# Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series

Save this PDF as:

Size: px
Start display at page:

Download "Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series"

## Transcription

1 8 Fourier Series Our aim is to show that uder reasoable assumptios a give -periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series meas that the sequece (s (x)) of partial sums, defied by s (x) = a + (a k cos kx + b k sikx), k= coverges at a give poit x to f(x), s (x) f(x). We start with some defiitios. A real valued fuctio defied o R is said to be periodic with period L, or L-periodic, is f(x + L) = f(x) for all x. I this case f is completely determied by its values o ay iterval [a,a+l). A fuctio f defied o [a,a+l) ca be exteded i a uique way to a periodic fuctio o R. Ideed, give x, there exists a uique iteger so that x belogs to [a + L,a + ( + )L) so that x L [a,a + P) ad we set f(x) = f(x L). A fuctio f o [a,b] is piecewise cotiuous if f is cotiuous except a fiite umbers of poits ad at each such poit the oe-sided limits f(x + ) = lim ε f(x + ε) ad f(x ) = lim ε f(x + ε) exist ad are fiite. We say that f is piecewise smooth (or piecewise differetiable) o [a,b] if f ad f are piecewise cotiuous o [a,b]. If f is piecewise cotiuous, the it is Riema itegrable over ay bouded iterval cotaied i its domai. I additio, if f is L-periodic, the a+l a f(x) dx = L fx) dx for every a. I what follows we focus o fuctios which are -periodic. Assume f(x) = a + (a cos x + b si x). We also assume that the covergece is well-behaved so that we ca itegrate term-by-term. We wat to compute the coefficiets a k ad b k. We use 66

2 itegral idetities, m cos mxcos x dx =, m = =, m = {, m si mxsix dx =, m = cos mxsix dx =. To compute a, we multiply both sides of (8.) by the costat fuctio ad itegrate over [,] ad get f(x) dx = a dx + = a () = a [a cos x dx + b ] si x dx To compute a m with m we we multiply both sides of (8.) by cos mx ad itegrate over [,] to get f(x)cos mx dx = a cos mx dx + [a cos xcos mx dx + b = a m cos mxcos mx dx = a m. ] si xcos mx dx Similarly, multiplyig both sides of (8.) by si mx ad itegratig over [,], we fid that f(x)si mx dx = b m. Summig up, a = b = f(x)cos x dx, f(x)si x dx,. (8.) 67

3 The coefficiets a ad b are called the Fourier coefficiets of f ad the series a + [a cos x + b si x] the Fourier series of f. We deote this fact by f(x) a + [a cos x + b si x]. The symbol should be read as f has Fourier serier. Example 8.. Let f be a -periodic fuctio give by f(x) = x for x (, ]. The itegratig by parts a = xcos x dx = [ ] xsi x si x dx = ad b = Cosequetly, xsi x dx = [ xcosx = cos ] = ( )+. f(x) ( ) + si x. + cosx dx The series coverges for every x i view of the followig Dirichlet s test. If (a ) is a decreasig sequece covergig to ad the sequece (s ) of partial sums of the series b is bouded, the the series a b coverges. I our case, a = is decreasig ad coverges to, ( ) si x = si (x + ), ad which implies that if ϑ k for all k Z. si ϑ si kϑ = si k= ( + )ϑ si kϑ si ϑ k= si ϑ Example 8.. Cosider f be a -periodic fuctio defied by f(x) = x for x [, ]. Note that f is eve. Sice the product of eve fuctio with the odd fuctio is odd, it follows that f(x)si mxdx =. 68

4 Hece b = for all. To compute b ote that the product of a eve fuctio with a eve fuctio is eve so that a = If =, the f(x)cosx dx = a = f(x)cos xdx = x dx =, ad if, the itegratig by parts, oe fids that xcos x dx = [ ] xsi x = [ cosx Hece a = if is eve ad a = 4 f(x) 4 ] si x dx = [( ) ]. whe is odd, ad hece cos( )x ( ). xcosx dx. Sice the series coverges, the M-Weierstarss test implies that the above series coverges. I the above examples we have used the followig idetities, { L L g(x) dx = g(x) dx if g is eve if g is odd. L Usig that the sum of two eve fuctios is eve ad the sum of two odd fuctios is odd, that the product of two eve fuctios or two odd fuctios is eve, ad the product of a eve fuctio ad a odd fuctio is odd, we have the followig propositio. Propositio 8.3. (i) If f is eve, the its Fourier sie coefficiets b are equal to ad f is represeted by Fourier cosie series f(x) a + a cos x where a = f(x)cos x dx for. 69

5 (ii) If f is odd, the its Fourier cosie coefficiets a are equal to ad f is represeted by Fourier sie series f(x) a si x where b = f(x)si x dx for. 8.. Covergece Theorem Theorem 8.4. Assume that f is a -periodic fuctio which is piecewise smooth. The [ ] f(x ) + f(x + ) = a + [a k cos kx + b k si kx] where f(x ± ) = lim y x ± f(y). I particular, if f is cotiuous at x, the k= f(x) = a + [a k cos kx + b k si kx]. k= Example 8.5. Cosider the fuctio f from Example 8.. The f is smooth at all poits except poits m where m is odd. The oe sided limits at these poits are f(m ) = lim x m f(x) = ad f(m + ) = lim x m + f(x) = provided that m is odd. Cosequetly, the Fourier series coverges of f coverges to f at every poit except poits m with m odd. At these poits the Fourier series coverges to [f(m ) + f(m + )] =. I particular, x = ( ) + si x, for x (, ). Takig x = /, we fid that 4 = ( ). 7

6 Example 8.6. Cosider the fuctio -periodic fuctio f give by f(x) = x for x (, ). (See Example 8..) The f is cotiuous at every poit ad it is smooth except poits m with m odd. Hece the Fourier series of f coverges to f at every poit. I particular, x = 4 Substitutig x =, we fid that Set S =. The we ote that ad hece cos( )x ( ) for x [, ]. 8 = ( + ). S 4 = S = S S 4 = From this we coclude that = S = Itegratio of Fourier series = () () = = 6. = ( + ) = 8. We start with the followig observatio. Assume that f is -periodic, piecewise cotiuous, ad let F(x) = x f(y) dy. The F is periodic if ad oly if f(y)dy =. Ideed, we have F(x + ) F(x) = x+ x f(y)dy = f(y)dy. This meas that the costat term i the Fourier series of f is equal to. Sice a = f(y) dy, the umber a / is the mea of the fuctio f over the iterval [.]. Theorem 8.7. Assume that f is -periodic ad piecewise cotiuous ad its mea is equal to. The its Fourier series f(x) [a cos x + b si x] 7

7 ca be itegrated term by term ad produce the Fourier series x F(x) = f(y) dy C + [ b cos x + a ] si x where the costat C = F(y) dy. Example 8.8. Cosider a -periodic fuctio f give by f(x) = x o (, ]. (See Example 8..) Sice f is odd, its mea value over [, ] is equal to. Its Fourier series is give by x = ( ) si x, Itegratig term by term we fid that for x (, ]. x = 6 ( ) cosx for x (, ] where /6 = (x /) dx. Differetiatio of Fourier series Propositio 8.9. Assume that f is -periodic, cotiuous, ad piecewise smooth. Abbreviate by a,b the Fourier coefficiets of f ad by a,b the Fourier coefficiets of f. The Proof. Itegratig by parts, a = Similarly, b = a. f (x)cos x dx = As a cosequece, we get: a = b ad b = a. [ ] f(x)cosx + f(x)si x dx = b. Theorem 8.. Let f be -periodic, cotiuous, ad piecewise smooth. I additio, assume that f is piecewise smooth. If the f(x) = a + [a cos x + b si x], [ ] f (x ) + f (x + ) = [b cos x a si x]. I particular, at poits x at which f (x) exists, the series coverges to f (x). 7

8 Proof. By Propositio 8.9, f (x) [b cosx a si x], ad sice f is piecewise smooth, the theorem follows from Theorem 8.4. Example 8.. Recall the fuctio -periodic fuctio f give by f(x) = x for x (, ). (See Example 8. ad Example 8.6.) The fuctio f is cotiuous ad piecewise smooth, ad x = 4 The derivative of f is give by I view of Theorem 8., 4 d dx x = si( )x ( ) cos( )x ( ), x [, ]. {, x >,, x <. {, < x <, =, < x <. At x =, the series coverges to [f (x ) + f (x + )] = [ + ] =. 8.. Absolute ad Uiform Covergece Theorem 8.. Let f be -periodic, cotiuous, ad piecewise smooth. The its Fourier series coverges absolutely ad uiformly. Proof. We prove the result uder additioal assumptio that f is piecewise smooth. This meas that f is piecewise cotiuous. Abbreviate by a, b the Fourier coefficiets of f ad by a, b the Fourier coefficiets of f. Sice f is cotiuous, f(x) = a + [a cosx + b si x]. To prove the absolute covergece it suffices to show that a, b M/ for some costat M idepedet of. The, by the compariso test, a ad b coverge which imply the absolute covergece of the Fourier series. Also, the Weierstrass M-test implies the uiform covergece. By Propositio 8.9, a = b /. That is, a = f(x)cos x dx = f (x)si x dx. 73

10 8. Chagig a scale So far we have cosidered -periodic fuctios ad their Fourier series over the iterval [,]. Now, give a fuctio f defied o [ L,L], we defie F(y) = f ( L y). The F is defied o [,] ad its Fourier series is give by where a = F(y) a + [ a cos y + b si y ] F(y)cos y dy ad b = Sice f(x) = F( Lx) for x [ L,L], we deduce that f(x) a + [ a cos L x + b si L x] F(y)si y dy. (8.3) The coefficiets a ad b ca be computed by itegratig (8.3) by substitutio x = L y. We get a = F(y)cos y dy = ( ) L f y cos y dy = L f(x)cos x (8.4) L L dx ad similarly L b = F(y)si y dy = L L L f(x)cos x L dx. (8.5) 75

### SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval

### Section 11.3: The Integral Test

Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

### Infinite Sequences and Series

CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

### 4.3. The Integral and Comparison Tests

4.3. THE INTEGRAL AND COMPARISON TESTS 9 4.3. The Itegral ad Compariso Tests 4.3.. The Itegral Test. Suppose f is a cotiuous, positive, decreasig fuctio o [, ), ad let a = f(). The the covergece or divergece

Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real o-egative umber R, called the radius

### Sequences and Series

CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

### In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

### Chapter 5: Inner Product Spaces

Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples

### Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem

Lecture 4: Cauchy sequeces, Bolzao-Weierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits

### Overview of some probability distributions.

Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability

### Asymptotic Growth of Functions

CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll

### 0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5

Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.

### Properties of MLE: consistency, asymptotic normality. Fisher information.

Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

### Class Meeting # 16: The Fourier Transform on R n

MATH 18.152 COUSE NOTES - CLASS MEETING # 16 18.152 Itroductio to PDEs, Fall 2011 Professor: Jared Speck Class Meetig # 16: The Fourier Trasform o 1. Itroductio to the Fourier Trasform Earlier i the course,

### 1. MATHEMATICAL INDUCTION

1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1

INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal

### FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if

### 3. Greatest Common Divisor - Least Common Multiple

3 Greatest Commo Divisor - Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd

### Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find

1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.

### Chapter 6: Variance, the law of large numbers and the Monte-Carlo method

Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value

### Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

THE ABRACADABRA PROBLEM FRANCESCO CARAVENNA Abstract. We preset a detailed solutio of Exercise E0.6 i [Wil9]: i a radom sequece of letters, draw idepedetly ad uiformly from the Eglish alphabet, the expected

### Chapter 7 Methods of Finding Estimators

Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of

### Lecture 5: Span, linear independence, bases, and dimension

Lecture 5: Spa, liear idepedece, bases, ad dimesio Travis Schedler Thurs, Sep 23, 2010 (versio: 9/21 9:55 PM) 1 Motivatio Motivatio To uderstad what it meas that R has dimesio oe, R 2 dimesio 2, etc.;

### Convexity, Inequalities, and Norms

Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for

### a 4 = 4 2 4 = 12. 2. Which of the following sequences converge to zero? n 2 (a) n 2 (b) 2 n x 2 x 2 + 1 = lim x n 2 + 1 = lim x

0 INFINITE SERIES 0. Sequeces Preiary Questios. What is a 4 for the sequece a? solutio Substitutig 4 i the expressio for a gives a 4 4 4.. Which of the followig sequeces coverge to zero? a b + solutio

### Irreducible polynomials with consecutive zero coefficients

Irreducible polyomials with cosecutive zero coefficiets Theodoulos Garefalakis Departmet of Mathematics, Uiversity of Crete, 71409 Heraklio, Greece Abstract Let q be a prime power. We cosider the problem

### CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations

CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad

### Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:

Chapter 7 - Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries

### AP Calculus BC 2003 Scoring Guidelines Form B

AP Calculus BC Scorig Guidelies Form B The materials icluded i these files are iteded for use by AP teachers for course ad exam preparatio; permissio for ay other use must be sought from the Advaced Placemet

### Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley

Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Cosider a legth- sequece x[ with a -poit DFT X[ where Represet the idices ad as +, +, Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Usig these

### AP Calculus AB 2006 Scoring Guidelines Form B

AP Calculus AB 6 Scorig Guidelies Form B The College Board: Coectig Studets to College Success The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success

### Metric, Normed, and Topological Spaces

Chapter 13 Metric, Normed, ad Topological Spaces A metric space is a set X that has a otio of the distace d(x, y) betwee every pair of poits x, y X. A fudametal example is R with the absolute-value metric

### Soving Recurrence Relations

Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

### Analysis Notes (only a draft, and the first one!)

Aalysis Notes (oly a draft, ad the first oe!) Ali Nesi Mathematics Departmet Istabul Bilgi Uiversity Kuştepe Şişli Istabul Turkey aesi@bilgi.edu.tr Jue 22, 2004 2 Cotets 1 Prelimiaries 9 1.1 Biary Operatio...........................

### WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? JÖRG JAHNEL 1. My Motivatio Some Sort of a Itroductio Last term I tought Topological Groups at the Göttige Georg August Uiversity. This

### Math 114- Intermediate Algebra Integral Exponents & Fractional Exponents (10 )

Math 4 Math 4- Itermediate Algebra Itegral Epoets & Fractioal Epoets (0 ) Epoetial Fuctios Epoetial Fuctios ad Graphs I. Epoetial Fuctios The fuctio f ( ) a, where is a real umber, a 0, ad a, is called

### On the L p -conjecture for locally compact groups

Arch. Math. 89 (2007), 237 242 c 2007 Birkhäuser Verlag Basel/Switzerlad 0003/889X/030237-6, ublished olie 2007-08-0 DOI 0.007/s0003-007-993-x Archiv der Mathematik O the L -cojecture for locally comact

### NOTES ON PROBABILITY Greg Lawler Last Updated: March 21, 2016

NOTES ON PROBBILITY Greg Lawler Last Updated: March 21, 2016 Overview This is a itroductio to the mathematical foudatios of probability theory. It is iteded as a supplemet or follow-up to a graduate course

### University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution

Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chi-square (χ ) distributio.

### Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)

18.409 A Algorithmist s Toolkit October 27, 2009 Lecture 13 Lecturer: Joatha Keler Scribe: Joatha Pies (2009) 1 Outlie Last time, we proved the Bru-Mikowski iequality for boxes. Today we ll go over the

### http://www.webassign.net/v4cgijeff.downs@wnc/control.pl

Assigmet Previewer http://www.webassig.et/vcgijeff.dows@wc/cotrol.pl of // : PM Practice Eam () Questio Descriptio Eam over chapter.. Questio DetailsLarCalc... [] Fid the geeral solutio of the differetial

### THE LEAST COMMON MULTIPLE OF A QUADRATIC SEQUENCE

THE LEAST COMMON MULTIPLE OF A QUADRATIC SEQUENCE JAVIER CILLERUELO Abstract. We obtai, for ay irreducible quadratic olyomial f(x = ax 2 + bx + c, the asymtotic estimate log l.c.m. {f(1,..., f(} log. Whe

### 1. C. The formula for the confidence interval for a population mean is: x t, which was

s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : p-value

### Basic Elements of Arithmetic Sequences and Series

MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic

### S. Tanny MAT 344 Spring 1999. be the minimum number of moves required.

S. Tay MAT 344 Sprig 999 Recurrece Relatios Tower of Haoi Let T be the miimum umber of moves required. T 0 = 0, T = 7 Iitial Coditios * T = T + \$ T is a sequece (f. o itegers). Solve for T? * is a recurrece,

### Factors of sums of powers of binomial coefficients

ACTA ARITHMETICA LXXXVI.1 (1998) Factors of sums of powers of biomial coefficiets by Neil J. Cali (Clemso, S.C.) Dedicated to the memory of Paul Erdős 1. Itroductio. It is well ow that if ( ) a f,a = the

### Partial Di erential Equations

Partial Di eretial Equatios Partial Di eretial Equatios Much of moder sciece, egieerig, ad mathematics is based o the study of partial di eretial equatios, where a partial di eretial equatio is a equatio

### Chapter 14 Nonparametric Statistics

Chapter 14 Noparametric Statistics A.K.A. distributio-free statistics! Does ot deped o the populatio fittig ay particular type of distributio (e.g, ormal). Sice these methods make fewer assumptios, they

### Permutations, the Parity Theorem, and Determinants

1 Permutatios, the Parity Theorem, ad Determiats Joh A. Guber Departmet of Electrical ad Computer Egieerig Uiversity of Wiscosi Madiso Cotets 1 What is a Permutatio 1 2 Cycles 2 2.1 Traspositios 4 3 Orbits

### PART TWO. Measure, Integration, and Differentiation

PART TWO Measure, Itegratio, ad Differetiatio Émile Félix-Édouard-Justi Borel (1871 1956 Émile Borel was bor at Sait-Affrique, Frace, o Jauary 7, 1871, the third child of Hooré Borel, a Protestat miister,

### Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

### A Note on Sums of Greatest (Least) Prime Factors

It. J. Cotemp. Math. Scieces, Vol. 8, 203, o. 9, 423-432 HIKARI Ltd, www.m-hikari.com A Note o Sums of Greatest (Least Prime Factors Rafael Jakimczuk Divisio Matemática, Uiversidad Nacioal de Luá Bueos

### Unbiased Estimation. Topic 14. 14.1 Introduction

Topic 4 Ubiased Estimatio 4. Itroductio I creatig a parameter estimator, a fudametal questio is whether or ot the estimator differs from the parameter i a systematic maer. Let s examie this by lookig a

### THIN SEQUENCES AND THE GRAM MATRIX PAMELA GORKIN, JOHN E. MCCARTHY, SANDRA POTT, AND BRETT D. WICK

THIN SEQUENCES AND THE GRAM MATRIX PAMELA GORKIN, JOHN E MCCARTHY, SANDRA POTT, AND BRETT D WICK Abstract We provide a ew proof of Volberg s Theorem characterizig thi iterpolatig sequeces as those for

### Normal Distribution.

Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued

### Statistical inference: example 1. Inferential Statistics

Statistical iferece: example 1 Iferetial Statistics POPULATION SAMPLE A clothig store chai regularly buys from a supplier large quatities of a certai piece of clothig. Each item ca be classified either

### A sharp Trudinger-Moser type inequality for unbounded domains in R n

A sharp Trudiger-Moser type iequality for ubouded domais i R Yuxiag Li ad Berhard Ruf Abstract The Trudiger-Moser iequality states that for fuctios u H, 0 (Ω) (Ω R a bouded domai) with Ω u dx oe has Ω

### Factoring x n 1: cyclotomic and Aurifeuillian polynomials Paul Garrett <garrett@math.umn.edu>

(March 16, 004) Factorig x 1: cyclotomic ad Aurifeuillia polyomials Paul Garrett Polyomials of the form x 1, x 3 1, x 4 1 have at least oe systematic factorizatio x 1 = (x 1)(x 1

### Math 113 HW #11 Solutions

Math 3 HW # Solutios 5. 4. (a) Estimate the area uder the graph of f(x) = x from x = to x = 4 usig four approximatig rectagles ad right edpoits. Sketch the graph ad the rectagles. Is your estimate a uderestimate

### Section 8.3 : De Moivre s Theorem and Applications

The Sectio 8 : De Moivre s Theorem ad Applicatios Let z 1 ad z be complex umbers, where z 1 = r 1, z = r, arg(z 1 ) = θ 1, arg(z ) = θ z 1 = r 1 (cos θ 1 + i si θ 1 ) z = r (cos θ + i si θ ) ad z 1 z =

### I. Chi-squared Distributions

1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

### Notes on exponential generating functions and structures.

Notes o expoetial geeratig fuctios ad structures. 1. The cocept of a structure. Cosider the followig coutig problems: (1) to fid for each the umber of partitios of a -elemet set, (2) to fid for each the

### ON THE DENSE TRAJECTORY OF LASOTA EQUATION

UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA, FASCICULUS XLIII 2005 ON THE DENSE TRAJECTORY OF LASOTA EQUATION by Atoi Leo Dawidowicz ad Najemedi Haribash Abstract. I preseted paper the dese trajectory

### 1 Correlation and Regression Analysis

1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

### Maximum Likelihood Estimators.

Lecture 2 Maximum Likelihood Estimators. Matlab example. As a motivatio, let us look at oe Matlab example. Let us geerate a radom sample of size 00 from beta distributio Beta(5, 2). We will lear the defiitio

### CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

### 1 Computing the Standard Deviation of Sample Means

Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.

### 2-3 The Remainder and Factor Theorems

- The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x

### BASIC STATISTICS. f(x 1,x 2,..., x n )=f(x 1 )f(x 2 ) f(x n )= f(x i ) (1)

BASIC STATISTICS. SAMPLES, RANDOM SAMPLING AND SAMPLE STATISTICS.. Radom Sample. The radom variables X,X 2,..., X are called a radom sample of size from the populatio f(x if X,X 2,..., X are mutually idepedet

### Department of Computer Science, University of Otago

Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly

### Output Analysis (2, Chapters 10 &11 Law)

B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should

### An Efficient Polynomial Approximation of the Normal Distribution Function & Its Inverse Function

A Efficiet Polyomial Approximatio of the Normal Distributio Fuctio & Its Iverse Fuctio Wisto A. Richards, 1 Robi Atoie, * 1 Asho Sahai, ad 3 M. Raghuadh Acharya 1 Departmet of Mathematics & Computer Sciece;

### 3 Basic Definitions of Probability Theory

3 Basic Defiitios of Probability Theory 3defprob.tex: Feb 10, 2003 Classical probability Frequecy probability axiomatic probability Historical developemet: Classical Frequecy Axiomatic The Axiomatic defiitio

### GCE Further Mathematics (6360) Further Pure Unit 2 (MFP2) Textbook. Version: 1.4

GCE Further Mathematics (660) Further Pure Uit (MFP) Tetbook Versio: 4 MFP Tetbook A-level Further Mathematics 660 Further Pure : Cotets Chapter : Comple umbers 4 Itroductio 5 The geeral comple umber 5

### Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling

Taig DCOP to the Real World: Efficiet Complete Solutios for Distributed Multi-Evet Schedulig Rajiv T. Maheswara, Milid Tambe, Emma Bowrig, Joatha P. Pearce, ad Pradeep araatham Uiversity of Souther Califoria

### UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006

Exam format UC Bereley Departmet of Electrical Egieerig ad Computer Sciece EE 6: Probablity ad Radom Processes Solutios 9 Sprig 006 The secod midterm will be held o Wedesday May 7; CHECK the fial exam

### Confidence Intervals for One Mean

Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a

### Hypothesis testing. Null and alternative hypotheses

Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate

### . P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2

4. Basic feasible solutios ad vertices of polyhedra Due to the fudametal theorem of Liear Programmig, to solve ay LP it suffices to cosider the vertices (fiitely may) of the polyhedro P of the feasible

### Inference on Proportion. Chapter 8 Tests of Statistical Hypotheses. Sampling Distribution of Sample Proportion. Confidence Interval

Chapter 8 Tests of Statistical Hypotheses 8. Tests about Proportios HT - Iferece o Proportio Parameter: Populatio Proportio p (or π) (Percetage of people has o health isurace) x Statistic: Sample Proportio

### SOME GEOMETRY IN HIGH-DIMENSIONAL SPACES

SOME GEOMETRY IN HIGH-DIMENSIONAL SPACES MATH 57A. Itroductio Our geometric ituitio is derived from three-dimesioal space. Three coordiates suffice. May objects of iterest i aalysis, however, require far

### SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

### Tangent circles in the ratio 2 : 1. Hiroshi Okumura and Masayuki Watanabe. In this article we consider the following old Japanese geometry problem

116 Taget circles i the ratio 2 : 1 Hiroshi Okumura ad Masayuki Wataabe I this article we cosider the followig old Japaese geometry problem (see Figure 1), whose statemet i [1, p. 39] is missig the coditio

### A note on the boundary behavior for a modiﬁed Green function in the upper-half space

Zhag ad Pisarev Boudary Value Problems (015) 015:114 DOI 10.1186/s13661-015-0363-z RESEARCH Ope Access A ote o the boudary behavior for a modiﬁed Gree fuctio i the upper-half space Yulia Zhag1 ad Valery

### Convex Bodies of Minimal Volume, Surface Area and Mean Width with Respect to Thin Shells

Caad. J. Math. Vol. 60 (1), 2008 pp. 3 32 Covex Bodies of Miimal Volume, Surface Area ad Mea Width with Respect to Thi Shells Károly Böröczky, Károly J. Böröczky, Carste Schütt, ad Gergely Witsche Abstract.

### A Recursive Formula for Moments of a Binomial Distribution

A Recursive Formula for Momets of a Biomial Distributio Árpád Béyi beyi@mathumassedu, Uiversity of Massachusetts, Amherst, MA 01003 ad Saverio M Maago smmaago@psavymil Naval Postgraduate School, Moterey,

### THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n

We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample

### A Faster Clause-Shortening Algorithm for SAT with No Restriction on Clause Length

Joural o Satisfiability, Boolea Modelig ad Computatio 1 2005) 49-60 A Faster Clause-Shorteig Algorithm for SAT with No Restrictio o Clause Legth Evgey Datsi Alexader Wolpert Departmet of Computer Sciece

### Incremental calculation of weighted mean and variance

Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically

### ON AN INTEGRAL OPERATOR WHICH PRESERVE THE UNIVALENCE

Proceedigs of the Iteratioal Coferece o Theory ad Applicatios of Mathematics ad Iformatics ICTAMI 3, Alba Iulia ON AN INTEGRAL OPERATOR WHICH PRESERVE THE UNIVALENCE by Maria E Gageoea ad Silvia Moldoveau

### PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical ad Mathematical Scieces 2015, 1, p. 15 19 M a t h e m a t i c s AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM A. G. GULYAN Chair of Actuarial Mathematics

### APPLICATION NOTE 30 DFT or FFT? A Comparison of Fourier Transform Techniques

APPLICATION NOTE 30 DFT or FFT? A Compariso of Fourier Trasform Techiques This applicatio ote ivestigates differeces i performace betwee the DFT (Discrete Fourier Trasform) ad the FFT(Fast Fourier Trasform)

### Confidence Intervals

Cofidece Itervals Cofidece Itervals are a extesio of the cocept of Margi of Error which we met earlier i this course. Remember we saw: The sample proportio will differ from the populatio proportio by more

### Research Article Sign Data Derivative Recovery

Iteratioal Scholarly Research Network ISRN Applied Mathematics Volume 0, Article ID 63070, 7 pages doi:0.540/0/63070 Research Article Sig Data Derivative Recovery L. M. Housto, G. A. Glass, ad A. D. Dymikov

### 1 The Gaussian channel

ECE 77 Lecture 0 The Gaussia chael Objective: I this lecture we will lear about commuicatio over a chael of practical iterest, i which the trasmitted sigal is subjected to additive white Gaussia oise.

### Chapter 04.05 System of Equations

hpter 04.05 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee

### NATIONAL SENIOR CERTIFICATE GRADE 12

NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 04 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages ad iformatio sheet. Please tur over Mathematics/P DBE/04 NSC Grade Eemplar INSTRUCTIONS