in dollrs) is function of lese time (in weeks). Pln A: A(t) = 2, t Pln B: B(t) = 1, t 1. Wht do the numers 2,500 nd 1,000 tell out the conditions of ech lese? Wht do the numers 75 nd 90 tell? 2. At the strt, Pln A is more expensive thn Pln B. To see when the lese costs might e equl, you could solve the eqution 2, t = 1, t. One wy to solve tht eqution is to reson like this: 2, t = 1, t 1, t = 90t 1,500 = 15t 100 = t. Justify ech step in the solution process.. How cn you check tht t = 100 is the solution? Wht does t = 100 tell out the trucklese plns? c. How could you rrive t the sme result with different sequence of steps? 3. Now, consider the inequlity 2, t < 1, t.. Wht will solution to this inequlity tell out the trucklesing sitution?. Why does ech step in the following resoning mke sense? 2, t < 1, t 2,500 < 1, t 1,500 < 15t 100 < t c. Wht does the solution 100 < t tell out the trucklesing sitution? d. How cn you check the solution? e. Use similr resoning to solve the inequlity 2, t > 1, t, nd explin wht the solution tells out the trucklesing sitution. 226 UNIT 3 SYMBOL SENSE AND ALGEBRAIC REASONING
3 In solving the equtions nd inequlities tht compre two trucklese plns, it is helpful to keep in mind wht the prts of ech expression men. Now try to use similr resoning ptterns to solve equtions nd inequlities without such clues. 4. Solve ech of the following equtions y symolic resoning lone. Record ech step in your resoning. Check your solutions.. 2x + 15 = 45 + x. 10 4x = 3x 4 c. 7x 11 = 10 d. 6x 15 = 4x + 10 e. 25 = 10 5x 5. Solve ech of the following inequlities y symolic resoning lone. Record ech step in your resoning. Check your nswers.. 3x + 10 < x > 23 c. 8x + 12 < 46 d x > Here re three solutions of inequlities tht led to incorrect results. In ech cse, show with function tles or grphs tht the proposed solutions re not correct. Then find nd correct the error in the resoning process.. Solve: 5x + 20 < 3x 20 < 2x 10 < x. Solve: 11x 19 < 15x x < 15x x < 36 x < 9 c. Solve: x < 3x x < 3x 18 < 6x 3 < x 7. Solve ech of the following inequlities y symolic resoning lone. Show ech step in your resoning. Check your nswers.. 3x + 10 < 5x x > 7x 13 c. 8x + 12 < 46 9x d x > 21x 15 LESSON 4 REASONING TO SOLVE EQUATIONS AND INEQUALITIES 227
4 Two equtions or inequlities re clled equivlent if they hve identicl solutions. One strtegy for solving liner equtions nd inequlities is to strt with the given eqution or inequlity nd construct sequence of simpler forms, ech equivlent to its predecessor, until you get n eqution or inequlity so simple tht the solution is ovious. The chllenge is to find wys of writing equivlent equtions nd inequlities tht do ecome progressively simpler. 8. Which of the following pirs of equtions nd inequlities re equivlent? Explin your resoning in ech cse.. 3x + 2 = 5 nd 3x = 3. 7x 8 = x nd 4x = 20 c. 1 x + 9 = 6 3 nd x + 9 = 18 d. 10x + 15 = 35 nd 2x + 3 = 7 e. 10x + 15 = 35 nd 10x = 20 f. 3x + 2 < 5 nd 3x < 3 g. 7x 8 > x nd 4x > 20 h. 10x + 15 < 35 nd 2x + 3 < 7 i. 10x + 15 > 35 nd 10x > Look ck over the pirs of equtions nd inequlities in Activity 8 nd your nswers to the equivlence question. Wht opertions on equtions nd inequlities seem likely to produce simpler equivlent forms? Checkpoint Mny situtions cll for compring two liner functions like the following: c f(x) = + x g(x) = c + dx Wht overll strtegy nd specific resoning steps would you use to solve n eqution of the form + x = c + dx? Explin how you could check the solution. Wht overll strtegy nd specific resoning steps would you use to solve n inequlity of the form + x < c + dx? How could you check the nswer? How do the grphs of expressions like y = + x nd y = c + dx illustrte solutions to the equtions nd inequlities descried in Prts nd? How would those solutions pper in tles of vlues for the two functions? Be prepred to explin your strtegies nd resoning to the entire clss. 228 UNIT 3 SYMBOL SENSE AND ALGEBRAIC REASONING
5 On Your Own Two cellulr telephone service plns offer monthly costs (in dollrs) tht re functions of time used (in minutes) with the following rules: B(t) = t C(t) = t Write nd solve (without use of technology) equtions nd inequlities tht help in nswering these questions:. Under wht conditions will Pln B cost less thn Pln C?. Under wht conditions will Pln B cost the sme s Pln C? c. Under wht conditions will Pln C cost less thn Pln B? In ech cse, show how you cn use clcultor to check your solutions. INVESTIGATION 2 Resoning out Qudrtic Equtions nd Inequlities Two key questions re often ssocited with qudrtic function models of the form f(x) = x 2 + x + c: Wht is the mximum (minimum) vlue nd where does it occur? For wht vlues of the input vrile x will f(x) = 0? In the cse of the concertplnning model descried t the strt of this lesson, the qudrtic income function ws I(x) = 2,500x 50x 2. The two key questions cn e stted in this wy: Wht ticket price will led to mximum projected income from ticket sles? Wht ticket prices will produce no projected ticket income t ll? You cn nswer oth questions y scnning tle or grph of (x, I(x)) vlues. But you cn lso get the nswers esily y using lgeric resoning. 1. Justify ech step in the following nlysis of the concertincome sitution.. Solving the eqution 2,500x 50x 2 = 0 will help.. The eqution in Prt is equivlent to 50x(50 x) = 0. c. 50x(50 x) = 0 when x = 0 or when x = 50. d. The mximum income will occur when x = 25. e. Tht income is $31,250. LESSON 4 REASONING TO SOLVE EQUATIONS AND INEQUALITIES 229
6 2. Unfortuntely, mny qudrtic equtions re not esy to solve using the type of fctoring tht worked so well in Activity 1. For exmple, consider the prolem of finding projected rekeven prices for the plnned concert. Those re the prices for which income from ticket sles will equl expenses for operting costs. Since the cost eqution for this sitution ws C(x) = 22, x, this prolem requires solving the eqution 2,500x 50x 2 = 22, x.. You cn strt y writing n equivlent eqution with qudrtic expression equl to 0: 50x 2 + 2,600x 22,500 = 0 Why is this eqution equivlent to the originl?. Fctor the left side of this eqution to get 50(x 2 52x + 450) = 0. Why is this fctored form equivlent to the eqution in Prt? The form of the eqution given in Prt does not look esy to continue to solve y fctoring! There is nother wy you cn solve qudrtic equtions, even when fctoring seems impossile. You cn use the qudrtic formul. If x 2 + x + c = 0 (nd 0), then the roots of the eqution re 4 c x = 2 or, writing these seprtely, + 4 c 2 2 ± c 2 2 x = 2 nd x = 2 (You ll explore derivtion of this formul in Lesson 5.) 3. Solve the rekeven eqution 50x 2 + 2,600x 22,500 = 0 using the qudrtic formul.. Give the vlues for,, nd c.. Evlute 2 c. Evlute 2 4 c 2 d. Now clculte x = c nd x = c 2 e. Descrie t lest three different wys to check your clculted roots in Prt d. Check the roots in the originl eqution using one of those methods. f. Use the qudrtic formul to solve the eqution x 2 52x = 0. Compre the result to the nswer in Prt d nd explin similrities or differences. 230 UNIT 3 SYMBOL SENSE AND ALGEBRAIC REASONING
7 4. Some computer softwre nd some clcultors hve solve feture tht llows you to solve equtions directly, if one side of the eqution is equl to 0. The procedure for using these solving cpilities vries. You my need to consult your mnul to lern how to use the feture. Use the solve feture on your clcultor or computer softwre to check your solutions to Prts d nd f of Activity Now consider the qudrtic eqution x 2 6x + 5 = 0. A grph of the function f(x) = x 2 6x + 5 is shown elow.. Give the vlues for,, nd c tht should e used to solve x 2 6x + 5 = 0 with the qudrtic formul.. Evlute 2 c. Evlute 2 4 c 2 4 c 4 c d. Now clculte x = 2 nd x = e. Compre the qudrtic formul clcultions to the grph of f(x) = x 2 6x + 5. Wht informtion is provided y the expression 2? By the expression 4 c? EQUATION SOLVER eqn : 0 = 50x x Use the qudrtic formul to solve ech of the following qudrtic equtions. Then try to solve the sme equtions y fctoring. In ech cse, check your work y using the solve feture on your clcultor or computer softwre or y sustituting your proposed roots for x into the eqution.. 2x 2 3x + 7 = 0. 5x 2 x 4 = 0 c. 3x 2 2x + 1 = 0 d. x 2 + 2x 3 = 0 e. 4x x + 9 = 0 LESSON 4 REASONING TO SOLVE EQUATIONS AND INEQUALITIES 231
8 7. Now look ck t your work in Activity 6 nd serch for connections etween the qudrtic formul clcultions nd the grphs of the corresponding function rules. Explin the specil significnce of the eqution x = 2 for qudrtic function with rule in the form f(x) = x 2 + x + c. Wht informtion is provided y the expression 2 4 c? 2 Test your ides in ech of the following cses y grphing the function nd the verticl line x = 2 (If you choose to use your clcultor rther thn sketching your grph, consult your mnul s needed.). f(x) = 2x 2 + 4x 9. f(x) = 3x 2 2x 5 c. f(x) = x 2 + 6x 10 d. f(x) = x 2 + 2x 9 8. Think out the wys in which the grph of f(x) = x 2 + x + c could intersect the xxis. How mny possile roots could the eqution x 2 + x + c = 0 hve?. Use the qudrtic formul to solve ech eqution nd identify the step tht first shows the numer of roots you cn expect. x 2 + 8x + 12 = 0 x 2 + 8x + 16 = 0 x 2 + 8x + 20 = 0. Sketch grphs of the qudrtic functions corresponding to the three equtions ove, nd explin how those grphs show the numer of roots in ech cse. 9. Suppose tht f(x), g(x), j(x), nd h(x) re qudrtic functions with the zeroes indicted elow. Find vlues of x for which ech of these functions would hve mximum or minimum vlues. Then write possile rules for the functions in fctored form.. f(6) = 0 nd f( 2) = 0. g( 7) = 0 nd g(3) = 0 c. j( 2) = 0 nd j( 5) = 0 d. h(2) = 0 nd h(4.5) = Explin how the qudrtic formul cn help you determine the minimum vlue of the function f(x) = 4x 2 7x UNIT 3 SYMBOL SENSE AND ALGEBRAIC REASONING
9 11. The qudrtic formul nd other equtionsolving methods cn e used to solve qudrtic inequlities s well. Exmine the grph of the function f(x) = 2x 2 5x 12 t the right. It hs zeroes t x = 1.5 nd x = 4.. Explin how the numer line grph elow shows the solution of the qudrtic inequlity 2x 2 5x 12 < How does the numer line grph in Prt relte to the grph of the function f(x) = 2x 2 5x 12? c. Mke numer line grph showing the solution of the qudrtic inequlity 2x 2 5x 12 > 0. d. How would you modify the numer line grph in Prt c to show the solution of the inequlity 2x 2 5x 12 0? Using Activity 11 s n exmple, if needed, solve the following qudrtic inequlities.. x 2 x 6 < 0. x 2 x 6 > 0 c. x 2 + 5x + 6 > 0 d. 2x 2 3x + 5 < 0 e. x 2 8x f. x 2 8x + 16 > 0 Checkpoint Qudrtic functions, with grphs tht re prols, cn e written with symolic rules in the form f(x) = x 2 + x + c. You hve lerned to solve the relted qudrtic equtions x 2 + x + c = 0 using the qudrtic formul. c d Explin the steps tht you would tke to determine the zeroes nd the minimum vlue of the function f(x) = 3x 2 2x 8. Wht re the dvntges nd disdvntges of solving qudrtic equtions y fctoring? By using the qudrtic formul? By using the solve feture of your clcultor or computer softwre? How cn you use the qudrtic formul or the solve feture to find fctored form of qudrtic function rule? How does use of the qudrtic formul show whether given eqution will hve 2, 1, or 0 roots? How will this informtion pper in grph? Be prepred to shre your methods nd thinking with the clss. LESSON 4 REASONING TO SOLVE EQUATIONS AND INEQUALITIES 233
10 On Your Own Use wht you hve lerned out the qudrtic formul to complete the following tsks.. Find the zeroes nd the lines of symmetry for the grphs of the following functions. f(x) = x 2 4x + 1 g(x) = x 2 + 6x 11 h(x) = x For ech of the following functions, find the minimum or mximum vlue of the function. f(x) = x 2 3x + 9 g(x) = x 2 + 8x + 2 h(x) = x 2 49 c. Grph solutions for these qudrtic inequlities: x 2 3x 4 > 0 x 2 + x 6 < 0 x 2 2x + 3 > UNIT 3 SYMBOL SENSE AND ALGEBRAIC REASONING
Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:
Appendi D: Completing the Squre nd the Qudrtic Formul Fctoring qudrtic epressions such s: + 6 + 8 ws one of the topics introduced in Appendi C. Fctoring qudrtic epressions is useful skill tht cn help you
More informationPolynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )
Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +
More informationEQUATIONS OF LINES AND PLANES
EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in pointdirection nd twopoint
More informationP.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn
33337_0P03.qp 2/27/06 24 9:3 AM Chpter P Pge 24 Prerequisites P.3 Polynomils nd Fctoring Wht you should lern Polynomils An lgeric epression is collection of vriles nd rel numers. The most common type of
More informationFactoring Polynomials
Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles
More informationWarmup for Differential Calculus
Summer Assignment Wrmup for Differentil Clculus Who should complete this pcket? Students who hve completed Functions or Honors Functions nd will be tking Differentil Clculus in the fll of 015. Due Dte:
More informationSection 54 Trigonometric Functions
5 Trigonometric Functions Section 5 Trigonometric Functions Definition of the Trigonometric Functions Clcultor Evlution of Trigonometric Functions Definition of the Trigonometric Functions Alternte Form
More informationIntegration by Substitution
Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is
More informationMath 135 Circles and Completing the Square Examples
Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for
More informationGraphs on Logarithmic and Semilogarithmic Paper
0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl
More informationSection 74 Translation of Axes
62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 74 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the
More information9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes
The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is soclled becuse when the sclr product of two vectors
More informationRegular Sets and Expressions
Regulr Sets nd Expressions Finite utomt re importnt in science, mthemtics, nd engineering. Engineers like them ecuse they re super models for circuits (And, since the dvent of VLSI systems sometimes finite
More informationExample 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.
2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this
More informationMath 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1.
Mth 4, Homework Assignment. Prove tht two nonverticl lines re perpendiculr if nd only if the product of their slopes is. Proof. Let l nd l e nonverticl lines in R of slopes m nd m, respectively. Suppose
More informationMATH 150 HOMEWORK 4 SOLUTIONS
MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive
More informationHomework 3 Solutions
CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.
More informationExperiment 6: Friction
Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht
More informationMultiplication and Division  Left to Right. Addition and Subtraction  Left to Right.
Order of Opertions r of Opertions Alger P lese Prenthesis  Do ll grouped opertions first. E cuse Eponents  Second M D er Multipliction nd Division  Left to Right. A unt S hniqu Addition nd Sutrction
More informationLINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES
LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of
More informationBayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom
Byesin Updting with Continuous Priors Clss 3, 8.05, Spring 04 Jeremy Orloff nd Jonthn Bloom Lerning Gols. Understnd prmeterized fmily of distriutions s representing continuous rnge of hypotheses for the
More information4.11 Inner Product Spaces
314 CHAPTER 4 Vector Spces 9. A mtrix of the form 0 0 b c 0 d 0 0 e 0 f g 0 h 0 cnnot be invertible. 10. A mtrix of the form bc d e f ghi such tht e bd = 0 cnnot be invertible. 4.11 Inner Product Spces
More informationPROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY
MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive
More informationTwo hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. Date: Friday 16 th May 2008. Time: 14:00 16:00
COMP20212 Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE Digitl Design Techniques Dte: Fridy 16 th My 2008 Time: 14:00 16:00 Plese nswer ny THREE Questions from the FOUR questions provided
More informationSINCLAIR COMMUNITY COLLEGE DAYTON, OHIO DEPARTMENT SYLLABUS FOR COURSE IN MAT 1470  COLLEGE ALGEBRA (4 SEMESTER HOURS)
SINCLAIR COMMUNITY COLLEGE DAYTON, OHIO DEPARTMENT SYLLABUS FOR COURSE IN MAT 470  COLLEGE ALGEBRA (4 SEMESTER HOURS). COURSE DESCRIPTION: Polynomil, rdicl, rtionl, exponentil, nd logrithmic functions
More informationCS99S Laboratory 2 Preparation Copyright W. J. Dally 2001 October 1, 2001
CS99S Lortory 2 Preprtion Copyright W. J. Dlly 2 Octoer, 2 Ojectives:. Understnd the principle of sttic CMOS gte circuits 2. Build simple logic gtes from MOS trnsistors 3. Evlute these gtes to oserve logic
More informationAll pay auctions with certain and uncertain prizes a comment
CENTER FOR RESEARC IN ECONOMICS AND MANAGEMENT CREAM Publiction No. 12015 All py uctions with certin nd uncertin prizes comment Christin Riis All py uctions with certin nd uncertin prizes comment Christin
More informationPentominoes. Pentominoes. Bruce Baguley Cascade Math Systems, LLC. The pentominoes are a simplelooking set of objects through which some powerful
Pentominoes Bruce Bguley Cscde Mth Systems, LLC Astrct. Pentominoes nd their reltives the polyominoes, polycues, nd polyhypercues will e used to explore nd pply vrious importnt mthemticl concepts. In this
More information1.2 The Integers and Rational Numbers
.2. THE INTEGERS AND RATIONAL NUMBERS.2 The Integers n Rtionl Numers The elements of the set of integers: consist of three types of numers: Z {..., 5, 4, 3, 2,, 0,, 2, 3, 4, 5,...} I. The (positive) nturl
More informationSPECIAL PRODUCTS AND FACTORIZATION
MODULE  Specil Products nd Fctoriztion 4 SPECIAL PRODUCTS AND FACTORIZATION In n erlier lesson you hve lernt multipliction of lgebric epressions, prticulrly polynomils. In the study of lgebr, we come
More informationIntegration. 148 Chapter 7 Integration
48 Chpter 7 Integrtion 7 Integrtion t ech, by supposing tht during ech tenth of second the object is going t constnt speed Since the object initilly hs speed, we gin suppose it mintins this speed, but
More informationSmall Business Networking
Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd business. Introducing technology
More information15.6. The mean value and the rootmeansquare value of a function. Introduction. Prerequisites. Learning Outcomes. Learning Style
The men vlue nd the rootmensqure vlue of function 5.6 Introduction Currents nd voltges often vry with time nd engineers my wish to know the verge vlue of such current or voltge over some prticulr time
More informationMathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100
hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by
More information5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one.
5.2. LINE INTEGRALS 265 5.2 Line Integrls 5.2.1 Introduction Let us quickly review the kind of integrls we hve studied so fr before we introduce new one. 1. Definite integrl. Given continuous relvlued
More informationSmall Business Networking
Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd business. Introducing technology
More informationAlgebra Review. How well do you remember your algebra?
Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then
More information5 a LAN 6 a gateway 7 a modem
STARTER With the help of this digrm, try to descrie the function of these components of typicl network system: 1 file server 2 ridge 3 router 4 ckone 5 LAN 6 gtewy 7 modem Another Novell LAN Router Internet
More informationHow To Network A Smll Business
Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd processes. Introducing technology
More informationOperations with Polynomials
38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply
More informationA.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324
A P P E N D I X A Vectors CONTENTS A.1 Scling vector................................................ 321 A.2 Unit or Direction vectors...................................... 321 A.3 Vector ddition.................................................
More informationUse Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.
Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd
More informationUnit 6: Exponents and Radicals
Eponents nd Rdicls : The Rel Numer Sstem Unit : Eponents nd Rdicls Pure Mth 0 Notes Nturl Numers (N):  counting numers. {,,,,, } Whole Numers (W):  counting numers with 0. {0,,,,,, } Integers (I): 
More information0.1 Basic Set Theory and Interval Notation
0.1 Bsic Set Theory nd Intervl Nottion 3 0.1 Bsic Set Theory nd Intervl Nottion 0.1.1 Some Bsic Set Theory Notions Like ll good Mth ooks, we egin with definition. Definition 0.1. A set is welldefined
More informationSmall Business Networking
Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd processes. Introducing technology
More informationBinary Representation of Numbers Autar Kaw
Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse rel number to its binry representtion,. convert binry number to n equivlent bse number. In everydy
More informationEcon 4721 Money and Banking Problem Set 2 Answer Key
Econ 472 Money nd Bnking Problem Set 2 Answer Key Problem (35 points) Consider n overlpping genertions model in which consumers live for two periods. The number of people born in ech genertion grows in
More informationSmall Business Networking
Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd processes. Introducing technology
More informationExample A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding
1 Exmple A rectngulr box without lid is to be mde from squre crdbord of sides 18 cm by cutting equl squres from ech corner nd then folding up the sides. 1 Exmple A rectngulr box without lid is to be mde
More informationOne Minute To Learn Programming: Finite Automata
Gret Theoreticl Ides In Computer Science Steven Rudich CS 15251 Spring 2005 Lecture 9 Fe 8 2005 Crnegie Mellon University One Minute To Lern Progrmming: Finite Automt Let me tech you progrmming lnguge
More information1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator
AP Clculus Finl Review Sheet When you see the words. This is wht you think of doing. Find the zeros Find roots. Set function =, fctor or use qudrtic eqution if qudrtic, grph to find zeros on clcultor.
More information2 DIODE CLIPPING and CLAMPING CIRCUITS
2 DIODE CLIPPING nd CLAMPING CIRCUITS 2.1 Ojectives Understnding the operting principle of diode clipping circuit Understnding the operting principle of clmping circuit Understnding the wveform chnge of
More informationVectors 2. 1. Recap of vectors
Vectors 2. Recp of vectors Vectors re directed line segments  they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms
More informationAP STATISTICS SUMMER MATH PACKET
AP STATISTICS SUMMER MATH PACKET This pcket is review of Algebr I, Algebr II, nd bsic probbility/counting. The problems re designed to help you review topics tht re importnt to your success in the clss.
More informationTreatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3.
The nlysis of vrince (ANOVA) Although the ttest is one of the most commonly used sttisticl hypothesis tests, it hs limittions. The mjor limittion is tht the ttest cn be used to compre the mens of only
More informationHow To Set Up A Network For Your Business
Why Network is n Essentil Productivity Tool for Any Smll Business TechAdvisory.org SME Reports sponsored by Effective technology is essentil for smll businesses looking to increse their productivity. Computer
More informationPure C4. Revision Notes
Pure C4 Revision Notes Mrch 0 Contents Core 4 Alger Prtil frctions Coordinte Geometry 5 Prmetric equtions 5 Conversion from prmetric to Crtesin form 6 Are under curve given prmetriclly 7 Sequences nd
More informationOr more simply put, when adding or subtracting quantities, their uncertainties add.
Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re
More informationThinking out of the Box... Problem It s a richer problem than we ever imagined
From the Mthemtics Techer, Vol. 95, No. 8, pges 568574 Wlter Dodge (not pictured) nd Steve Viktor Thinking out of the Bo... Problem It s richer problem thn we ever imgined The bo problem hs been stndrd
More informationSmall Businesses Decisions to Offer Health Insurance to Employees
Smll Businesses Decisions to Offer Helth Insurnce to Employees Ctherine McLughlin nd Adm Swinurn, June 2014 Employersponsored helth insurnce (ESI) is the dominnt source of coverge for nonelderly dults
More informationMA 15800 Lesson 16 Notes Summer 2016 Properties of Logarithms. Remember: A logarithm is an exponent! It behaves like an exponent!
MA 5800 Lesson 6 otes Summer 06 Rememer: A logrithm is n eponent! It ehves like n eponent! In the lst lesson, we discussed four properties of logrithms. ) log 0 ) log ) log log 4) This lesson covers more
More informationHillsborough Township Public Schools Mathematics Department Computer Programming 1
Essentil Unit 1 Introduction to Progrmming Pcing: 15 dys Common Unit Test Wht re the ethicl implictions for ming in tody s world? There re ethicl responsibilities to consider when writing computer s. Citizenship,
More informationHealth insurance exchanges What to expect in 2014
Helth insurnce exchnges Wht to expect in 2014 33096CAEENABC 02/13 The bsics of exchnges As prt of the Affordble Cre Act (ACA or helth cre reform lw), strting in 2014 ALL Americns must hve minimum mount
More informationEnterprise Risk Management Software Buyer s Guide
Enterprise Risk Mngement Softwre Buyer s Guide 1. Wht is Enterprise Risk Mngement? 2. Gols of n ERM Progrm 3. Why Implement ERM 4. Steps to Implementing Successful ERM Progrm 5. Key Performnce Indictors
More informationVector differentiation. Chapters 6, 7
Chpter 2 Vectors Courtesy NASA/JPLCltech Summry (see exmples in Hw 1, 2, 3) Circ 1900 A.D., J. Willird Gis invented useful comintion of mgnitude nd direction clled vectors nd their higherdimensionl counterprts
More informationHealth insurance marketplace What to expect in 2014
Helth insurnce mrketplce Wht to expect in 2014 33096VAEENBVA 06/13 The bsics of the mrketplce As prt of the Affordble Cre Act (ACA or helth cre reform lw), strting in 2014 ALL Americns must hve minimum
More information6.2 Volumes of Revolution: The Disk Method
mth ppliction: volumes of revolution, prt ii Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem ) nd the ccumultion process is to determine soclled volumes of
More informationRatio and Proportion
Rtio nd Proportion Rtio: The onept of rtio ours frequently nd in wide vriety of wys For exmple: A newspper reports tht the rtio of Repulins to Demorts on ertin Congressionl ommittee is 3 to The student/fulty
More informationReview guide for the final exam in Math 233
Review guide for the finl exm in Mth 33 1 Bsic mteril. This review includes the reminder of the mteril for mth 33. The finl exm will be cumultive exm with mny of the problems coming from the mteril covered
More informationIntroduction. Teacher s lesson notes The notes and examples are useful for new teachers and can form the basis of lesson plans.
Introduction Introduction The Key Stge 3 Mthemtics series covers the new Ntionl Curriculum for Mthemtics (SCAA: The Ntionl Curriculum Orders, DFE, Jnury 1995, 0 11 270894 3). Detiled curriculum references
More informationHelicopter Theme and Variations
Helicopter Theme nd Vritions Or, Some Experimentl Designs Employing Pper Helicopters Some possible explntory vribles re: Who drops the helicopter The length of the rotor bldes The height from which the
More informationSolving BAMO Problems
Solving BAMO Problems Tom Dvis tomrdvis@erthlink.net http://www.geometer.org/mthcircles Februry 20, 2000 Abstrct Strtegies for solving problems in the BAMO contest (the By Are Mthemticl Olympid). Only
More informationRoots of Polynomials. Ch. 7. Roots of Polynomials. Roots of Polynomials. dy dt. a dt. y = General form:
Roots o Polynomils C. 7 Generl orm: Roots o Polynomils ( ) n n order o te polynomil i constnt coeicients n Roots Rel or Comple. For n n t order polynomil n rel or comple roots. I n is odd At lest rel root
More informationBabylonian Method of Computing the Square Root: Justifications Based on Fuzzy Techniques and on Computational Complexity
Bbylonin Method of Computing the Squre Root: Justifictions Bsed on Fuzzy Techniques nd on Computtionl Complexity Olg Koshelev Deprtment of Mthemtics Eduction University of Texs t El Pso 500 W. University
More information5.6 POSITIVE INTEGRAL EXPONENTS
54 (5 ) Chpter 5 Polynoils nd Eponents 5.6 POSITIVE INTEGRAL EXPONENTS In this section The product rule for positive integrl eponents ws presented in Section 5., nd the quotient rule ws presented in Section
More informationand thus, they are similar. If k = 3 then the Jordan form of both matrices is
Homework ssignment 11 Section 7. pp. 24925 Exercise 1. Let N 1 nd N 2 be nilpotent mtrices over the field F. Prove tht N 1 nd N 2 re similr if nd only if they hve the sme miniml polynomil. Solution: If
More informationMATH PLACEMENT REVIEW GUIDE
MATH PLACEMENT REVIEW GUIDE This guie is intene s fous for your review efore tking the plement test. The questions presente here my not e on the plement test. Although si skills lultor is provie for your
More informationWords Symbols Diagram. abcde. a + b + c + d + e
Logi Gtes nd Properties We will e using logil opertions to uild mhines tht n do rithmeti lultions. It s useful to think of these opertions s si omponents tht n e hooked together into omplex networks. To
More informationConcept Formation Using Graph Grammars
Concept Formtion Using Grph Grmmrs Istvn Jonyer, Lwrence B. Holder nd Dine J. Cook Deprtment of Computer Science nd Engineering University of Texs t Arlington Box 19015 (416 Ytes St.), Arlington, TX 760190015
More informationBasic Analysis of Autarky and Free Trade Models
Bsic Anlysis of Autrky nd Free Trde Models AUTARKY Autrky condition in prticulr commodity mrket refers to sitution in which country does not engge in ny trde in tht commodity with other countries. Consequently
More informationLecture 3 Gaussian Probability Distribution
Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike
More informationNQF Level: 2 US No: 7480
NQF Level: 2 US No: 7480 Assessment Guide Primry Agriculture Rtionl nd irrtionl numers nd numer systems Assessor:.......................................... Workplce / Compny:.................................
More informationRotating DC Motors Part II
Rotting Motors rt II II.1 Motor Equivlent Circuit The next step in our consiertion of motors is to evelop n equivlent circuit which cn be use to better unerstn motor opertion. The rmtures in rel motors
More information. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2
7 CHAPTER THREE. Cross Product Given two vectors = (,, nd = (,, in R, the cross product of nd written! is defined to e: " = (!,!,! Note! clled cross is VECTOR (unlike which is sclr. Exmple (,, " (4,5,6
More informationUnit 29: Inference for TwoWay Tables
Unit 29: Inference for TwoWy Tbles Prerequisites Unit 13, TwoWy Tbles is prerequisite for this unit. In ddition, students need some bckground in significnce tests, which ws introduced in Unit 25. Additionl
More informationExponential and Logarithmic Functions
Nme Chpter Eponentil nd Logrithmic Functions Section. Eponentil Functions nd Their Grphs Objective: In this lesson ou lerned how to recognize, evlute, nd grph eponentil functions. Importnt Vocbulr Define
More information1. Definition, Basic concepts, Types 2. Addition and Subtraction of Matrices 3. Scalar Multiplication 4. Assignment and answer key 5.
. Definition, Bsi onepts, Types. Addition nd Sutrtion of Mtries. Slr Multiplition. Assignment nd nswer key. Mtrix Multiplition. Assignment nd nswer key. Determinnt x x (digonl, minors, properties) summry
More informationVoIP for the Small Business
VoIP for the Smll Business Reducing your telecommunictions costs Reserch firm IDC 1 hs estimted tht VoIP system cn reduce telephonyrelted expenses by 30%. Voice over Internet Protocol (VoIP) hs become
More informationPhysics 43 Homework Set 9 Chapter 40 Key
Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nmwide region t x
More information4.5 Signal Flow Graphs
3/9/009 4_5 ignl Flow Grphs.doc / 4.5 ignl Flow Grphs Reding Assignment: pp. 8997 Q: Using individul device scttering prmeters to nlze comple microwve network results in lot of mess mth! Isn t there n
More informationThe Velocity Factor of an Insulated TwoWire Transmission Line
The Velocity Fctor of n Insulted TwoWire Trnsmission Line Problem Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 Mrch 7, 008 Estimte the velocity fctor F = v/c nd the
More informationVoIP for the Small Business
VoIP for the Smll Business Reducing your telecommunictions costs Reserch firm IDC 1 hs estimted tht VoIP system cn reduce telephonyrelted expenses by 30%. Voice over Internet Protocol (VoIP) hs become
More informationEuler Euler Everywhere Using the EulerLagrange Equation to Solve Calculus of Variation Problems
Euler Euler Everywhere Using the EulerLgrnge Eqution to Solve Clculus of Vrition Problems Jenine Smllwood Principles of Anlysis Professor Flschk My 12, 1998 1 1. Introduction Clculus of vritions is brnch
More informationRotational Equilibrium: A Question of Balance
Prt of the IEEE Techer InService Progrm  Lesson Focus Demonstrte the concept of rottionl equilirium. Lesson Synopsis The Rottionl Equilirium ctivity encourges students to explore the sic concepts of
More informationCOMPLEX FRACTIONS. section. Simplifying Complex Fractions
58 (66) Chpter 6 Rtionl Epressions undles tht they cn ttch while working together for 0 hours. 00 600 6 FIGURE FOR EXERCISE 9 95. Selling. George sells one gzine suscription every 0 inutes, wheres Theres
More information9 CONTINUOUS DISTRIBUTIONS
9 CONTINUOUS DISTIBUTIONS A rndom vrible whose vlue my fll nywhere in rnge of vlues is continuous rndom vrible nd will be ssocited with some continuous distribution. Continuous distributions re to discrete
More informationVoIP for the Small Business
Reducing your telecommunictions costs Reserch firm IDC 1 hs estimted tht VoIP system cn reduce telephonyrelted expenses by 30%. Voice over Internet Protocol (VoIP) hs become vible solution for even the
More informationSection 5.2, Commands for Configuring ISDN Protocols. Section 5.3, Configuring ISDN Signaling. Section 5.4, Configuring ISDN LAPD and Call Control
Chpter 5 Configurtion of ISDN Protocols This chpter provides instructions for configuring the ISDN protocols in the SP201 for signling conversion. Use the sections tht reflect the softwre you re configuring.
More informationBasically, logarithmic transformations ask, a number, to what power equals another number?
Wht i logrithm? To nwer thi, firt try to nwer the following: wht i x in thi eqution? 9 = 3 x wht i x in thi eqution? 8 = 2 x Biclly, logrithmic trnformtion k, number, to wht power equl nother number? In
More information