Discrete Mathematics Problems
|
|
|
- Jody Kory Lamb
- 9 years ago
- Views:
Transcription
1 Discrete Mathematics Problems William F. Klostermeyer School of Computing University of North Florida Jacksonville, FL
2 Contents 0 Preface 3 1 Logic Basics Truth Tables and Logical Equivalences Quantifiers Circuits Sets 13 3 Functions 17 4 Integers and Matrices 21 5 Proofs Direct Proofs Proofs by Contradiction Proofs by Induction Graphs Basic Problems Graphs Directed Graphs Problems Requiring Proofs Counting 39 8 Other Topics Relations
3 2 CONTENTS 8.2 Algorithm Analysis Recurrence Relations Generating Functions Boolean Algebra
4 Chapter 0 Preface This booklet consists of problem sets for a typical undergraduate discrete mathematics course aimed at computer science students. These problem may be used to supplement those in the course textbook. We felt that in order to become proficient, students need to solve many problems on their own, without the temptation of a solutions manual! These problems have been collected from a variety of sources (including the authors themselves), including a few problems from some of the texts cited in the references. Difficult problems are marked with a. References to the bibliography are indicated by [x], where x is the number of a bibliography entry. 3
5 4 CHAPTER 0. PREFACE
6 Chapter 1 Logic 1.1 Basics Evaluate each of the following. 1. If 2 is even, then 5=6. 2. If 2 is odd, then 5=6. 3. If 4 is even, then 10 = If 4 is odd, then 10= 7+3. In the following, assume that p is true, q is false, and r is true. 5. p q r (you may want to add parentheses!) 6. q p 7. p (q p) 5
7 6 CHAPTER 1. LOGIC 8. q p 9. r p 10. q p 11. (q p) (q (r p)) 1.2 Truth Tables and Logical Equivalences Give truth tables for each of the following: 1. p q r 2. p q 3. (p q) p 4. (p q) (q p) 5. (p q) q 6. (p q) (q p) 7. (p q) r 8. (p q) p
8 1.2. TRUTH TABLES AND LOGICAL EQUIVALENCES 7 9. (p q) (p q) Which of the following are tautologies? 10. (p p) p 11. (p q) ( p q) 12. (p p) q 13. (p q) ( p q) Prove or disprove each of the following using (a) truth tables and (b) the rules of logic. 14. (p q) (p q) True 15. (p q) q True 16. [2] (p (p q)) q True 17. p q q p 18. ( p q) q p q 19. ( p q) q q p 20. p (q r) p (q r) 21. p (q r) p (q r)
9 8 CHAPTER 1. LOGIC 22. (p (q r)) (p q) r 23. p (p q) True Re-write the following using only,, 24. p (q r) 25. p (q r) 26. q (p q) Re-write the following CNF formulae into DNF 27. (p q r) ( p q) 28. (p q r) ( p q r) (p q) Use truth tables to verify the following: 29. [2] (p (p q)) p 30. [2] (p (p q)) p 31. Show that (p q r s) can be re-written into an equivalent CNF formula such that each clause contains exactly 3 variables or negations of variables. 32. Show that p not (not q and not p) is logically equivalent to True.
10 1.3. QUANTIFIERS Quantifiers Evaluate each of the following for the universe Z, the set of integers 1. P (2), where P (x) = x P (4) where P (x) = (x = 1) (x > 5) 3. P (x) where P (x) = (x < 0) (x 23) 4. x(x = 5) (x = 6) 5. x(x = 5) (x 5) 6. x(x = 5) (x 5) 7. x(x < 0) (x 2x) 8. x x 2 > 0 9. x x 2 = x y x < y 11. x y x < y In the following, let the universe be Z x y(x + y = 0) (x y = 0) 13. x y(x y x + y)
11 10 CHAPTER 1. LOGIC 14. x y(x < y) 15. x y(x y) 16. x y((x = 3) (y = 4) 17. x y z(x 2 y + z = 0) 18. x y((x > 1 y )) 19. x y(x 2 = y 1) 20. y x z((y = x + z) (z x)) Re-write the following without any negations on quantifiers 21. xp (x) 22. x yp (x, y) 23. xp (x) 24. x yp (x, y) 25. x yp (x, y) 26. Argue that x yp (x, y) x yp (x, y) is (or is not) a tautology. 27. Argue that ( x(p (x) yp (y))) is equivalent to xp (x).
12 1.4. CIRCUITS [2] Argue that x(p (x) y) is equivalent to ( xp (x)) y 1.4 Circuits Design logic circuits, using AND, OR, and NOT gates to solve the following problems. 1. Input two bits, x, y and output two bits representing x y (1 1 = 00, 1 0 = 01, 0 0 = 00, 0 1 = 11). 2. Input two bits x, y and output two bits representing the absolute value of x y 3. Input three bits x, y, z and output one bit which is the majority of the three input bits
13 12 CHAPTER 1. LOGIC
14 Chapter 2 Sets List the elements of the following sets. Assume the universe is Z.(Note: 2 X denotes the power set of X) 1. {x x 2 = 6} 2. {x x 2 = 9} 3. {x (x mod 2 = 1) (x < 10)} (Assume universe is Z + for this problem) 4. [2] {x x = x 2 } 5. {x k {2, 3,... x 1}x mod k = 1} (Assume universe is Z + for this problem) 6. {a, b, c} {1, 2} 7. {1, 2} {a, b, c} 13
15 14 CHAPTER 2. SETS 8. {a, b, c} 9. {a, b} {1} {x, y} {a,{a}} 11. [2] Is x {x}? Is x {x}? Is {x}? Is {x}? Is {x} {x}? What is the cardinality of each of the following sets? 12. {{x}} { } 15. {{ }} 16. {x, {x}, } 17. Z Z Let A = {1, 2, 4, 5, 7, 8}, B = {x (x Z + ) (x < 10)}, C = {x (x Z + ) (x mod 3 < 2}. List/describe the elements of the following sets.
16 A B 22. A C 23. A B 24. A B 25. B A 26. A B 27. B C 28. A 29. B { } 30. C 31. A B C 32. A A 33. A B 34. In general, when are two sets D, E such that D E = D E? 35. If A B, then what is A B?
17 16 CHAPTER 2. SETS Prove the following set identities, using either Venn Diagrams or the rules of sets. 36. [2] A (B A) = 37. [2] (A B) (A B) = A 38. [2] (A B) C A C 39. [2] (A C) (C B) = 40. Argue that the symmetric difference operator does, or does not, always satisfy the associative property. List the elements in the following sets. Assume the universe is Z + : 41. {x x < 8} 42. {x x = 6 x 4} 43. List the elements of {1, 2, 3, 4} {2, 3, 5, 7} {1, 5, 9} 44. List the elements of {1, 2, 3, 4} {2, 3, 5, 7}
18 Chapter 3 Functions What is the value of each of the following: When is x such that x x = x x 6. [2] Show that 2x = x + x log log log
19 18 CHAPTER 3. FUNCTIONS 10. 7! Convert the following to binary: Convert the following binary numbers to base 10: In each of the following, assume that f : Z Z. Then identify whether each is a function, onto function, one-to-one function, bijection. 18. f(x) = x f(x) = x f(x) = x 21. f(x) = x
20 f(x) = f(x) = 2 x 24. f(x) = (i) x 2 if x is even; (ii)2x 1 if x is odd 25. f(x) = log x, where log x = 1 + log ( log 2 x ) and log x = 1 for x 2. Also compute log Define a recursive function such that f(n) = 5 (2n). 27. Let f(n) = 1 for n 1 and f(n) = 2f(n 1) + 3. Compute the values of f(n) for n Let f(n) = 1 for n 2 and f(n) = 2f(n 1) + f(n 1)f(n 2). Compute the values of f(n) for n Show that log(n!) n log n for all n Let f(n) = 2 for n 2 and f(n) = f(n 1) + f(n 2) + 1. Compute the values of f(n) for n Let f(n) = 1 for n 2 and f(n) = 2f(n 1) 1. Compute the values of f(n) for n 5.
21 20 CHAPTER 3. FUNCTIONS
22 Chapter 4 Integers and Matrices 1. What is the prime factorization of 90? of 8100? 2. What is 57 mod x for each x = 2, 3, 4, 5? 3. How many integers less than 45 are relatively prime to 45? 4. [2] Show that if a, b, m are positive integers, then a mod m = b mod m if a = b(mod m). 5. [2] Show that if a, b, m are positive integers, then a = b(mod m) if a mod m = b mod m. 6. What is the gcd of 200 and 88? 7. What is the gcd of 17 and 42? 8. Show that if a b and b c then a c. 9. What is the value of i=6 i=2 2i+1? 21
23 22 CHAPTER 4. INTEGERS AND MATRICES 10. Is 2 n 1 prime for all values of n? 11. What is the value of i=5 i=0 i + 1? 12. What is the value of i=8 i=1 i 2? 13. What is 17 mod 5? 14. What is 81 mod 7? 15. What is 81 2 mod 7? 16. What is the value of i=6 i=1 i 2? 17. Are 7 and 49 relatively prime? 18. What is the value of ( ) mod 3? 19. Find a closed form formula that is equal to of i=n i=2 3i 1? 20. What is 10! mod 2? 21. What is 487! mod 67? 22. Prove that if every even integer n 4 is the sum of two (not necessarily distinct) primes, then every odd integer m 7 is the sum of three (not necessarily distinct) primes. 23. What is mod 3?
24 What is 8 33 mod 3? 25. What is the largest positive integer k such that (324 mod k) = (374 mod k) = (549 mod k)? (What principle can you use to solve this problem quickly?) 26. For what positive values of n is 2 n + 1 divisible by 3? Prove your answer is correct.
25 24 CHAPTER 4. INTEGERS AND MATRICES
26 Chapter 5 Proofs 5.1 Direct Proofs 1. Prove that if n is odd, then n 2 is odd. 2. Use the solution to the previous problem to prove that if n is odd, then n 3 is odd. Also, find a direct proof that does not rely on the solution to the previous problem. 3. Prove that n is even if and only if n 2 is even. 4. Prove that the power set of an infinite set is also infinite. 5. Let P (A) denote the power set of set A. Let A and B be sets such that A B. That is, there exists an element x such that x A and x / B. Argue that P (A) P (B) by showing there exists a specific element in P (A) that is not in P (B) or a specific element in P (B) that is not in P (A). 6. Prove that if n and m are positive, even integers, then nm is divisible by A perfect number is a positive integer n such that the sum of the factors of n is equal to 2n (1 and n are considered factors of n). So 6 is 25
27 26 CHAPTER 5. PROOFS a perfect number since = 12 = 2 6. Prove that a prime number cannot be a perfect number. 8. Prove that there does not exist an integer n > 3 such that n, n+2, n+4 are each prime. 9. Prove that (a mod 2)(b mod 2) = (ab) mod Prove or disprove that if a 2 b 2 (mod c) then a b(mod c). 11. [2] Prove that there are no integer solutions to x 2 3 = 4y. (Hint: Do a proof by cases, the cases being the value of x modulo 4). 12. Prove that if p, q are positive integers such that p q and q p, then p = q. 13. Prove that for any integer x, the integer x(x + 1) is even. 14. Prove that the product of any two odd integers is odd. 15. Let x y 1. Prove that if gcd(x, y) = y then lcm(x, y) = x. 16. Let x, y be positive integers. Prove that lcm(x, y) = xy/gcd(x, y). 5.2 Proofs by Contradiction 1. Let A, B be sets. Prove that if A B = A + B, then A B =. 2. Let f(x) and g(x) be functions. Prove, using contradiction method, that if f(g(x)) is one-to-one, then g(x) is one-to-one. That is, suppose that g(x) were not one-to-one and derive that f(g(x)) cannot be oneto-one.
28 5.3. PROOFS BY INDUCTION Let A, B be sets. Prove that (A B) (B A) =. 4. Let A, B be non-empty sets. Prove that if A B = B A, then A = B. 5. Prove that in any set of n numbers, there is one number whose value is at least the average of the n numbers. 6. Let A, B be finite sets. Prove that if A B = 0 and there is a bijection between A and B, then A = B. 7. This problem is taken from Maryland Math Olympiad problem, and was posted on the Computational Complexity Web Log. Suppose we color each of the natural numbers with a color from {red, blue, green}. Prove that there exist distinct x, y such that x y is a perfect square. (Hint: it suffices to consider the integers between 0 and 225). 8. Prove that 3 is irrational. One way to do this is similar to the proof done in class that 2 is irrational, but consider two cases depending on whether a 2 is even or odd. 5.3 Proofs by Induction Where unspecified, f n refers to the Fibonacci sequence. 1. Prove that n i=0 2i = n(n + 1). 2. Let f 1 = 1, f 2 = 1, and f n = f n 1 + f n 2 when n > 1 (the Fibonacci sequence). Prove using induction that f n > 2n when n 7 (note that f 8 = 21). 3. Prove that f n f 2n, where f n is the n th Fibonacci number (f 0 = 0, f 1 = 1, f 2 = 1, f n = f n 1 + f n 2 for n > 2). Hint: Use induction to show that f 2n = f n (f n+1 + f n 1 ) = f n f n+1 + f n f n 1. In so doing, you will need the fact that f 2n 1 = (f n ) 2 +(f n 1 ) 2.
29 28 CHAPTER 5. PROOFS 4. Use induction to prove that each positive integer can be written as the sum of a number of distinct, nonconsecutive Fibonacci numbers. (Note: such a sum may consist of only one number, such as 3 = 3). 5. Prove that f n (1 + 5) n. 6. (hard, lots of algebra) Prove that f n 1 f n+1 = (f n ) 2 ( 1) n. 7. Prove that n i=0 (f i ) 2 = f n f n Prove that f n, f n+1 are relatively prime (i.e., have no common factors except 1). 9. Define function f(n) as follows. f(1) = 3 and f(n) = n f(n 1) when n > 1. Use induction to prove that f(n) > 2 n for all n Prove that for any integer k 0, (ab) k = a k b k. 11. (a) Prove that 2 n < n! for n 4. (b) Prove that n! < n n for all n > Prove that n i=1 i(i!) = (n + 1)! Prove that n i=1 (2i 1) = n Prove that n 3 n is divisible by 3 for any integer n Prove that if A is a set with n elements, then the power set of A contains 2 n elements. 16. Prove that n i=1 i(i + 1) = n(n+1)(n+2) 3.
30 5.3. PROOFS BY INDUCTION Prove that n i=1 i 2 = n(n+1)(2n+1) Prove that n i=0 1 2 i = n. 19. Prove that n i=1 1 i 2 n. 20. Prove that if k 1 then n i=0 ar i = a(kn+1 1) k Prove or disprove that n i=1 1 (2i 1)(2i+1) = n 2n Prove that n i=0 3 i = 3n Suppose x + 1 x is an integer. Prove that x2 + 1 x 2, x x 3,..., x n + 1 x n are also integers. 24. Prove that for n 1, 2n i=1 ( 1) i+1 1 i = 2n i=n+1 1 i. 25. Prove that the number of ways to order n items is n!. 26. (hard) [2] Prove that any set of n+1 numbers taken from {1, 2,..., 2n} contains a pair a, b such that a b. 27. Prove that any positive integer can be factored into primes. (Note it is more difficult to prove this factorization is unique, don t worry about that for this problem). 28. [2] Prove that n 3 + 2n is divisible by 3 for all positive integers n. 29. [2] Prove that any amount of postage greater than seven cents can be formed using only three and five cent stamps. Based on your proof, write a recursive algorithm that prints the actual stamps used.
31 30 CHAPTER 5. PROOFS 30. Prove that n i=1 1 i 2( n + 1 1), for all n Prove that 8 9 n 1 for all n What is the largest number you cannot write as the sum of 6, 9, or 20? That is, what is the largest x such that x 6u + 9v + 20w, where u, v, w [1] Prove that f 1 + f f n = f n+2 1, where f n is the n th Fibonacci number (f 0 = 0, f 1 = 1, f 2 = 1, f n = f n 1 + f n 2 for n > 2).
32 Chapter 6 Graphs 6.1 Basic Problems Graphs 1. How many edges do the following graphs have: C n, P n, K n, K n,m? 2. Does there exist a graph with degree sequence 0, 1, 3, 5, 5? (degree sequence is the ordered list of vertex degrees in a graph) 3. Does there exist a graph with degree sequence 1, 1, 2, 2, 3, 3? 4. Does there exist a graph with degree sequence 1, 1, 2, 2, 3, 4, 4, 4? 5. Does there exist a graph with degree sequence 1, 1, 1, 1, 2, 2, 2? 6. Does there exist a connected graph with degree sequence 1, 1, 1, 1, 2, 2, 2? 7. Let K n,m be the bipartite graph with n vertices in one part and m in the other part and having nm edges. Draw K 2,3 so that no edges cross (i.e., give a planar embedding). 31
33 32 CHAPTER 6. GRAPHS 8. Draw a 5 5 grid graph. How many edges does the n n grid graph have? 9. Let G = (V, E) be a graph. Define G k = (V, E ) to be the simple graph formed from G by adding an edge between any two vertices whose distance in G is at most k (the distance between two vertices is the length of a shortest path between them). Draw C5 2. How many edges does Cn 2 have? 10. Write the adjacency matrix for C Write the adjacency matrix for P Is C5 2 isomorphic to P 5 2? (G and H are isomorphic if they have the same number of vertices and there is a function f such that uv is an edge in G if and only of f(u)f(v) is an edge in H, for all edges uv in G, where u and v are vertices in G. In other words, G and H can be drawn so as to look exactly the same). 13. If G = (V, E) is a graph, then G is the graph with vertex set V and all edges of the form uv where uv / E. Are C 10 and C 4 10 isomorphic? 14. What is the smallest k such that C k n isomorphic to K n? 15. Let G have n vertices. If G is a connected graph, what is the maximum number of edges that G can have? 16. Let G have 17 vertices. Can G possibly be isomorphic to G? What if G has 13 vertices? G is the graph formed from G by deleting all edges in G and adding all edges between all vertices that are not adjacent in G. 17. Explain why a graph with n vertices, where each vertex has degree at least n 2, cannot be bipartite when n 5.
34 6.1. BASIC PROBLEMS What is the vertex connectivity and edge connectivity of the following graph: 19. Suppose a graph has two internally-disjoint x y paths (i.e., two paths that have nothing in common except x and y). Is it necessarily 2- connected? Does this violate Menger s Theorem? Why or why not? 20. Is it true that every degree one vertex in a graph has a neighbor that is a cut-vertex? (a cut-vertex in a connected graph is a vertex whose deletion results in a disconnected graph). 21. Consider K n. Let us call the graph formed by taking K n and removing one edge K n e. What is the chromatic number of K 8 e? 22. Draw a graph G that is such that χ(g) > χ(g v) for all vertices v. (Such a graph is called critical). 23. Draw a graph G that is such that χ(g) > χ(g e) for all edges v. (Such a graph is called edge-critical). 24. What is the chromatic number of each of the following graphs?
35 34 CHAPTER 6. GRAPHS 25. What is a largest clique in each of the graphs above? 26. A k q circular coloring of graph G = (V, E) is a function f : V {0, 1,..., k 1} such that if uv E then q f(u) f(v) k q. Show that C 5 has a 5 2 coloring. Show that C 7 has a 7 3 coloring. Show that if χ(g) = c, then G has a c 1 coloring. 27. The edge chromatic number of a graph is the minimum number of colors needed to color the edges of a graph so that edges sharing a vertex have different colors. Argue that the edge chromatic number of G is at least the maximum degree of G. Find a graph whose edge chromatic number exceeds the maximum degree. 28. Suppose we wish to color the vertices of a bipartite graph G = (A, B, E) with positive integers, so that adjacent vertices receive different colors. Let c(v) denote the color assigned to vertex v. We wish to minimize Σ c(v), that is, the sum of all the colors. Prove or disprove the following statement. An minimum sum coloring exists for all G using only colors 1 and It is NP -hard to even approximate the chromatic number of a graph in polynomial time. That is, it is NP -complete to decide if G s chromatic number is at most c k, for any constant c. Give a polynomial time algorithm (or argue that one does not exist) to approximate the chromatic number of a graph G having maximum degree three. That is, your algorithm should run in polynomial time and use no more than twice as many colors as necessary. 30. For which m, n does K m,n contain an Euler Circuit (a closed walk containing all the edges of the graph)? A Hamiltonian Cycle (a cycle containing all the vertices of the graph)? For which is it planar? 31. True or False: all m n grid graphs contain a Hamiltonian cycle (assume m n 2). Justify your answer.
36 6.2. PROBLEMS REQUIRING PROOFS A perfect code is a subset of vertices of the graph, D, such that each vertex in G D is adjacent to exactly one element of D and each vertex in D has no neighbors that are in D. Give an example of a tree with 10 vertices that has a perfect code and an example with 10 vertices that does not have a perfect code. 33. Find a maximum sized matching in the graphs below. 34. Is it true that every tree has a perfect matching? Does any tree have more than one perfect matching? Directed Graphs 1. Show that the edges of a k-chromatic graph can be oriented so that the resulting graph has a longest directed path of length k The converse of a directed graph is obtained by reversing the orientation of each arc. Find a directed graph this is isomorphic to its converse. Find one that is not isomorphic to its converse. 3. Draw an acyclic tournament on six vertices. 6.2 Problems Requiring Proofs 1. Show that if u and v are the only odd-degree vertices in G, then there is a uv path in G.
37 36 CHAPTER 6. GRAPHS 2. Let G be a 2-connected graph and u, v be two non-adjacent vertices in G. Show there must be at least 2 distinct paths between u and v. 3. Show that in a 2-connected graph with at least 3 vertices, each pair of vertices u, v must lie on a common cycle. (In fact, one can prove something much stronger than the previous two problems: that G is a k-connected graph, k 1, if and only if, for all u, v, there are k different uv paths that have nothing in common other than the vertices u, v. This is known as Menger s Theorem.) 4. Use the contradiction method to prove that every simple undirected graph contains two vertices having the same degree. 5. Argue that every cycle in a bipartite graph contains an even number of edges. 6. Prove that a graph with n vertices and δ(g) = n 1 is connected. (δ(g) is the minimum degree). 7. Prove that every graph G contains an independent set (a set of vertices n that induce a subgraph with no edges) with at least (G)+1 vertices, where (G) is the largest vertex degree in G. 8. Prove that a tree with n vertices has n 1 edges. 9. Let T be a tree in which the average vertex degree is k, that is, = k. From the value k, can you deduce what n is? v V deg(v) n 10. Let T be a tree. Suppose we add two edges to T forming a graph T. How many cycles can T have? 11. Prove that an outerplanar graph (i.e., a planar graph that can be embedded in the plan with all the vertices bordering the exterior face)
38 6.2. PROBLEMS REQUIRING PROOFS 37 can be colored with three colors. 12. Prove that any graph with n vertices and m edges has at least m n+1 cycles. 13. Let T be a tree. Prove that T 3 contains a Hamiltonian cycle (use induction). 14. Prove that if G = G and G has n vertices, then n is equal to either 0 or 1 modulo 4. Hint: Consider the number of edges G must have in this case and determine when this number can be an integer. 15. Use induction to prove that a tournament contains a Hamiltonian path. 16. [3] Prove (use contradiction) that a tournament contains a vertex v that is a king, that is, there is a directed path of length at most 2 from v to each other vertex in the tournament. 17. Let f, e, v denote the number of faces, edges, and vertices, respectively, in a planar graph. Use induction on e to prove that f = e v + 2 (this is known as Euler s formula). 18. Use induction to prove that K n has n(n 1)/2 edges. 19. Prove that a graph with minimum vertex degree at least two must contain a cycle. (Hint: Consider a longest path in the graph and look at the ends of the path). 20. Prove that every graph with at least two vertices has at least two vertices that are not cut-vertices. (Hint: consider a spanning tree of the graph).
39 38 CHAPTER 6. GRAPHS
40 Chapter 7 Counting Let A = 12, B = 7, C = If A B = 0, how many ways can we choose two elements, one from A and one from B. 2. If A B = 4, what is A B? 3. If A B = 0, A C = 0, B C = 1, how many ways can we choose three distinct elements, one from A and one from B and one from C? 4. If A B = 1, how many ways can we choose three distinct elements from A B? 5. Prove or disprove that A B + A B = A + B 6. How many bits are needed to express the integer n? 7. How many bits are needed to express the integer 2 n? 8. How many bit strings are there of length 10? 39
41 40 CHAPTER 7. COUNTING 9. How many bit strings are there of length 10 that do not end in How many bit strings are there of length 6 are there that do not contain 1111 as a substring? 11. How many different SSN s are there that do not contain any even digit? 12. [2] How many positive integers less that 1000 are (a) divisible by 7; (b) divisible by 7 but not by 11; (c) divisible by 7 and 11; (d) divisible by 7 or 11; (e) divisible by exactly one of 7, 11 (f) divisible by neither 7 nor 11; (g) have distinct digits; (h) have distinct digits and are even. 13. Repeat the previous question, but only consider three digit numbers. 14. How many different functions f : {0, 1,..., n} {0, 1} are there? 15. How many different one-to-one functions f : {0, 1,..., n} {0, 1,..., n+ 1} are there? 16. Repeat the previous question, but require that f(x) < f(x + 1) for all 0 x < n. 17. How many three digit numbers contain distinct digits? Have a digit repeated? Have consecutive digits that are the same? 18. How many 10 digit numbers have no two digits the same? How many 10 digit numbers have no two digits the same and do not start with 0 or 1? 19. On a multiple choice test with 100 questions and 5 answers per question, how many different ways can the test be completed?
42 On a multiple choice test with 100 questions and 5 answers per question, how many different ways can the test be completed if every answer is wrong? 21. On a multiple choice test with 10 questions and 5 answers per question, how many different ways can the test be completed if exactly 5 of the answers are wrong? 22. On a multiple choice test with 100 questions and 5 answers per question, how many different ways can the test be completed if no two consecutive answers are ever the same? 23. On a multiple choice test with 98 questions and 5 answers per question, explain why some answer must occur at least 20 times on the answer key. 24. How many people must be in a room to ensure at least two were born on the same day of the week? 25. How many people must be in a room to ensure at least three were born on the same day of the week? 26. How many people must be in a room to ensure at least two were born on a Monday? 27. How many people must be in a room to ensure that either (i) at least two were born on a Monday or (ii) at least three were born on a day other than Monday. 28. Suppose four disjoint sets contain 15 items in total. Enumerate the possible cardinalities of these sets provided that no single set contains more than five items.
43 42 CHAPTER 7. COUNTING 29. What are the permutations of the letters a, b, c, d? How many of these permutations have a preceding b? How many end with ab? 30. How many ways can we choose 5 items from a box containing 10 items? 2 items from a box containing 10 items? 8 items from a box containing 10 items? 31. How many ways can we choose 3 numbers from the set {1, 2, 3, 4, 5, 6, 7} (and the order we choose matters: so 1, 2, 3 is different from 2, 3, 1). 32. Repeat the previous question, but this time the order does not matter. 33. How many ways can we choose 3 numbers from the set {1, 2, 3, 4, 5, 6, 7} so that the numbers are chosen in increasing order. 34. How many ways can we choose 3 numbers from the set {1, 2, 3, 4, 5, 6, 7} so that 7 is chosen. 35. (a) How many ways can we choose 3 numbers from the set {1, 2, 3, 4, 5, 6, 7, 8} so that more odd numbers are chosen than even? (b)how many ways can we choose 3 numbers from the set {1, 2, 3, 4, 5, 6, 7} so that more odd numbers are chosen than even? 36. How many bit strings of length 8 contain at least three 0 s? 37. How many bit strings of length 8 contain at least three 0 s and at least two 1 s? 38. How many bit strings of length 8 contain an equal number of 0 s and 1 s? 39. How many bit strings of length 8 contain more 0 s than 1 s?
44 How many paths are there of length 5 are there between two distinct vertices in the complete graph K 10? 41. How many paths are there between two distinct vertices in the complete graph K n? 42. Let K n be such that the vertices are labelled 1, 2, 3,..., n. How many paths are there between v 1 and v n such that the labels on the path are strictly increasing? 43. How many different induced subgraphs are there of K n that contain at least one edge? 44. If A B = 2, A = 8, B = 7, how many ways can we one from A and one from B so that we do not choose both elements contained in A B? (Hint: the answer is not 55). 45. Suppose we have 10 different men and 2 different women. How many ways can we seat them on a row of seats so that the two women sit next to each other? 46. Suppose we have 10 different men and 13 different women. How many ways can we seat them on a row of seats so that no two women sit next to each other? 47. Suppose we have 10 different men and 3 different women. How many ways can we seat them on a row of seats so that no two women sit next to each other? 48. Suppose we have 12 different men and 7 different women. How many ways can we seat them around a circular table so that no two women sit next to each other? (Note: it may help to assume the seats are numbered)
45 44 CHAPTER 7. COUNTING 49. On a multiple choice test with 100 questions and 2 answers per question, how many different ways can the test be completed if no two consecutive answers are ever the same? 50. How many ways can 3 indistinguishable balls be placed into 3 boxes if (let x y z denote the number of balls in each of the four bins) : (a) For example, is different from (b) For example, is the same as 0-1-2, i.e, any two arrangements are the same if they have the same numbers, in any order. (c) Generalize your answer to n balls and n boxes for both parts (a) and (b). [For part a), work out the first few terms in the sequence and consider looking in the Online Encyclopedia of Integer Sequences.] [For part b, the answer is equivalent to the number of integer partitions of n, why?]. 51. How many ways can 4 indistinguishable balls be placed into 3 boxes if (let x y z denote the number of balls in each of the four bins) : (a) For example, is different from (b) For example, is the same as 1-1-2, i.e, any two arrangements are the same if they have the same numbers, in any order. (c) Generalize your answer to n+1 balls and n boxes for both parts (a) and part (b) [For part a), work out the first few terms in the sequence and consider looking in the Online Encyclopedia of Integer Sequences.] [For part b, answer is related to number the number of integer partitions of n Suppose cards come in four varieties: Spaces, Clubs, Hearts, and Diamonds. We assume cards are not numbered. A hand consists of 5 cards dealt from a deck containing these cards. The order of the cards in a hand does not matter. (a) Suppose 5 cards are dealt from an infinite deck. How many different hands are there? (b) Continuing part (a), how many of these hands have exactly 3 spades?
46 45 (c) Continuing part (a), how many of these hands have at least 3 spades? (d) Suppose 5 cards are dealt from a 52 card deck. How many different hands are there? (d) Continuing part (b), how many of these hands have exactly 3 spades? (e) Continuing part (b), how many of these hands have at least 3 spades? (f) Continuing part (b), how many of these hands have at least 3 cards of the same variety? 53. How many ways can a 2 n board be tiled with 1 2 tiles? 54. Consider a rectangular table with n chairs on each side. How many ways can n married couples sit at the table to that each couple sits either beside each other or directly across from each other? 55. Let f : A B, with B = 2. How many different f s are there? How many different f s are there that are onto functions? How many are onto if B = 3? 56. How many different ways can a team win a best 4 out of 7 series of games? (A team must win 4 games; they might win 4 games to 0 or 4 games to 3; the order of wins matters in this problem). 57. We want to make flags with horizontal stripes. How many different flags can we make if: a) We have 3 colors and a flag has 3 stripes, all must be different colors b) We have 6 colors and a flag has 6 stripes, all must be different colors c) Repeat a and b, but assume two flags are the same if they have the
47 46 CHAPTER 7. COUNTING same colors in reverse order (so ABC = CBA, for example) d) We have 6 stripes, but only 3 colors. e) Same as d), but assume each color must be used exactly twice. f) We have 3 colors and allow a color to be used any number of times. How many different flags can we make (and assume two flags are the same if they have the same colors in reverse order). g) Same as f) but with 4 colors. 58. Suppose we have six 3 cent stamps and 7 five cent stamps. How many different amounts of postage can we make? 59. Suppose we have three 3 cent stamps and 7 nine cent stamps. How many different amounts of postage can we make? 60. Suppose we have six 3 cent stamps and 7 nine cent stamps. How many different amounts of postage can we make? 61. Suppose we have six 9 cent stamps and 7 twelve cent stamps. How many different amounts of postage can we make? 62. How many length 8 bit strings have consecutive 0 s? (Hint: is probably easier to count those without consecutive 0 s). 63. How many two-letter strings (lowercase letters only) contain at least one of {a, b, c, d}? 64. How many different ways can you distribute 4 different cookies to 4 different people: (a) so that each person gets at least one cookie (b) so that each person may get any number of cookies?
48 Chapter 8 Other Topics 8.1 Relations 8.2 Algorithm Analysis 8.3 Recurrence Relations 8.4 Generating Functions 8.5 Boolean Algebra 47
49 48 CHAPTER 8. OTHER TOPICS
50 Bibliography [1] G. Chartrand and P. Zhang, Discrete Mathematics, Waveland Press 2011 [2] K. Rosen (2002), Discrete Mathematics and its Applications McGraw-Hill, Boston, Mass. [3] D. West (2001), Introduction to Graph Theory, Prentice-Hall, Upper Saddle River, NJ 49
Midterm Practice Problems
6.042/8.062J Mathematics for Computer Science October 2, 200 Tom Leighton, Marten van Dijk, and Brooke Cowan Midterm Practice Problems Problem. [0 points] In problem set you showed that the nand operator
Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs
Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs Kousha Etessami U. of Edinburgh, UK Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 1 / 13 Overview Graphs and Graph
Labeling outerplanar graphs with maximum degree three
Labeling outerplanar graphs with maximum degree three Xiangwen Li 1 and Sanming Zhou 2 1 Department of Mathematics Huazhong Normal University, Wuhan 430079, China 2 Department of Mathematics and Statistics
Mathematical Induction. Lecture 10-11
Mathematical Induction Lecture 10-11 Menu Mathematical Induction Strong Induction Recursive Definitions Structural Induction Climbing an Infinite Ladder Suppose we have an infinite ladder: 1. We can reach
WOLLONGONG COLLEGE AUSTRALIA. Diploma in Information Technology
First Name: Family Name: Student Number: Class/Tutorial: WOLLONGONG COLLEGE AUSTRALIA A College of the University of Wollongong Diploma in Information Technology Final Examination Spring Session 2008 WUCT121
Graph Theory Problems and Solutions
raph Theory Problems and Solutions Tom Davis [email protected] http://www.geometer.org/mathcircles November, 005 Problems. Prove that the sum of the degrees of the vertices of any finite graph is
Introduction to Graph Theory
Introduction to Graph Theory Allen Dickson October 2006 1 The Königsberg Bridge Problem The city of Königsberg was located on the Pregel river in Prussia. The river divided the city into four separate
Mathematics for Algorithm and System Analysis
Mathematics for Algorithm and System Analysis for students of computer and computational science Edward A. Bender S. Gill Williamson c Edward A. Bender & S. Gill Williamson 2005. All rights reserved. Preface
V. Adamchik 1. Graph Theory. Victor Adamchik. Fall of 2005
V. Adamchik 1 Graph Theory Victor Adamchik Fall of 2005 Plan 1. Basic Vocabulary 2. Regular graph 3. Connectivity 4. Representing Graphs Introduction A.Aho and J.Ulman acknowledge that Fundamentally, computer
Math 55: Discrete Mathematics
Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 5, due Wednesday, February 22 5.1.4 Let P (n) be the statement that 1 3 + 2 3 + + n 3 = (n(n + 1)/2) 2 for the positive integer n. a) What
Answer: (a) Since we cannot repeat men on the committee, and the order we select them in does not matter, ( )
1. (Chapter 1 supplementary, problem 7): There are 12 men at a dance. (a) In how many ways can eight of them be selected to form a cleanup crew? (b) How many ways are there to pair off eight women at the
Chapter 3. if 2 a i then location: = i. Page 40
Chapter 3 1. Describe an algorithm that takes a list of n integers a 1,a 2,,a n and finds the number of integers each greater than five in the list. Ans: procedure greaterthanfive(a 1,,a n : integers)
Cycles in a Graph Whose Lengths Differ by One or Two
Cycles in a Graph Whose Lengths Differ by One or Two J. A. Bondy 1 and A. Vince 2 1 LABORATOIRE DE MATHÉMATIQUES DISCRÉTES UNIVERSITÉ CLAUDE-BERNARD LYON 1 69622 VILLEURBANNE, FRANCE 2 DEPARTMENT OF MATHEMATICS
Mathematical Induction
Mathematical Induction (Handout March 8, 01) The Principle of Mathematical Induction provides a means to prove infinitely many statements all at once The principle is logical rather than strictly mathematical,
3. Mathematical Induction
3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)
Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson
Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement
Lecture 7: NP-Complete Problems
IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 7: NP-Complete Problems David Mix Barrington and Alexis Maciel July 25, 2000 1. Circuit
Zachary Monaco Georgia College Olympic Coloring: Go For The Gold
Zachary Monaco Georgia College Olympic Coloring: Go For The Gold Coloring the vertices or edges of a graph leads to a variety of interesting applications in graph theory These applications include various
Graphs without proper subgraphs of minimum degree 3 and short cycles
Graphs without proper subgraphs of minimum degree 3 and short cycles Lothar Narins, Alexey Pokrovskiy, Tibor Szabó Department of Mathematics, Freie Universität, Berlin, Germany. August 22, 2014 Abstract
Answer Key for California State Standards: Algebra I
Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.
k, then n = p2α 1 1 pα k
Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square
On Integer Additive Set-Indexers of Graphs
On Integer Additive Set-Indexers of Graphs arxiv:1312.7672v4 [math.co] 2 Mar 2014 N K Sudev and K A Germina Abstract A set-indexer of a graph G is an injective set-valued function f : V (G) 2 X such that
= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that
Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without
Connectivity and cuts
Math 104, Graph Theory February 19, 2013 Measure of connectivity How connected are each of these graphs? > increasing connectivity > I G 1 is a tree, so it is a connected graph w/minimum # of edges. Every
Discrete Mathematics. Hans Cuypers. October 11, 2007
Hans Cuypers October 11, 2007 1 Contents 1. Relations 4 1.1. Binary relations................................ 4 1.2. Equivalence relations............................. 6 1.3. Relations and Directed Graphs.......................
CHAPTER 5. Number Theory. 1. Integers and Division. Discussion
CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a
Outline 2.1 Graph Isomorphism 2.2 Automorphisms and Symmetry 2.3 Subgraphs, part 1
GRAPH THEORY LECTURE STRUCTURE AND REPRESENTATION PART A Abstract. Chapter focuses on the question of when two graphs are to be regarded as the same, on symmetries, and on subgraphs.. discusses the concept
COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH. 1. Introduction
COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH ZACHARY ABEL 1. Introduction In this survey we discuss properties of the Higman-Sims graph, which has 100 vertices, 1100 edges, and is 22 regular. In fact
2. (a) Explain the strassen s matrix multiplication. (b) Write deletion algorithm, of Binary search tree. [8+8]
Code No: R05220502 Set No. 1 1. (a) Describe the performance analysis in detail. (b) Show that f 1 (n)+f 2 (n) = 0(max(g 1 (n), g 2 (n)) where f 1 (n) = 0(g 1 (n)) and f 2 (n) = 0(g 2 (n)). [8+8] 2. (a)
Cartesian Products and Relations
Cartesian Products and Relations Definition (Cartesian product) If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) :(a A) and (b B)}. The following points are worth special
ABSTRACT ALGEBRA: A STUDY GUIDE FOR BEGINNERS
ABSTRACT ALGEBRA: A STUDY GUIDE FOR BEGINNERS John A. Beachy Northern Illinois University 2014 ii J.A.Beachy This is a supplement to Abstract Algebra, Third Edition by John A. Beachy and William D. Blair
ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite
ALGEBRA Pupils should be taught to: Generate and describe sequences As outcomes, Year 7 pupils should, for example: Use, read and write, spelling correctly: sequence, term, nth term, consecutive, rule,
UPPER BOUNDS ON THE L(2, 1)-LABELING NUMBER OF GRAPHS WITH MAXIMUM DEGREE
UPPER BOUNDS ON THE L(2, 1)-LABELING NUMBER OF GRAPHS WITH MAXIMUM DEGREE ANDREW LUM ADVISOR: DAVID GUICHARD ABSTRACT. L(2,1)-labeling was first defined by Jerrold Griggs [Gr, 1992] as a way to use graphs
SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH
31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,
Collinear Points in Permutations
Collinear Points in Permutations Joshua N. Cooper Courant Institute of Mathematics New York University, New York, NY József Solymosi Department of Mathematics University of British Columbia, Vancouver,
GRAPH THEORY LECTURE 4: TREES
GRAPH THEORY LECTURE 4: TREES Abstract. 3.1 presents some standard characterizations and properties of trees. 3.2 presents several different types of trees. 3.7 develops a counting method based on a bijection
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly
Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.
Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole
3 Some Integer Functions
3 Some Integer Functions A Pair of Fundamental Integer Functions The integer function that is the heart of this section is the modulo function. However, before getting to it, let us look at some very simple
Lecture 13 - Basic Number Theory.
Lecture 13 - Basic Number Theory. Boaz Barak March 22, 2010 Divisibility and primes Unless mentioned otherwise throughout this lecture all numbers are non-negative integers. We say that A divides B, denoted
Chapter 6: Graph Theory
Chapter 6: Graph Theory Graph theory deals with routing and network problems and if it is possible to find a best route, whether that means the least expensive, least amount of time or the least distance.
136 CHAPTER 4. INDUCTION, GRAPHS AND TREES
136 TER 4. INDUCTION, GRHS ND TREES 4.3 Graphs In this chapter we introduce a fundamental structural idea of discrete mathematics, that of a graph. Many situations in the applications of discrete mathematics
CS 103X: Discrete Structures Homework Assignment 3 Solutions
CS 103X: Discrete Structures Homework Assignment 3 s Exercise 1 (20 points). On well-ordering and induction: (a) Prove the induction principle from the well-ordering principle. (b) Prove the well-ordering
Catalan Numbers. Thomas A. Dowling, Department of Mathematics, Ohio State Uni- versity.
7 Catalan Numbers Thomas A. Dowling, Department of Mathematics, Ohio State Uni- Author: versity. Prerequisites: The prerequisites for this chapter are recursive definitions, basic counting principles,
3. Eulerian and Hamiltonian Graphs
3. Eulerian and Hamiltonian Graphs There are many games and puzzles which can be analysed by graph theoretic concepts. In fact, the two early discoveries which led to the existence of graphs arose from
8 Divisibility and prime numbers
8 Divisibility and prime numbers 8.1 Divisibility In this short section we extend the concept of a multiple from the natural numbers to the integers. We also summarize several other terms that express
I. GROUPS: BASIC DEFINITIONS AND EXAMPLES
I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called
COUNTING INDEPENDENT SETS IN SOME CLASSES OF (ALMOST) REGULAR GRAPHS
COUNTING INDEPENDENT SETS IN SOME CLASSES OF (ALMOST) REGULAR GRAPHS Alexander Burstein Department of Mathematics Howard University Washington, DC 259, USA [email protected] Sergey Kitaev Mathematics
Exponential time algorithms for graph coloring
Exponential time algorithms for graph coloring Uriel Feige Lecture notes, March 14, 2011 1 Introduction Let [n] denote the set {1,..., k}. A k-labeling of vertices of a graph G(V, E) is a function V [k].
The last three chapters introduced three major proof techniques: direct,
CHAPTER 7 Proving Non-Conditional Statements The last three chapters introduced three major proof techniques: direct, contrapositive and contradiction. These three techniques are used to prove statements
One last point: we started off this book by introducing another famously hard search problem:
S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 261 Factoring One last point: we started off this book by introducing another famously hard search problem: FACTORING, the task of finding all prime factors
6.2 Permutations continued
6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of
Homework until Test #2
MATH31: Number Theory Homework until Test # Philipp BRAUN Section 3.1 page 43, 1. It has been conjectured that there are infinitely many primes of the form n. Exhibit five such primes. Solution. Five such
Factoring Trinomials: The ac Method
6.7 Factoring Trinomials: The ac Method 6.7 OBJECTIVES 1. Use the ac test to determine whether a trinomial is factorable over the integers 2. Use the results of the ac test to factor a trinomial 3. For
Lecture 16 : Relations and Functions DRAFT
CS/Math 240: Introduction to Discrete Mathematics 3/29/2011 Lecture 16 : Relations and Functions Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT In Lecture 3, we described a correspondence
GREEN CHICKEN EXAM - NOVEMBER 2012
GREEN CHICKEN EXAM - NOVEMBER 2012 GREEN CHICKEN AND STEVEN J. MILLER Question 1: The Green Chicken is planning a surprise party for his grandfather and grandmother. The sum of the ages of the grandmother
Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics
Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights
Every tree contains a large induced subgraph with all degrees odd
Every tree contains a large induced subgraph with all degrees odd A.J. Radcliffe Carnegie Mellon University, Pittsburgh, PA A.D. Scott Department of Pure Mathematics and Mathematical Statistics University
Graph Theory Lecture 3: Sum of Degrees Formulas, Planar Graphs, and Euler s Theorem Spring 2014 Morgan Schreffler Office: POT 902
Graph Theory Lecture 3: Sum of Degrees Formulas, Planar Graphs, and Euler s Theorem Spring 2014 Morgan Schreffler Office: POT 902 http://www.ms.uky.edu/~mschreffler Different Graphs, Similar Properties
6.3 Conditional Probability and Independence
222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted
Basics of Counting. The product rule. Product rule example. 22C:19, Chapter 6 Hantao Zhang. Sample question. Total is 18 * 325 = 5850
Basics of Counting 22C:19, Chapter 6 Hantao Zhang 1 The product rule Also called the multiplication rule If there are n 1 ways to do task 1, and n 2 ways to do task 2 Then there are n 1 n 2 ways to do
Basic Proof Techniques
Basic Proof Techniques David Ferry [email protected] September 13, 010 1 Four Fundamental Proof Techniques When one wishes to prove the statement P Q there are four fundamental approaches. This document
WHERE DOES THE 10% CONDITION COME FROM?
1 WHERE DOES THE 10% CONDITION COME FROM? The text has mentioned The 10% Condition (at least) twice so far: p. 407 Bernoulli trials must be independent. If that assumption is violated, it is still okay
Chapter 3. Distribution Problems. 3.1 The idea of a distribution. 3.1.1 The twenty-fold way
Chapter 3 Distribution Problems 3.1 The idea of a distribution Many of the problems we solved in Chapter 1 may be thought of as problems of distributing objects (such as pieces of fruit or ping-pong balls)
Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits
Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique
Social Media Mining. Graph Essentials
Graph Essentials Graph Basics Measures Graph and Essentials Metrics 2 2 Nodes and Edges A network is a graph nodes, actors, or vertices (plural of vertex) Connections, edges or ties Edge Node Measures
Lecture 1: Course overview, circuits, and formulas
Lecture 1: Course overview, circuits, and formulas Topics in Complexity Theory and Pseudorandomness (Spring 2013) Rutgers University Swastik Kopparty Scribes: John Kim, Ben Lund 1 Course Information Swastik
Why? A central concept in Computer Science. Algorithms are ubiquitous.
Analysis of Algorithms: A Brief Introduction Why? A central concept in Computer Science. Algorithms are ubiquitous. Using the Internet (sending email, transferring files, use of search engines, online
Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010. Chapter 7: Digraphs
MCS-236: Graph Theory Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010 Chapter 7: Digraphs Strong Digraphs Definitions. A digraph is an ordered pair (V, E), where V is the set
MATH 289 PROBLEM SET 4: NUMBER THEORY
MATH 289 PROBLEM SET 4: NUMBER THEORY 1. The greatest common divisor If d and n are integers, then we say that d divides n if and only if there exists an integer q such that n = qd. Notice that if d divides
Chapter 11 Number Theory
Chapter 11 Number Theory Number theory is one of the oldest branches of mathematics. For many years people who studied number theory delighted in its pure nature because there were few practical applications
On three zero-sum Ramsey-type problems
On three zero-sum Ramsey-type problems Noga Alon Department of Mathematics Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University, Tel Aviv, Israel and Yair Caro Department of Mathematics
Test1. Due Friday, March 13, 2015.
1 Abstract Algebra Professor M. Zuker Test1. Due Friday, March 13, 2015. 1. Euclidean algorithm and related. (a) Suppose that a and b are two positive integers and that gcd(a, b) = d. Find all solutions
Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs
CSE599s: Extremal Combinatorics November 21, 2011 Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs Lecturer: Anup Rao 1 An Arithmetic Circuit Lower Bound An arithmetic circuit is just like
Just the Factors, Ma am
1 Introduction Just the Factors, Ma am The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive
The Set Data Model CHAPTER 7. 7.1 What This Chapter Is About
CHAPTER 7 The Set Data Model The set is the most fundamental data model of mathematics. Every concept in mathematics, from trees to real numbers, is expressible as a special kind of set. In this book,
Examination paper for MA0301 Elementær diskret matematikk
Department of Mathematical Sciences Examination paper for MA0301 Elementær diskret matematikk Academic contact during examination: Iris Marjan Smit a, Sverre Olaf Smalø b Phone: a 9285 0781, b 7359 1750
P. Jeyanthi and N. Angel Benseera
Opuscula Math. 34, no. 1 (014), 115 1 http://dx.doi.org/10.7494/opmath.014.34.1.115 Opuscula Mathematica A TOTALLY MAGIC CORDIAL LABELING OF ONE-POINT UNION OF n COPIES OF A GRAPH P. Jeyanthi and N. Angel
The positive minimum degree game on sparse graphs
The positive minimum degree game on sparse graphs József Balogh Department of Mathematical Sciences University of Illinois, USA [email protected] András Pluhár Department of Computer Science University
ON INDUCED SUBGRAPHS WITH ALL DEGREES ODD. 1. Introduction
ON INDUCED SUBGRAPHS WITH ALL DEGREES ODD A.D. SCOTT Abstract. Gallai proved that the vertex set of any graph can be partitioned into two sets, each inducing a subgraph with all degrees even. We prove
Sum of Degrees of Vertices Theorem
Sum of Degrees of Vertices Theorem Theorem (Sum of Degrees of Vertices Theorem) Suppose a graph has n vertices with degrees d 1, d 2, d 3,...,d n. Add together all degrees to get a new number d 1 + d 2
SQUARE-SQUARE ROOT AND CUBE-CUBE ROOT
UNIT 3 SQUAREQUARE AND CUBEUBE (A) Main Concepts and Results A natural number is called a perfect square if it is the square of some natural number. i.e., if m = n 2, then m is a perfect square where m
Definition 11.1. Given a graph G on n vertices, we define the following quantities:
Lecture 11 The Lovász ϑ Function 11.1 Perfect graphs We begin with some background on perfect graphs. graphs. First, we define some quantities on Definition 11.1. Given a graph G on n vertices, we define
Complexity Theory. IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar
Complexity Theory IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar Outline Goals Computation of Problems Concepts and Definitions Complexity Classes and Problems Polynomial Time Reductions Examples
A 2-factor in which each cycle has long length in claw-free graphs
A -factor in which each cycle has long length in claw-free graphs Roman Čada Shuya Chiba Kiyoshi Yoshimoto 3 Department of Mathematics University of West Bohemia and Institute of Theoretical Computer Science
A permutation can also be represented by describing its cycles. What do you suppose is meant by this?
Shuffling, Cycles, and Matrices Warm up problem. Eight people stand in a line. From left to right their positions are numbered,,,... 8. The eight people then change places according to THE RULE which directs
Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products
Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing
FRACTIONAL COLORINGS AND THE MYCIELSKI GRAPHS
FRACTIONAL COLORINGS AND THE MYCIELSKI GRAPHS By G. Tony Jacobs Under the Direction of Dr. John S. Caughman A math 501 project submitted in partial fulfillment of the requirements for the degree of Master
Fundamentele Informatica II
Fundamentele Informatica II Answer to selected exercises 1 John C Martin: Introduction to Languages and the Theory of Computation M.M. Bonsangue (and J. Kleijn) Fall 2011 Let L be a language. It is clear
8 Primes and Modular Arithmetic
8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.
An inequality for the group chromatic number of a graph
Discrete Mathematics 307 (2007) 3076 3080 www.elsevier.com/locate/disc Note An inequality for the group chromatic number of a graph Hong-Jian Lai a, Xiangwen Li b,,1, Gexin Yu c a Department of Mathematics,
How To Understand The Theory Of Media Theory
Fundamentals of Media Theory ergei Ovchinnikov Mathematics Department an Francisco tate University an Francisco, CA 94132 [email protected] Abstract Media theory is a new branch of discrete applied mathematics
Dynamic Programming. Lecture 11. 11.1 Overview. 11.2 Introduction
Lecture 11 Dynamic Programming 11.1 Overview Dynamic Programming is a powerful technique that allows one to solve many different types of problems in time O(n 2 ) or O(n 3 ) for which a naive approach
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a
Problem Set 7 Solutions
8 8 Introduction to Algorithms May 7, 2004 Massachusetts Institute of Technology 6.046J/18.410J Professors Erik Demaine and Shafi Goldwasser Handout 25 Problem Set 7 Solutions This problem set is due in
Finding and counting given length cycles
Finding and counting given length cycles Noga Alon Raphael Yuster Uri Zwick Abstract We present an assortment of methods for finding and counting simple cycles of a given length in directed and undirected
Math 55: Discrete Mathematics
Math 55: Discrete Mathematics UC Berkeley, Spring 2012 Homework # 9, due Wednesday, April 11 8.1.5 How many ways are there to pay a bill of 17 pesos using a currency with coins of values of 1 peso, 2 pesos,
1 if 1 x 0 1 if 0 x 1
Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or
Sample Induction Proofs
Math 3 Worksheet: Induction Proofs III, Sample Proofs A.J. Hildebrand Sample Induction Proofs Below are model solutions to some of the practice problems on the induction worksheets. The solutions given
