WOLLONGONG COLLEGE AUSTRALIA. Diploma in Information Technology
|
|
|
- Job Parks
- 9 years ago
- Views:
Transcription
1 First Name: Family Name: Student Number: Class/Tutorial: WOLLONGONG COLLEGE AUSTRALIA A College of the University of Wollongong Diploma in Information Technology Final Examination Spring Session 2008 WUCT121 Discrete Mathematics This exam represents 60% of the total subject marks Reading Time: 5 minutes Time allowed: 3 Hours DIRECTIONS TO CANDIDATES Refer to Page 2 ITC Education Ltd trading as Wollongong College Australia CRICOS 02723D ABN WCA-WUCT121-EXSF Page 1 of 9
2 DIRECTIONS TO CANDIDATES 1. Total number of questions: All questions are to be attempted. 3. All answers must be written in the Examination Answer Booklet supplied. 4. Questions are of equal value. 5. All working must be clearly shown. 6. Non-programmable calculators may be used. 7. No other examination aids are permitted. 8. Electronic dictionaries are not allowed. 9. Non-English speaking background students may use an approved English to Foreign language translation dictionary 10. The examination paper must not be removed from the examination room and must be submitted with the examination answer booklet. 11. During the 5 minutes reading time, you may make notes on the examination paper only. Answer Booklets must remain closed. WCA-WUCT121-EXSF Page 2 of 9
3 START OF EXAM Question 1 (a) Using the quick method, prove that the following statement is a tautology: (~ p ~ q) ~ ( p q) (b) Using full truth tables, determine whether the following statement is a tautology, a contradiction, or is contingent: ~ (( q ~ p) ( p ~ q)) ~ (~ p ~ q) [12 marks] (c) Write the following statement in predicate calculus notation using quantifiers and variables: Some students cannot correctly answer all questions in this exam. [8 marks] (d) Write in simple English without using quantifiers or variables: "x Œ +, $y Œ +, (y < x), where + is the set of positive Real numbers. (e) Write down, then simplify, the negations of each of the statements in parts (c) and (d) using; (i) Predicate calculus notation using quantifiers and variables. (ii) Simple English without using quantifiers and variables. (f) For the following sentence: The statement that all statements are sentences but not all sentences are statements is false. (i) Determine if it is a statement; and explain why or why not. (ii) If it is a statement, determine whether it is true or false, giving reasons for your answer. WCA-WUCT121-EXSF Page 3 of 9
4 Question 2 (a) Using a direct proof, prove the following statement: 2 + For any real number x, 20( x 1) 4 x 5 (b) Briefly explain how the following tautologies may be used in the method of proof by contradiction: (i) (~ p ( q ~ q)) p (ii) ( p q) (~ q ~ p) (c) Using proof by contradiction or otherwise, prove the following statements: (i) For all integers n, if n 3 is even then n is even. (ii) There is no largest even integer. [8 marks] [8 marks] (d) Consider the following statements: P : Q : R : 2x + 1 = 3 2x = 2 x = 1 If we assume that P is a true statement, explain how these statements, together with Modus Ponens and the Law of Syllogism, can be used to prove that R is also a true statement. [10 marks] (e) Complete the following tautology, which is used in the method of proof by cases: K KKKKKKKK (( p r) KK( q r)) (f) Using proof by cases or otherwise, prove the following statement: For all integers n, 2 n 2 1 is odd. [10 marks] WCA-WUCT121-EXSF Page 4 of 9
5 Question 3 (a) Use Mathematical Induction to prove that 5 n 1 is divisible by 4 for all n Œ Õ. (b) (i) Use the Euclidean Algorithm to find gcd(126, 39). (ii) Find m, n Œ Ÿ such that 126m 39n = gcd(126, 39). (c) (i) Showing all steps clearly, use the Sieve of Eratosthenes to find all the prime numbers between 2 and 52. [8 marks] (ii) Write down all the twin primes between 2 and 52. (d) Use the Generalized Pigeonhole Principle to justify your answer to the following question: In a group of 2000 students, must at least five have the same day of the year as their birthday? (e) Find a value of x such that x = 5 7 (mod) 17 and 0 x < 17. (f) Write down the complete set of residue classes modulo 11, Ÿ 11. (g) Express each of the elements [ 3], [7], [44] Œ Ÿ 11 as [x] Œ Ÿ 11, 0 x < 11. (h) Let S Ÿ 11 be given by S = {[1], [4], [7]}. (i) Construct the multiplication table for S. [6marks] (ii) Using this table, or otherwise, determine the identity for multiplication and the multiplicative inverses of all the elements in S which have them. WCA-WUCT121-EXSF Page 5 of 9
6 Question 4 (a) Let = {d, i, s, c, r, e, t, e, m, a, t, h, e, m, a, t, i, c, s} be the Universal set. Let S = {x Œ x Œ {s, e, c, r, e, t, s}}, T = {x Œ x Œ {t, h, e, m, e, s}} and C = {x Œ x Œ {t, a, c, t, i, c, s}} be subsets of the Universal set. (i) Draw a Venn diagram showing S, T, C and. (ii) Write down the following sets: a) S «T c) S C b) T S d) C» T [8 marks] (iii) Which of the following are false? Give reasons. a) c Õ C c) Œ P(S) b) {c} Õ C d) Õ P(S) [8 marks] (b) Briefly explain what is meant by the term Singleton set. (c) Let A = {1} and B = {4, 3, 2}. Write down the following sets: (i) ( A B) (ii) P ( A B) (d) State the Axiom of Specification and the Axiom of Extent. (e) Using (d), and the definitions of Intersection, Difference, and Complement, prove the following statement using a typical element argument: X Y = X Y [12 marks] WCA-WUCT121-EXSF Page 6 of 9
7 Question 5 (a) Explain what is meant by an ordered pair. (b) Explain what is meant by a binary relation. (c) Explain what is meant by a function from A to B. (d) Explain what is meant by a permutation. (e) Let T be a relation on {1, 2, 3, 4, 5} defined as follows: T = {( x, y) x > y x + y is odd and prime}. (i) Write down the domain and range of T. (ii) Write down the elements and sketch the graph of T. (iii) Write down the elements and sketch the graph of T. (iv) Are either T or T functions? Give a brief explanation why or why not. (v) Are either T or not. T onto {1, 2, 3, 4, 5}? Give a brief explanation why or why (f) Simplify the following permutations: (i) ( 1 2) (4 3) ( 2 5) (ii) ((1 3 5) (4 3 5)) WCA-WUCT121-EXSF Page 7 of 9
8 Question 6 (a) Explain what is meant by the following terms: (i) A graph (ii) A simple graph (iii) A simple path (b) (i) Draw a graph that is simple and connected. (ii) Draw a graph that is connected but not simple. (c) Draw a graph with the specified properties or explain why no such graph exists: (i) Graph with three vertices of degrees 1, 2, and 3 respectively. (ii) Graph with four vertices of degrees 1, 2, 3, and 4 respectively. (iii) Graph with five vertices of degrees 0, 1, 1, 1, and 5 respectively. (d) Let G = {V, E} be the graph given below: e 1 e 2 v 1 e 4 e 5 e 6 v 3 v 2 e 3 v 4 e 7 (i) Draw the subgraph H 1 or explain why no such subgraph exists. Subgraph H 1 = {{ v1, v2, v4},{ e3, e5, e6}}. (ii) Starting at v 1, write down any circuit of graph G. (iii) Is graph G an Eulerian graph? Explain. (iv) Does an Eulerian path exist in G? Explain. WCA-WUCT121-EXSF Page 8 of 9
9 (e) For the graph G given in question (d) above, either write down a path with the specified properties, or explain why no such path exists. (i) A simple path of length 3 from v 1 to v 2. (ii) A path of length 4 from v 1 to v 3. (f) Is the graph G given in question (d) above connected? If so, what is the least number of edges you must remove to make the graph disconnected? Give an example. (g) If the edges in graph G have the following weightings, use Kruskal s Algorithm to find a minimum spanning tree for G: e =, e = 7, e = 9, e = 2, e = 6, e = 3, e = (h) Label the vertices and edges of the following graphs in any convenient way and show whether or not they are isomorphic. END OF EXAM WCA-WUCT121-EXSF Page 9 of 9
WOLLONGONG COLLEGE AUSTRALIA. Diploma in Information Technology
First Name: Family Name: Student Number: Class/Tutorial: WOLLONGONG COLLEGE AUSTRALIA A College of the University of Wollongong Diploma in Information Technology Mid-Session Test Summer Session 008-00
Mathematics for Algorithm and System Analysis
Mathematics for Algorithm and System Analysis for students of computer and computational science Edward A. Bender S. Gill Williamson c Edward A. Bender & S. Gill Williamson 2005. All rights reserved. Preface
Discrete Mathematics Problems
Discrete Mathematics Problems William F. Klostermeyer School of Computing University of North Florida Jacksonville, FL 32224 E-mail: [email protected] Contents 0 Preface 3 1 Logic 5 1.1 Basics...............................
Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson
Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement
MATHEMATICAL INDUCTION. Mathematical Induction. This is a powerful method to prove properties of positive integers.
MATHEMATICAL INDUCTION MIGUEL A LERMA (Last updated: February 8, 003) Mathematical Induction This is a powerful method to prove properties of positive integers Principle of Mathematical Induction Let P
Lecture Notes in Discrete Mathematics. Marcel B. Finan Arkansas Tech University c All Rights Reserved
Lecture Notes in Discrete Mathematics Marcel B. Finan Arkansas Tech University c All Rights Reserved 2 Preface This book is designed for a one semester course in discrete mathematics for sophomore or junior
Lecture 16 : Relations and Functions DRAFT
CS/Math 240: Introduction to Discrete Mathematics 3/29/2011 Lecture 16 : Relations and Functions Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT In Lecture 3, we described a correspondence
Examination paper for MA0301 Elementær diskret matematikk
Department of Mathematical Sciences Examination paper for MA0301 Elementær diskret matematikk Academic contact during examination: Iris Marjan Smit a, Sverre Olaf Smalø b Phone: a 9285 0781, b 7359 1750
= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that
Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without
Answer: (a) Since we cannot repeat men on the committee, and the order we select them in does not matter, ( )
1. (Chapter 1 supplementary, problem 7): There are 12 men at a dance. (a) In how many ways can eight of them be selected to form a cleanup crew? (b) How many ways are there to pair off eight women at the
ABSTRACT ALGEBRA: A STUDY GUIDE FOR BEGINNERS
ABSTRACT ALGEBRA: A STUDY GUIDE FOR BEGINNERS John A. Beachy Northern Illinois University 2014 ii J.A.Beachy This is a supplement to Abstract Algebra, Third Edition by John A. Beachy and William D. Blair
Midterm Practice Problems
6.042/8.062J Mathematics for Computer Science October 2, 200 Tom Leighton, Marten van Dijk, and Brooke Cowan Midterm Practice Problems Problem. [0 points] In problem set you showed that the nand operator
Automata and Formal Languages
Automata and Formal Languages Winter 2009-2010 Yacov Hel-Or 1 What this course is all about This course is about mathematical models of computation We ll study different machine models (finite automata,
Course Syllabus. MATH 1350-Mathematics for Teachers I. Revision Date: 8/15/2016
Course Syllabus MATH 1350-Mathematics for Teachers I Revision Date: 8/15/2016 Catalog Description: This course is intended to build or reinforce a foundation in fundamental mathematics concepts and skills.
6.2 Permutations continued
6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of
Every tree contains a large induced subgraph with all degrees odd
Every tree contains a large induced subgraph with all degrees odd A.J. Radcliffe Carnegie Mellon University, Pittsburgh, PA A.D. Scott Department of Pure Mathematics and Mathematical Statistics University
COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH. 1. Introduction
COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH ZACHARY ABEL 1. Introduction In this survey we discuss properties of the Higman-Sims graph, which has 100 vertices, 1100 edges, and is 22 regular. In fact
15 Prime and Composite Numbers
15 Prime and Composite Numbers Divides, Divisors, Factors, Multiples In section 13, we considered the division algorithm: If a and b are whole numbers with b 0 then there exist unique numbers q and r such
Handout #1: Mathematical Reasoning
Math 101 Rumbos Spring 2010 1 Handout #1: Mathematical Reasoning 1 Propositional Logic A proposition is a mathematical statement that it is either true or false; that is, a statement whose certainty or
3. Mathematical Induction
3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)
8 Primes and Modular Arithmetic
8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.
Homework until Test #2
MATH31: Number Theory Homework until Test # Philipp BRAUN Section 3.1 page 43, 1. It has been conjectured that there are infinitely many primes of the form n. Exhibit five such primes. Solution. Five such
All trees contain a large induced subgraph having all degrees 1 (mod k)
All trees contain a large induced subgraph having all degrees 1 (mod k) David M. Berman, A.J. Radcliffe, A.D. Scott, Hong Wang, and Larry Wargo *Department of Mathematics University of New Orleans New
Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.
Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole
Why? A central concept in Computer Science. Algorithms are ubiquitous.
Analysis of Algorithms: A Brief Introduction Why? A central concept in Computer Science. Algorithms are ubiquitous. Using the Internet (sending email, transferring files, use of search engines, online
Graph Theory Problems and Solutions
raph Theory Problems and Solutions Tom Davis [email protected] http://www.geometer.org/mathcircles November, 005 Problems. Prove that the sum of the degrees of the vertices of any finite graph is
PRE-CALCULUS GRADE 12
PRE-CALCULUS GRADE 12 [C] Communication Trigonometry General Outcome: Develop trigonometric reasoning. A1. Demonstrate an understanding of angles in standard position, expressed in degrees and radians.
Today s Topics. Primes & Greatest Common Divisors
Today s Topics Primes & Greatest Common Divisors Prime representations Important theorems about primality Greatest Common Divisors Least Common Multiples Euclid s algorithm Once and for all, what are prime
Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits
Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique
CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs
CHAPTER 3 Methods of Proofs 1. Logical Arguments and Formal Proofs 1.1. Basic Terminology. An axiom is a statement that is given to be true. A rule of inference is a logical rule that is used to deduce
Indiana State Core Curriculum Standards updated 2009 Algebra I
Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and
Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011
Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly
Graphs without proper subgraphs of minimum degree 3 and short cycles
Graphs without proper subgraphs of minimum degree 3 and short cycles Lothar Narins, Alexey Pokrovskiy, Tibor Szabó Department of Mathematics, Freie Universität, Berlin, Germany. August 22, 2014 Abstract
Lecture 17 : Equivalence and Order Relations DRAFT
CS/Math 240: Introduction to Discrete Mathematics 3/31/2011 Lecture 17 : Equivalence and Order Relations Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Last lecture we introduced the notion
(LMCS, p. 317) V.1. First Order Logic. This is the most powerful, most expressive logic that we will examine.
(LMCS, p. 317) V.1 First Order Logic This is the most powerful, most expressive logic that we will examine. Our version of first-order logic will use the following symbols: variables connectives (,,,,
POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS
POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS RUSS WOODROOFE 1. Unique Factorization Domains Throughout the following, we think of R as sitting inside R[x] as the constant polynomials (of degree 0).
(0, 0) : order 1; (0, 1) : order 4; (0, 2) : order 2; (0, 3) : order 4; (1, 0) : order 2; (1, 1) : order 4; (1, 2) : order 2; (1, 3) : order 4.
11.01 List the elements of Z 2 Z 4. Find the order of each of the elements is this group cyclic? Solution: The elements of Z 2 Z 4 are: (0, 0) : order 1; (0, 1) : order 4; (0, 2) : order 2; (0, 3) : order
Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010. Chapter 7: Digraphs
MCS-236: Graph Theory Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010 Chapter 7: Digraphs Strong Digraphs Definitions. A digraph is an ordered pair (V, E), where V is the set
CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA
We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical
INTRODUCTORY SET THEORY
M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H-1088 Budapest, Múzeum krt. 6-8. CONTENTS 1. SETS Set, equal sets, subset,
I. GROUPS: BASIC DEFINITIONS AND EXAMPLES
I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called
8 Divisibility and prime numbers
8 Divisibility and prime numbers 8.1 Divisibility In this short section we extend the concept of a multiple from the natural numbers to the integers. We also summarize several other terms that express
Sample Induction Proofs
Math 3 Worksheet: Induction Proofs III, Sample Proofs A.J. Hildebrand Sample Induction Proofs Below are model solutions to some of the practice problems on the induction worksheets. The solutions given
Math 3000 Section 003 Intro to Abstract Math Homework 2
Math 3000 Section 003 Intro to Abstract Math Homework 2 Department of Mathematical and Statistical Sciences University of Colorado Denver, Spring 2012 Solutions (February 13, 2012) Please note that these
136 CHAPTER 4. INDUCTION, GRAPHS AND TREES
136 TER 4. INDUCTION, GRHS ND TREES 4.3 Graphs In this chapter we introduce a fundamental structural idea of discrete mathematics, that of a graph. Many situations in the applications of discrete mathematics
Properties of Real Numbers
16 Chapter P Prerequisites P.2 Properties of Real Numbers What you should learn: Identify and use the basic properties of real numbers Develop and use additional properties of real numbers Why you should
SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by
SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples
Computing exponents modulo a number: Repeated squaring
Computing exponents modulo a number: Repeated squaring How do you compute (1415) 13 mod 2537 = 2182 using just a calculator? Or how do you check that 2 340 mod 341 = 1? You can do this using the method
Labeling outerplanar graphs with maximum degree three
Labeling outerplanar graphs with maximum degree three Xiangwen Li 1 and Sanming Zhou 2 1 Department of Mathematics Huazhong Normal University, Wuhan 430079, China 2 Department of Mathematics and Statistics
def: An axiom is a statement that is assumed to be true, or in the case of a mathematical system, is used to specify the system.
Section 1.5 Methods of Proof 1.5.1 1.5 METHODS OF PROOF Some forms of argument ( valid ) never lead from correct statements to an incorrect. Some other forms of argument ( fallacies ) can lead from true
1 Definitions. Supplementary Material for: Digraphs. Concept graphs
Supplementary Material for: van Rooij, I., Evans, P., Müller, M., Gedge, J. & Wareham, T. (2008). Identifying Sources of Intractability in Cognitive Models: An Illustration using Analogical Structure Mapping.
Check Digit Schemes and Error Detecting Codes. By Breanne Oldham Union University
Check Digit Schemes and Error Detecting Codes By Breanne Oldham Union University What are Check Digit Schemes? Check digit schemes are numbers appended to an identification number that allow the accuracy
Logic and Reasoning Practice Final Exam Spring 2015. Section Number
Logic and Reasoning Practice Final Exam Spring 2015 Name Section Number The final examination is worth 100 points. 1. (5 points) What is an argument? Explain what is meant when one says that logic is the
Test1. Due Friday, March 13, 2015.
1 Abstract Algebra Professor M. Zuker Test1. Due Friday, March 13, 2015. 1. Euclidean algorithm and related. (a) Suppose that a and b are two positive integers and that gcd(a, b) = d. Find all solutions
Collinear Points in Permutations
Collinear Points in Permutations Joshua N. Cooper Courant Institute of Mathematics New York University, New York, NY József Solymosi Department of Mathematics University of British Columbia, Vancouver,
Number Theory. Proof. Suppose otherwise. Then there would be a finite number n of primes, which we may
Number Theory Divisibility and Primes Definition. If a and b are integers and there is some integer c such that a = b c, then we say that b divides a or is a factor or divisor of a and write b a. Definition
CHAPTER 5. Number Theory. 1. Integers and Division. Discussion
CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a
Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 Proofs Intuitively, the concept of proof should already be familiar We all like to assert things, and few of us
Lecture 13 of 41. More Propositional and Predicate Logic
Lecture 13 of 41 More Propositional and Predicate Logic Monday, 20 September 2004 William H. Hsu, KSU http://www.kddresearch.org http://www.cis.ksu.edu/~bhsu Reading: Sections 8.1-8.3, Russell and Norvig
Predicate Logic. Example: All men are mortal. Socrates is a man. Socrates is mortal.
Predicate Logic Example: All men are mortal. Socrates is a man. Socrates is mortal. Note: We need logic laws that work for statements involving quantities like some and all. In English, the predicate is
Chapter 3. if 2 a i then location: = i. Page 40
Chapter 3 1. Describe an algorithm that takes a list of n integers a 1,a 2,,a n and finds the number of integers each greater than five in the list. Ans: procedure greaterthanfive(a 1,,a n : integers)
Answer Key for California State Standards: Algebra I
Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.
Discrete Mathematics. Hans Cuypers. October 11, 2007
Hans Cuypers October 11, 2007 1 Contents 1. Relations 4 1.1. Binary relations................................ 4 1.2. Equivalence relations............................. 6 1.3. Relations and Directed Graphs.......................
Lemma 5.2. Let S be a set. (1) Let f and g be two permutations of S. Then the composition of f and g is a permutation of S.
Definition 51 Let S be a set bijection f : S S 5 Permutation groups A permutation of S is simply a Lemma 52 Let S be a set (1) Let f and g be two permutations of S Then the composition of f and g is a
Math 115 Spring 2011 Written Homework 5 Solutions
. Evaluate each series. a) 4 7 0... 55 Math 5 Spring 0 Written Homework 5 Solutions Solution: We note that the associated sequence, 4, 7, 0,..., 55 appears to be an arithmetic sequence. If the sequence
GREATEST COMMON DIVISOR
DEFINITION: GREATEST COMMON DIVISOR The greatest common divisor (gcd) of a and b, denoted by (a, b), is the largest common divisor of integers a and b. THEOREM: If a and b are nonzero integers, then their
Reasoning and Proof Review Questions
www.ck12.org 1 Reasoning and Proof Review Questions Inductive Reasoning from Patterns 1. What is the next term in the pattern: 1, 4, 9, 16, 25, 36, 49...? (a) 81 (b) 64 (c) 121 (d) 56 2. What is the next
MATH 22. THE FUNDAMENTAL THEOREM of ARITHMETIC. Lecture R: 10/30/2003
MATH 22 Lecture R: 10/30/2003 THE FUNDAMENTAL THEOREM of ARITHMETIC You must remember this, A kiss is still a kiss, A sigh is just a sigh; The fundamental things apply, As time goes by. Herman Hupfeld
Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability
Math/Stats 425 Introduction to Probability 1. Uncertainty and the axioms of probability Processes in the real world are random if outcomes cannot be predicted with certainty. Example: coin tossing, stock
Exponential time algorithms for graph coloring
Exponential time algorithms for graph coloring Uriel Feige Lecture notes, March 14, 2011 1 Introduction Let [n] denote the set {1,..., k}. A k-labeling of vertices of a graph G(V, E) is a function V [k].
Mathematical Induction. Lecture 10-11
Mathematical Induction Lecture 10-11 Menu Mathematical Induction Strong Induction Recursive Definitions Structural Induction Climbing an Infinite Ladder Suppose we have an infinite ladder: 1. We can reach
Math 319 Problem Set #3 Solution 21 February 2002
Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod
List the elements of the given set that are natural numbers, integers, rational numbers, and irrational numbers. (Enter your answers as commaseparated
MATH 142 Review #1 (4717995) Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Description This is the review for Exam #1. Please work as many problems as possible
Applied Liberal Arts Mathematics MAT-105-TE
Applied Liberal Arts Mathematics MAT-105-TE This TECEP tests a broad-based overview of mathematics intended for non-math majors and emphasizes problem-solving modeled on real-life applications. Topics
Discrete Math for Computer Science Students
Discrete Math for Computer Science Students Ken Bogart Dept. of Mathematics Dartmouth College Scot Drysdale Dept. of Computer Science Dartmouth College Cliff Stein Dept. of Industrial Engineering and Operations
EQUATIONS and INEQUALITIES
EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line
2. (a) Explain the strassen s matrix multiplication. (b) Write deletion algorithm, of Binary search tree. [8+8]
Code No: R05220502 Set No. 1 1. (a) Describe the performance analysis in detail. (b) Show that f 1 (n)+f 2 (n) = 0(max(g 1 (n), g 2 (n)) where f 1 (n) = 0(g 1 (n)) and f 2 (n) = 0(g 2 (n)). [8+8] 2. (a)
SUM OF TWO SQUARES JAHNAVI BHASKAR
SUM OF TWO SQUARES JAHNAVI BHASKAR Abstract. I will investigate which numbers can be written as the sum of two squares and in how many ways, providing enough basic number theory so even the unacquainted
Introduction to Modern Algebra
Introduction to Modern Algebra David Joyce Clark University Version 0.0.6, 3 Oct 2008 1 1 Copyright (C) 2008. ii I dedicate this book to my friend and colleague Arthur Chou. Arthur encouraged me to write
Abstract Algebra Theory and Applications. Thomas W. Judson Stephen F. Austin State University
Abstract Algebra Theory and Applications Thomas W. Judson Stephen F. Austin State University August 16, 2013 ii Copyright 1997-2013 by Thomas W. Judson. Permission is granted to copy, distribute and/or
Zachary Monaco Georgia College Olympic Coloring: Go For The Gold
Zachary Monaco Georgia College Olympic Coloring: Go For The Gold Coloring the vertices or edges of a graph leads to a variety of interesting applications in graph theory These applications include various
Reading 13 : Finite State Automata and Regular Expressions
CS/Math 24: Introduction to Discrete Mathematics Fall 25 Reading 3 : Finite State Automata and Regular Expressions Instructors: Beck Hasti, Gautam Prakriya In this reading we study a mathematical model
CS 3719 (Theory of Computation and Algorithms) Lecture 4
CS 3719 (Theory of Computation and Algorithms) Lecture 4 Antonina Kolokolova January 18, 2012 1 Undecidable languages 1.1 Church-Turing thesis Let s recap how it all started. In 1990, Hilbert stated a
A Turán Type Problem Concerning the Powers of the Degrees of a Graph
A Turán Type Problem Concerning the Powers of the Degrees of a Graph Yair Caro and Raphael Yuster Department of Mathematics University of Haifa-ORANIM, Tivon 36006, Israel. AMS Subject Classification:
Odd induced subgraphs in graphs of maximum degree three
Odd induced subgraphs in graphs of maximum degree three David M. Berman, Hong Wang, and Larry Wargo Department of Mathematics University of New Orleans New Orleans, Louisiana, USA 70148 Abstract A long-standing
Math 55: Discrete Mathematics
Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 5, due Wednesday, February 22 5.1.4 Let P (n) be the statement that 1 3 + 2 3 + + n 3 = (n(n + 1)/2) 2 for the positive integer n. a) What
Data Structures and Algorithms Written Examination
Data Structures and Algorithms Written Examination 22 February 2013 FIRST NAME STUDENT NUMBER LAST NAME SIGNATURE Instructions for students: Write First Name, Last Name, Student Number and Signature where
The positive minimum degree game on sparse graphs
The positive minimum degree game on sparse graphs József Balogh Department of Mathematical Sciences University of Illinois, USA [email protected] András Pluhár Department of Computer Science University
MA651 Topology. Lecture 6. Separation Axioms.
MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples
ML for the Working Programmer
ML for the Working Programmer 2nd edition Lawrence C. Paulson University of Cambridge CAMBRIDGE UNIVERSITY PRESS CONTENTS Preface to the Second Edition Preface xiii xv 1 Standard ML 1 Functional Programming
096 Professional Readiness Examination (Mathematics)
096 Professional Readiness Examination (Mathematics) Effective after October 1, 2013 MI-SG-FLD096M-02 TABLE OF CONTENTS PART 1: General Information About the MTTC Program and Test Preparation OVERVIEW
FACTORING. n = 2 25 + 1. fall in the arithmetic sequence
FACTORING The claim that factorization is harder than primality testing (or primality certification) is not currently substantiated rigorously. As some sort of backward evidence that factoring is hard,
CS510 Software Engineering
CS510 Software Engineering Propositional Logic Asst. Prof. Mathias Payer Department of Computer Science Purdue University TA: Scott A. Carr Slides inspired by Xiangyu Zhang http://nebelwelt.net/teaching/15-cs510-se
Lecture Notes on Discrete Mathematics
Lecture Notes on Discrete Mathematics A. K. Lal September 26, 2012 2 Contents 1 Preliminaries 5 1.1 Basic Set Theory.................................... 5 1.2 Properties of Integers.................................
Solutions for Practice problems on proofs
Solutions for Practice problems on proofs Definition: (even) An integer n Z is even if and only if n = 2m for some number m Z. Definition: (odd) An integer n Z is odd if and only if n = 2m + 1 for some
Chapter 2 Remodulization of Congruences Proceedings NCUR VI. è1992è, Vol. II, pp. 1036í1041. Jeærey F. Gold Department of Mathematics, Department of Physics University of Utah Don H. Tucker Department
On the number of lines of theorems in the formal system MIU
On the number of lines of theorems in the formal system MIU Armando B. Matos Technical Report Series: DCC -- -- Departamento de Ciência de Computadores Faculdade de Ciências & Laboratório de Inteligência
Equations. #1-10 Solve for the variable. Inequalities. 1. Solve the inequality: 2 5 7. 2. Solve the inequality: 4 0
College Algebra Review Problems for Final Exam Equations #1-10 Solve for the variable 1. 2 1 4 = 0 6. 2 8 7 2. 2 5 3 7. = 3. 3 9 4 21 8. 3 6 9 18 4. 6 27 0 9. 1 + log 3 4 5. 10. 19 0 Inequalities 1. Solve
A Course in Discrete Structures. Rafael Pass Wei-Lung Dustin Tseng
A Course in Discrete Structures Rafael Pass Wei-Lung Dustin Tseng Preface Discrete mathematics deals with objects that come in discrete bundles, e.g., 1 or 2 babies. In contrast, continuous mathematics
