An inequality for the group chromatic number of a graph
|
|
|
- Marcia Bryant
- 9 years ago
- Views:
Transcription
1 Discrete Mathematics 307 (2007) Note An inequality for the group chromatic number of a graph Hong-Jian Lai a, Xiangwen Li b,,1, Gexin Yu c a Department of Mathematics, West Virginia University, Morgantown, WV 26505, USA b Department of Mathematics, Huazhong Normal University, Wuhan , China c Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Received 29 November 2004; received in revised form 8 December 2006; accepted 13 March 2007 Available online 15 March 2007 Abstract We give an inequality for the group chromatic number of a graph as an extension of Brooks Theorem. Moreover, we obtain a structural theorem for graphs satisfying the equality and discuss applications of the theorem Elsevier B.V. All rights reserved. Keywords: Brooks Theorem; Group coloring; Group chromatic number 1. Introduction Let δ(g), Δ(G) and χ(g) denote the minimum degree, the maximum degree and the chromatic number of G, respectively. A graph G is unicyclic if G contains only one cycle. Brooks Theorem [1] is well known as follows. Theorem 1.1. If G is a connected graph, then χ(g) Δ(G) + 1 with equality if and only if G is complete or an odd cycle. Let ρ(g) be the largest eigenvalue of the vertex-adjacency matrix of G, i.e., the matrix whose i, j entry is 1 if vertices i and j are connected and 0 otherwise. Wilf [6] improved Brooks Theorem by replacing Δ(G) by ρ(g) and proved that χ(g) ρ(g) + 1 with equality if and only if G is an odd cycle or a complete graph. Let γ(g) be a real function on a graph G satisfying the following two properties: (P1) If H is an induced subgraph of G, then γ(h ) γ(g). (P2) γ(g) δ(g) with equality if and only if G is regular. Szekeres and Wilf [5] extended Theorem 1.1 by replacing Δ(G) by γ(g), as follows. Corresponding author. address: [email protected] (X. Li). 1 Supported partially by the Natural Science Foundation of China ( ) and by SRF for ROCS, State Education Ministry of China X/$ - see front matter 2007 Elsevier B.V. All rights reserved. doi: /j.disc
2 H.-J. Lai et al. / Discrete Mathematics 307 (2007) Theorem 1.2. If γ(g) is a real function on a graph G with properties (P1) and (P2), then χ(g) γ(g) + 1. Cao [2] observed Szekeres and Wilf s result and proved that the equality holds if and only if G is an odd cycle or a complete graph. Unfortunately, there is a minor error in his result in the sense that there exists a counterexample as shown below. For a connected graph G, we define 0 if G = K 1, 1 if G = K γ(g) = 2, 2 if G is unicyclic or a tree and G = K 2, Δ(G) otherwise. For a disconnected graph G, we define γ(g) = max{γ(g i ) : G i is a connected component of G}. It follows that γ(g) satisfies (P1) and (P2). Therefore, when G is a connected unicyclic graph with an odd girth and G is not isomorphic to a cycle, we have χ(g) = γ(g) + 1, but G is neither a cycle nor a complete graph. One asks when the equality in Theorem 1.2 holds. Moreover, when the equality holds for a graph G, what kind of graph G is. In this note, we will discuss these questions in group coloring. One easily obtains similar results in coloring. We end this section with some important terminology. Graphs in this note are finite and simple. Unless otherwise stated, notations and terminology in graph theory are standard. Denote by H G the fact that H is an induced subgraph of G and by N(v) the set of neighbors of v in G. The concept of group coloring was first defined in [3]. Let G be a graph and A anabelian group. Denote by F(G,A)the set of all functions from E(G) to A and by D an orientation of E(G).Forf F(G,A),an(A, f )-coloring of G under the orientation D is a function c : V (G) A such that for every directed edge uv from u to v, c(u) c(v) = f (uv). G is A-colorable under the orientation D if for any function f F(G,A), G has an (A, f )-coloring. Jaeger et al. [3] proved that A-colorability is independent of the choice of the orientation. The group chromatic number of a graph G, denoted by χ g (G), is defined to be the minimum m for which G is A-colorable for any Abelian group A of order at least m. It follows that for any graph G, χ(g) χ g (G). 2. Main results The group coloring version of Brooks Theorem was proved in [4], as follows. Theorem 2.1. For any connected graph G, χ g (G) Δ(G) + 1, where equality holds if and only if Δ(G) = 2 and G is a cycle; or Δ(G) 3 and G is complete. Theorem 2.1 tells us that when Δ(G) = 2, the equality holds if and only if G is a cycle, which is different from Theorem 1.1. Motivated by Theorem 2.1, the authors first consider to generalize this extension of Brooks Theorem. For a graph G, we now introduce the concept of χ g (G)(or χ(g))-semi-critical graphs as follows. A graph G is defined to be χ g (G)(or χ(g))-semi-critical if χ g (G v) < χ g (G)(or χ(g v) < χ(g)), for every vertex v G with d(v) = δ(g). It is easy to see that a cycle is semi-critical and so is a complete graph. For a graph G, there exists a subgraph H such that H is a χ g (H )-semi-critical subgraph. Moreover, χ g (G) = χ g (H ). χ g (G)-semi-critical graph has the following properties which play a key role in the proof of Theorem 2.4. Lemma 2.2. LetGbeagraph, v V (G), and H = G v. If d G (v) < χ g (H ), then χ g (G) = χ g (H ). Proof. We assume, without loss of generality, that G is oriented such that all the edges incident with v are oriented from v. Let A be an Abelian group with A χ g (H ) and f F(G,A). It follows that for f H : E(H) A, there is a
3 3078 H.-J. Lai et al. / Discrete Mathematics 307 (2007) function c : V(H) A such that c(x) c(y) = f(xy)for each directed edge from x to y. Let N(v)={v 1,v 2,...,v l }, where l = d(v). Since l<χ g (H ) A, there is an a A l i=1 {c(v i ) + f(vv i )}. Define c 1 : V (G) A by { c(u) if u V(H), c 1 (u) = a if u = v, which implies that G is A-colorable and hence χ g (G) χ g (H ). We conclude our lemma by inequality χ g (H ) χ g (G) since H G. Lemma 2.3. IfGisχ g (G)-semi-critical with χ g (G) = k, then d G (v) k 1 for all v V (G). Proof. Suppose, to the contrary, that G has a vertex v 0 with d G (v 0 ) = δ(g) k 2. Since G is a χ g -semi-critical graph with χ g (G) = k, wehaveχ g (G v 0 ) k 1. If χ g (G v 0 ) = k 1, by Lemma 2.2, χ g (G) = χ g (G v 0 ) = k 1, contrary to that χ g (G) = k. We thus assume that χ g (G v 0 ) k 2. By similar argument as in the proof of Lemma 2.2, we obtain that χ g (G) k 1. This contradiction proves our lemma. Theorem 2.4. If G is a connected graph and γ(g) is a real function satisfying (P1) and (P2), then χ g (G) γ(g) + 1. Moreover, ifgisχ g (G)-semi-critical, then χ g (G) = γ(g) + 1 if and only if G is a cycle or a complete graph. Proof. Let k = χ g (G) and let H G be a k-semi-critical induced subgraph. By (P1), γ(h ) γ(g). By Lemma 2.3, δ(h ) k 1. By (P2), k 1 δ(h ) γ(h ) γ(g), which implies that χ g (G) = k γ(g) + 1. If G is a cycle C or a complete graph K n, by (P2), γ(c) = 2 and γ(k n ) = n 1. Our sufficiency follows from that χ g (C) = 3 and χ g (K n ) = n (see [4]). Conversely, let G be a χ g (G)-semi-critical graph such that χ g (G) = γ(g) + 1. By Lemma 2.3 and (P2), χ g (G) 1 δ(g) γ(g) = χ g (G) 1, which implies δ(g) = γ(g) = χ g (G) 1. By (P2), G is regular. Therefore, χ g (G) = γ(g) + 1 = δ(g) + 1 = Δ(G) + 1. By Theorem 2.1, G is a cycle or a complete graph. Theorem 2.4 answers the first question posed in Section 1. For vertex coloring, we easily obtain the similar results as Lemmas 2.2 and 2.3. Corollary 2.5 extends Szekeres and Wilf s result, that is Theorem 1.2. When we prove Corollary 2.5, we only need a slight change by using Theorem 1.1 instead of using Theorem 2.1. Corollary 2.5. If G is a connected graph and γ(g) is a real function satisfying (P1) and (P2), then χ(g) γ(g) + 1. Moreover, if G is semi-critical, then χ(g) = γ(g) + 1 if and only if G is an odd cycle or a complete graph. We are ready to discuss the structure of connected graphs with χ g (G) = γ(g) + 1, where γ(g) is a real function satisfying (P1) and (P2). At first we define a family of graphs as follows. For a positive integer m, define F(m) to be the set of connected simple graphs such that: (1) For m = 1, G F(m) if and only if G = K 1. (2) For m = 2, G F(m) if and only if G = K 2. (3) For m = 3, G F(m) if and only if either G is a cycle, or H = G v for some H F(m) and a vertex v with d(v) = 1. (4) For m 4, G F(m) if and only if either G = K m or H = G v for some H F(m) and a vertex v with d(v) m 2. The goal of the definition is to prove Theorem 2.6 with a real function γ(g). Thus, we define F(1) ={K 1 } and F(2) ={K 2 }. Note that if m = 3, F(3) is the set of connected unicyclic graphs and if m 4, then F(m) is the set of connected graphs such that by the removal of all vertices of degree no more than m 2, the resulting graph is K m. The following theorem answers the second question posed in Section 1. Theorem 2.6. Let G be a connected graph. If χ g (G) = γ(g) + 1, then G F(m) where m = χ g (G). Proof. Let m = χ g (G) and let H 0 be a χ g (G)-semi-critical induced subgraph of G. It is trivial when χ g (G) = 1, 2. We thus assume that χ g (G) 3. It follows that χ g (H 0 ) = χ g (G) = γ(g) + 1 γ(h 0 ) + 1 χ g (H 0 ). It implies that
4 H.-J. Lai et al. / Discrete Mathematics 307 (2007) χ g (H 0 ) = γ(h 0 ) + 1 and γ(h 0 ) = γ(g). By Theorem 2.4, H 0 is a cycle or a complete graph and hence δ(h 0 ) = m 1. If δ(g) m 1, then m = χ g (G) = γ(g) + 1 δ(g) + 1 m and hence γ(g) = δ(g) = m 1. It follows that G is regular. Since G is connected, G = H 0. When m = 3, H 0 is a cycle and hence G F(3). When m 4, H 0 is a complete graph and hence G F(m). Assume now that δ(g) m 2. It follows that when m = 3, G cannot be a cycle and that when m 4, G is not a complete graph. By Theorem 2.4, G cannot be χ g (G) semi-critical. Therefore, there exists v V (G) with d(v)= δ(g) such that χ g (G) = χ g (G v). We prove that G F(m) by induction on V (G). If V (G) = V(H 0 ) +1, then G v = H 0 F(m). Bythe definition of F(m), G F(m). Assume now that V (G) > V(H 0 ) +1. By Lemma 2.2 and by Property (P1), χ g (G v) = χ g (G) = γ(g) + 1 γ(g v) + 1 χ g (G v). It implies that χ g (G v) = γ(g v) + 1. We apply the induction hypothesis to G v, G v F(m). Bythe definition of F(m), G F(m). Note that χ(g) χ g (G) γ(g)+1. χ(g)=γ(g)+1 implies χ g (G)=γ(G)+1. When χ(g)=γ(g)+1, G F(m). If G is a unicyclic graph, the cycle cannot be even. Thus, the following corollary is straightforward. Corollary 2.7. Let G be a connected graph and γ(g) a real function satisfying (P1) and (P2). If χ(g) = γ(g) + 1, then G F(m) for some m 3 or G is a unicyclic graph with odd girth or G = K 2 or G = K 1. As applications of Theorem 2.6, we prove Corollaries 2.8 and 2.9, respectively. Corollary 2.8 is the group coloring version of a Cao s result [2]. The k-degree of vertex v in a graph G is defined to be the number of walks of length k from v in G. Denote by T (G) the maximum 2-degree of G and by Δ k (G) the maximum k-degree in a graph G which is the maximum row sum of A k, where A is the vertex-adjacency matrix of G. Corollary 2.8. If G is a connected graph, then each of the following holds: (i) χ g (G) T (G) + 1, where equality holds if and only if G is complete or a cycle. (ii) χ g (G) [Δ k (G)] 1/k + 1, where equality holds if and only if G is complete or a cycle. Proof. (i) It is easy to check that T (G) satisfies (P1) and (P2). By Theorem 2.4, χ g (G) T (G) + 1. When χ g (G) = T (G) + 1, by Theorem 2.6, G F(m). The result follows immediately if m = 1, 2. If m = 3, G is a unicyclic graph and hence χ g (G) = 3. Since T (G) x with T (G) = 2 if and only if x = 0, that is, G must be a cycle. Similarly, when m 4, G F(m) and T (G) = m 1 and hence G is a complete graph. Conversely, if G is a complete graph or a cycle, then G is semi-critical. By Theorem 2.4, χ g (G) = T (G) + 1. (ii) The proof is similar. For a graph G, the average degree and the maximum average degree of G are defined to be l(g) = 2 E(G) / V (G) and L(G) = max{l(h) : H is an induced subgraph of G}, respectively. Clearly, L(G) satisfies (P1) and (P2). Therefore, the following corollary is straightforward. Corollary 2.9. If G is a connected graph with maximum average degree L(G), then χ g (G) L(G)+1, where equality holds if and only if G F(m), where m = χ g (G). Acknowledgment The authors would like to thank the referees for the valuable comments which improve the presentation. References [1] R. Brooks, On colouring the nodes of a network, Proc. Cambridge Philos. Soc. 37 (1941) [2] D. Cao, Bounds on eigenvalues and chromatic number, Linear Algebra Appl. 270 (1998) 1 13.
5 3080 H.-J. Lai et al. / Discrete Mathematics 307 (2007) [3] F. Jaeger, N. Linial, C. Payan, M. Tarsi, Graph connectivity of graphs a nonhomogeneous analogue of nowhere-zero flow properties, J. Combin. Theory B 56 (1992) [4] H.-J Lai, X. Zhang, Group colorability of graphs, Ars Combin. 62 (2002) [5] G. Szekeres, H.S. Wilf, An inequality for the chromatic number of a graph, J. Combin. Theory 4 (1968) 1 3. [6] H.S. Wilf, The eigenvalues of a graph and its chromatic number, J. London Math. Soc. 42 (1967)
Total colorings of planar graphs with small maximum degree
Total colorings of planar graphs with small maximum degree Bing Wang 1,, Jian-Liang Wu, Si-Feng Tian 1 Department of Mathematics, Zaozhuang University, Shandong, 77160, China School of Mathematics, Shandong
SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH
31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,
Labeling outerplanar graphs with maximum degree three
Labeling outerplanar graphs with maximum degree three Xiangwen Li 1 and Sanming Zhou 2 1 Department of Mathematics Huazhong Normal University, Wuhan 430079, China 2 Department of Mathematics and Statistics
Mean Ramsey-Turán numbers
Mean Ramsey-Turán numbers Raphael Yuster Department of Mathematics University of Haifa at Oranim Tivon 36006, Israel Abstract A ρ-mean coloring of a graph is a coloring of the edges such that the average
Cycles in a Graph Whose Lengths Differ by One or Two
Cycles in a Graph Whose Lengths Differ by One or Two J. A. Bondy 1 and A. Vince 2 1 LABORATOIRE DE MATHÉMATIQUES DISCRÉTES UNIVERSITÉ CLAUDE-BERNARD LYON 1 69622 VILLEURBANNE, FRANCE 2 DEPARTMENT OF MATHEMATICS
Odd induced subgraphs in graphs of maximum degree three
Odd induced subgraphs in graphs of maximum degree three David M. Berman, Hong Wang, and Larry Wargo Department of Mathematics University of New Orleans New Orleans, Louisiana, USA 70148 Abstract A long-standing
Connectivity and cuts
Math 104, Graph Theory February 19, 2013 Measure of connectivity How connected are each of these graphs? > increasing connectivity > I G 1 is a tree, so it is a connected graph w/minimum # of edges. Every
Introduction to Graph Theory
Introduction to Graph Theory Allen Dickson October 2006 1 The Königsberg Bridge Problem The city of Königsberg was located on the Pregel river in Prussia. The river divided the city into four separate
P. Jeyanthi and N. Angel Benseera
Opuscula Math. 34, no. 1 (014), 115 1 http://dx.doi.org/10.7494/opmath.014.34.1.115 Opuscula Mathematica A TOTALLY MAGIC CORDIAL LABELING OF ONE-POINT UNION OF n COPIES OF A GRAPH P. Jeyanthi and N. Angel
SCORE SETS IN ORIENTED GRAPHS
Applicable Analysis and Discrete Mathematics, 2 (2008), 107 113. Available electronically at http://pefmath.etf.bg.ac.yu SCORE SETS IN ORIENTED GRAPHS S. Pirzada, T. A. Naikoo The score of a vertex v in
The positive minimum degree game on sparse graphs
The positive minimum degree game on sparse graphs József Balogh Department of Mathematical Sciences University of Illinois, USA [email protected] András Pluhár Department of Computer Science University
Every tree contains a large induced subgraph with all degrees odd
Every tree contains a large induced subgraph with all degrees odd A.J. Radcliffe Carnegie Mellon University, Pittsburgh, PA A.D. Scott Department of Pure Mathematics and Mathematical Statistics University
A 2-factor in which each cycle has long length in claw-free graphs
A -factor in which each cycle has long length in claw-free graphs Roman Čada Shuya Chiba Kiyoshi Yoshimoto 3 Department of Mathematics University of West Bohemia and Institute of Theoretical Computer Science
Zachary Monaco Georgia College Olympic Coloring: Go For The Gold
Zachary Monaco Georgia College Olympic Coloring: Go For The Gold Coloring the vertices or edges of a graph leads to a variety of interesting applications in graph theory These applications include various
On Some Vertex Degree Based Graph Invariants
MATCH Communications in Mathematical and in Computer Chemistry MATCH Commun. Math. Comput. Chem. 65 (20) 723-730 ISSN 0340-6253 On Some Vertex Degree Based Graph Invariants Batmend Horoldagva a and Ivan
All trees contain a large induced subgraph having all degrees 1 (mod k)
All trees contain a large induced subgraph having all degrees 1 (mod k) David M. Berman, A.J. Radcliffe, A.D. Scott, Hong Wang, and Larry Wargo *Department of Mathematics University of New Orleans New
BOUNDARY EDGE DOMINATION IN GRAPHS
BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 0-4874, ISSN (o) 0-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 5(015), 197-04 Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA
Cacti with minimum, second-minimum, and third-minimum Kirchhoff indices
MATHEMATICAL COMMUNICATIONS 47 Math. Commun., Vol. 15, No. 2, pp. 47-58 (2010) Cacti with minimum, second-minimum, and third-minimum Kirchhoff indices Hongzhuan Wang 1, Hongbo Hua 1, and Dongdong Wang
SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS. Nickolay Khadzhiivanov, Nedyalko Nenov
Serdica Math. J. 30 (2004), 95 102 SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS Nickolay Khadzhiivanov, Nedyalko Nenov Communicated by V. Drensky Abstract. Let Γ(M) where M V (G) be the set of all vertices
UPPER BOUNDS ON THE L(2, 1)-LABELING NUMBER OF GRAPHS WITH MAXIMUM DEGREE
UPPER BOUNDS ON THE L(2, 1)-LABELING NUMBER OF GRAPHS WITH MAXIMUM DEGREE ANDREW LUM ADVISOR: DAVID GUICHARD ABSTRACT. L(2,1)-labeling was first defined by Jerrold Griggs [Gr, 1992] as a way to use graphs
COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH. 1. Introduction
COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH ZACHARY ABEL 1. Introduction In this survey we discuss properties of the Higman-Sims graph, which has 100 vertices, 1100 edges, and is 22 regular. In fact
On the maximum average degree and the incidence chromatic number of a graph
Discrete Mathematics and Theoretical Computer Science DMTCS ol. 7, 2005, 203 216 On the maximum aerage degree and the incidence chromatic number of a graph Mohammad Hosseini Dolama 1 and Eric Sopena 2
A simple criterion on degree sequences of graphs
Discrete Applied Mathematics 156 (2008) 3513 3517 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam Note A simple criterion on degree
Cycle transversals in bounded degree graphs
Electronic Notes in Discrete Mathematics 35 (2009) 189 195 www.elsevier.com/locate/endm Cycle transversals in bounded degree graphs M. Groshaus a,2,3 P. Hell b,3 S. Klein c,1,3 L. T. Nogueira d,1,3 F.
I. GROUPS: BASIC DEFINITIONS AND EXAMPLES
I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called
On Integer Additive Set-Indexers of Graphs
On Integer Additive Set-Indexers of Graphs arxiv:1312.7672v4 [math.co] 2 Mar 2014 N K Sudev and K A Germina Abstract A set-indexer of a graph G is an injective set-valued function f : V (G) 2 X such that
The chromatic spectrum of mixed hypergraphs
The chromatic spectrum of mixed hypergraphs Tao Jiang, Dhruv Mubayi, Zsolt Tuza, Vitaly Voloshin, Douglas B. West March 30, 2003 Abstract A mixed hypergraph is a triple H = (X, C, D), where X is the vertex
A REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE. 1. Introduction and Preliminaries
Acta Math. Univ. Comenianae Vol. LXVI, 2(1997), pp. 285 291 285 A REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE E. T. BASKORO, M. MILLER and J. ŠIRÁŇ Abstract. It is well known that Moore digraphs do
A characterization of trace zero symmetric nonnegative 5x5 matrices
A characterization of trace zero symmetric nonnegative 5x5 matrices Oren Spector June 1, 009 Abstract The problem of determining necessary and sufficient conditions for a set of real numbers to be the
Large induced subgraphs with all degrees odd
Large induced subgraphs with all degrees odd A.D. Scott Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, England Abstract: We prove that every connected graph of order
Graphs without proper subgraphs of minimum degree 3 and short cycles
Graphs without proper subgraphs of minimum degree 3 and short cycles Lothar Narins, Alexey Pokrovskiy, Tibor Szabó Department of Mathematics, Freie Universität, Berlin, Germany. August 22, 2014 Abstract
On the independence number of graphs with maximum degree 3
On the independence number of graphs with maximum degree 3 Iyad A. Kanj Fenghui Zhang Abstract Let G be an undirected graph with maximum degree at most 3 such that G does not contain any of the three graphs
136 CHAPTER 4. INDUCTION, GRAPHS AND TREES
136 TER 4. INDUCTION, GRHS ND TREES 4.3 Graphs In this chapter we introduce a fundamental structural idea of discrete mathematics, that of a graph. Many situations in the applications of discrete mathematics
8.1 Min Degree Spanning Tree
CS880: Approximations Algorithms Scribe: Siddharth Barman Lecturer: Shuchi Chawla Topic: Min Degree Spanning Tree Date: 02/15/07 In this lecture we give a local search based algorithm for the Min Degree
A threshold for the Maker-Breaker clique game
A threshold for the Maker-Breaker clique game Tobias Müller Miloš Stojaković October 7, 01 Abstract We study the Maker-Breaker k-clique game played on the edge set of the random graph G(n, p. In this game,
Non-Separable Detachments of Graphs
Egerváry Research Group on Combinatorial Optimization Technical reports TR-2001-12. Published by the Egrerváry Research Group, Pázmány P. sétány 1/C, H 1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres.
Tools for parsimonious edge-colouring of graphs with maximum degree three. J.L. Fouquet and J.M. Vanherpe. Rapport n o RR-2010-10
Tools for parsimonious edge-colouring of graphs with maximum degree three J.L. Fouquet and J.M. Vanherpe LIFO, Université d Orléans Rapport n o RR-2010-10 Tools for parsimonious edge-colouring of graphs
Clique coloring B 1 -EPG graphs
Clique coloring B 1 -EPG graphs Flavia Bonomo a,c, María Pía Mazzoleni b,c, and Maya Stein d a Departamento de Computación, FCEN-UBA, Buenos Aires, Argentina. b Departamento de Matemática, FCE-UNLP, La
School of Industrial and System Engineering Georgia Institute of Technology Atlanta, Georgia 30332
NORI~H- ~ Bounds on Eigenvalues and Chromatic Numbers Dasong Cao School of Industrial and System Engineering Georgia Institute of Technology Atlanta, Georgia 30332 Submitted by Richard A. Brualdi ABSTRACT
Mathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
8. Matchings and Factors
8. Matchings and Factors Consider the formation of an executive council by the parliament committee. Each committee needs to designate one of its members as an official representative to sit on the council,
On the k-path cover problem for cacti
On the k-path cover problem for cacti Zemin Jin and Xueliang Li Center for Combinatorics and LPMC Nankai University Tianjin 300071, P.R. China [email protected], [email protected] Abstract In this paper we
A Turán Type Problem Concerning the Powers of the Degrees of a Graph
A Turán Type Problem Concerning the Powers of the Degrees of a Graph Yair Caro and Raphael Yuster Department of Mathematics University of Haifa-ORANIM, Tivon 36006, Israel. AMS Subject Classification:
3. Eulerian and Hamiltonian Graphs
3. Eulerian and Hamiltonian Graphs There are many games and puzzles which can be analysed by graph theoretic concepts. In fact, the two early discoveries which led to the existence of graphs arose from
Ph.D. Thesis. Judit Nagy-György. Supervisor: Péter Hajnal Associate Professor
Online algorithms for combinatorial problems Ph.D. Thesis by Judit Nagy-György Supervisor: Péter Hajnal Associate Professor Doctoral School in Mathematics and Computer Science University of Szeged Bolyai
Cycles and clique-minors in expanders
Cycles and clique-minors in expanders Benny Sudakov UCLA and Princeton University Expanders Definition: The vertex boundary of a subset X of a graph G: X = { all vertices in G\X with at least one neighbor
CS 598CSC: Combinatorial Optimization Lecture date: 2/4/2010
CS 598CSC: Combinatorial Optimization Lecture date: /4/010 Instructor: Chandra Chekuri Scribe: David Morrison Gomory-Hu Trees (The work in this section closely follows [3]) Let G = (V, E) be an undirected
F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein)
Journal of Algerian Mathematical Society Vol. 1, pp. 1 6 1 CONCERNING THE l p -CONJECTURE FOR DISCRETE SEMIGROUPS F. ABTAHI and M. ZARRIN (Communicated by J. Goldstein) Abstract. For 2 < p
ON GENERALIZED RELATIVE COMMUTATIVITY DEGREE OF A FINITE GROUP. A. K. Das and R. K. Nath
International Electronic Journal of Algebra Volume 7 (2010) 140-151 ON GENERALIZED RELATIVE COMMUTATIVITY DEGREE OF A FINITE GROUP A. K. Das and R. K. Nath Received: 12 October 2009; Revised: 15 December
Strong Ramsey Games: Drawing on an infinite board
Strong Ramsey Games: Drawing on an infinite board Dan Hefetz Christopher Kusch Lothar Narins Alexey Pokrovskiy Clément Requilé Amir Sarid arxiv:1605.05443v2 [math.co] 25 May 2016 May 26, 2016 Abstract
Discrete Mathematics Problems
Discrete Mathematics Problems William F. Klostermeyer School of Computing University of North Florida Jacksonville, FL 32224 E-mail: [email protected] Contents 0 Preface 3 1 Logic 5 1.1 Basics...............................
. 0 1 10 2 100 11 1000 3 20 1 2 3 4 5 6 7 8 9
Introduction The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive integer We say d is a
Triangle deletion. Ernie Croot. February 3, 2010
Triangle deletion Ernie Croot February 3, 2010 1 Introduction The purpose of this note is to give an intuitive outline of the triangle deletion theorem of Ruzsa and Szemerédi, which says that if G = (V,
Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs
Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs Kousha Etessami U. of Edinburgh, UK Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 1 / 13 Overview Graphs and Graph
Solutions for Practice problems on proofs
Solutions for Practice problems on proofs Definition: (even) An integer n Z is even if and only if n = 2m for some number m Z. Definition: (odd) An integer n Z is odd if and only if n = 2m + 1 for some
Finding and counting given length cycles
Finding and counting given length cycles Noga Alon Raphael Yuster Uri Zwick Abstract We present an assortment of methods for finding and counting simple cycles of a given length in directed and undirected
Every Positive Integer is the Sum of Four Squares! (and other exciting problems)
Every Positive Integer is the Sum of Four Squares! (and other exciting problems) Sophex University of Texas at Austin October 18th, 00 Matilde N. Lalín 1. Lagrange s Theorem Theorem 1 Every positive integer
Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010. Chapter 7: Digraphs
MCS-236: Graph Theory Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010 Chapter 7: Digraphs Strong Digraphs Definitions. A digraph is an ordered pair (V, E), where V is the set
The Goldberg Rao Algorithm for the Maximum Flow Problem
The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }
On parsimonious edge-colouring of graphs with maximum degree three
On parsimonious edge-colouring of graphs with maximum degree three Jean-Luc Fouquet, Jean-Marie Vanherpe To cite this version: Jean-Luc Fouquet, Jean-Marie Vanherpe. On parsimonious edge-colouring of graphs
FALSE ALARMS IN FAULT-TOLERANT DOMINATING SETS IN GRAPHS. Mateusz Nikodem
Opuscula Mathematica Vol. 32 No. 4 2012 http://dx.doi.org/10.7494/opmath.2012.32.4.751 FALSE ALARMS IN FAULT-TOLERANT DOMINATING SETS IN GRAPHS Mateusz Nikodem Abstract. We develop the problem of fault-tolerant
Midterm Practice Problems
6.042/8.062J Mathematics for Computer Science October 2, 200 Tom Leighton, Marten van Dijk, and Brooke Cowan Midterm Practice Problems Problem. [0 points] In problem set you showed that the nand operator
INCIDENCE-BETWEENNESS GEOMETRY
INCIDENCE-BETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full
MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.
MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column
Classification of Cartan matrices
Chapter 7 Classification of Cartan matrices In this chapter we describe a classification of generalised Cartan matrices This classification can be compared as the rough classification of varieties in terms
Generalized Induced Factor Problems
Egerváry Research Group on Combinatorial Optimization Technical reports TR-2002-07. Published by the Egrerváry Research Group, Pázmány P. sétány 1/C, H 1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres.
Extremal Wiener Index of Trees with All Degrees Odd
MATCH Communications in Mathematical and in Computer Chemistry MATCH Commun. Math. Comput. Chem. 70 (2013) 287-292 ISSN 0340-6253 Extremal Wiener Index of Trees with All Degrees Odd Hong Lin School of
Definition 11.1. Given a graph G on n vertices, we define the following quantities:
Lecture 11 The Lovász ϑ Function 11.1 Perfect graphs We begin with some background on perfect graphs. graphs. First, we define some quantities on Definition 11.1. Given a graph G on n vertices, we define
A NOTE ON OFF-DIAGONAL SMALL ON-LINE RAMSEY NUMBERS FOR PATHS
A NOTE ON OFF-DIAGONAL SMALL ON-LINE RAMSEY NUMBERS FOR PATHS PAWE L PRA LAT Abstract. In this note we consider the on-line Ramsey numbers R(P n, P m ) for paths. Using a high performance computing clusters,
Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products
Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing
Sample Induction Proofs
Math 3 Worksheet: Induction Proofs III, Sample Proofs A.J. Hildebrand Sample Induction Proofs Below are model solutions to some of the practice problems on the induction worksheets. The solutions given
THE DIMENSION OF A VECTOR SPACE
THE DIMENSION OF A VECTOR SPACE KEITH CONRAD This handout is a supplementary discussion leading up to the definition of dimension and some of its basic properties. Let V be a vector space over a field
Single machine parallel batch scheduling with unbounded capacity
Workshop on Combinatorics and Graph Theory 21th, April, 2006 Nankai University Single machine parallel batch scheduling with unbounded capacity Yuan Jinjiang Department of mathematics, Zhengzhou University
On end degrees and infinite cycles in locally finite graphs
On end degrees and infinite cycles in locally finite graphs Henning Bruhn Maya Stein Abstract We introduce a natural extension of the vertex degree to ends. For the cycle space C(G) as proposed by Diestel
n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +...
6 Series We call a normed space (X, ) a Banach space provided that every Cauchy sequence (x n ) in X converges. For example, R with the norm = is an example of Banach space. Now let (x n ) be a sequence
Math 319 Problem Set #3 Solution 21 February 2002
Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod
DATA ANALYSIS II. Matrix Algorithms
DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where
x a x 2 (1 + x 2 ) n.
Limits and continuity Suppose that we have a function f : R R. Let a R. We say that f(x) tends to the limit l as x tends to a; lim f(x) = l ; x a if, given any real number ɛ > 0, there exists a real number
Continued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
Page 331, 38.4 Suppose a is a positive integer and p is a prime. Prove that p a if and only if the prime factorization of a contains p.
Page 331, 38.2 Assignment #11 Solutions Factor the following positive integers into primes. a. 25 = 5 2. b. 4200 = 2 3 3 5 2 7. c. 10 10 = 2 10 5 10. d. 19 = 19. e. 1 = 1. Page 331, 38.4 Suppose a is a
Full and Complete Binary Trees
Full and Complete Binary Trees Binary Tree Theorems 1 Here are two important types of binary trees. Note that the definitions, while similar, are logically independent. Definition: a binary tree T is full
Embedding nearly-spanning bounded degree trees
Embedding nearly-spanning bounded degree trees Noga Alon Michael Krivelevich Benny Sudakov Abstract We derive a sufficient condition for a sparse graph G on n vertices to contain a copy of a tree T of
Degree Hypergroupoids Associated with Hypergraphs
Filomat 8:1 (014), 119 19 DOI 10.98/FIL1401119F Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Degree Hypergroupoids Associated
Row Ideals and Fibers of Morphisms
Michigan Math. J. 57 (2008) Row Ideals and Fibers of Morphisms David Eisenbud & Bernd Ulrich Affectionately dedicated to Mel Hochster, who has been an inspiration to us for many years, on the occasion
INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS
INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS STEVEN P. LALLEY AND ANDREW NOBEL Abstract. It is shown that there are no consistent decision rules for the hypothesis testing problem
GREATEST COMMON DIVISOR
DEFINITION: GREATEST COMMON DIVISOR The greatest common divisor (gcd) of a and b, denoted by (a, b), is the largest common divisor of integers a and b. THEOREM: If a and b are nonzero integers, then their
ON INDUCED SUBGRAPHS WITH ALL DEGREES ODD. 1. Introduction
ON INDUCED SUBGRAPHS WITH ALL DEGREES ODD A.D. SCOTT Abstract. Gallai proved that the vertex set of any graph can be partitioned into two sets, each inducing a subgraph with all degrees even. We prove
Conductance, the Normalized Laplacian, and Cheeger s Inequality
Spectral Graph Theory Lecture 6 Conductance, the Normalized Laplacian, and Cheeger s Inequality Daniel A. Spielman September 21, 2015 Disclaimer These notes are not necessarily an accurate representation
