Fundamentele Informatica II
|
|
|
- Elizabeth Foster
- 9 years ago
- Views:
Transcription
1 Fundamentele Informatica II Answer to selected exercises 1 John C Martin: Introduction to Languages and the Theory of Computation M.M. Bonsangue (and J. Kleijn) Fall 2011 Let L be a language. It is clear from the definition that L + L. Under which circumstances are they equal? By definition L = i 0 Li = L 0 i 1 Li = {Λ} L + for any language L. Hence, it is clear that L + L. Moreover, we see immediately that L = L + if and only if Λ L +. We claim that Λ L + if and only if Λ L. This can be proved as follows: Clearly, if Λ L, then Λ L +. Now assume that Λ L +. Thus there exists an i 1 such that Λ L i. Hence Λ is the shortest word in L i. Since the length of any shortest word in L is i times the length of a shortest word in L, it follows that Λ L. The claim being proved, we have L = L + if and only if Λ L. Find a language L over {a, b} that is neither {Λ} nor {a, b} and satisfies L = L. First of all observe that L = L implies that Λ L. Moreover, in combination with L {Λ} it follows that L must be an infinite language. A good example is {a}, because {a} {Λ} and ({a} ) = {a}, since {a} {a} = {a}. Another example is {x {a, b} x is even}. Find an infinite language L over { a,b} for which L L. Observe that each finite language such that L {Λ} has the property that L L, even = {Λ} =. This follows from the fact that Λ L whatever L. Similarly: for very infinite language L such that Λ L, we have L L. Consequently, example languages as requested are, e.g., {a} +, {a, b} +, and {x {a, b} x is odd}; observe that {x {a, b} x is odd} contains not only Λ, but actually all even words: {x {a, b} x is odd} = {a, b}. 1
2 Give examples of languages L 1 and L 2 such that L 1 L 2 = L 2 L 1 and a. L 1 {Λ} = L 2 and neither language contains the other one: Take L 1 = {a}, and L 2 = {aa}. b. = L 1 L 2 and L 1 {Λ}: Take L 1 = {a} and L 2 = {Λ, a}. Show that for any language L, L = (L ) = (L + ) = (L ) +. Whatever the language L, it always holds that L L + L, by the definition of + and. Then exercise 1.33 implies that L (L + ) (L ). Moreover, L (L ) + (L ). Now assume that the inclusion (L ) L is always true. Then L = (L ) and all inclusions above are equalities: L = (L + ) = (L ) + = (L ). Thus the only thing left to prove is that the inclusion (L ) L is always true. Consider w (L ). Thus there exist a k 0 and words v 1,..., v k L such that w = v 1 v k (note that w = Λ if k = 0). Thus w is a concatenation of 0 or more words from L, in other words: w L If L is a finite set, then L denotes the number of elements (the cardinality) of L. Let L 1 and L 2 be two finite languages. Then, clearly, L 1 L 2 L 1 L 2 because every element of L 1 L 2 is obtained by combining an element from L 1 with one from L 2 and there are L 1 L 2 ways to do this. It is however not necessarily the case that L 1 L 2 = L 1 L 2, because different choices may still yield the same result. Let L 1 = L 2 = {a, a 2 } then L 1 L 2 = {aa, aaa, aaaa} and L 1 L 2 = 3 4. Another example are L 1 = {a, ab}, L 2 = {a, ba}. Then L 1 L 2 = {aa, aba, abba} Let L 1, L 2 {a, b}. a. Assume L 1 L 2. Then L 2 1 = L 1L 1 L 1 L 2 L 2 2 and in general Lk 1 = Lk 1 1 L 1 L k 1 1 L 2 L k 1 2 L 2 = L k 2 for all k 1. Consequently, L 1 = {Λ} L 1 L Lk 1... {Λ} L 2 L Lk 2... = L 2. b. L 1 L 2 (L 1 L 2 ) always holds, since L 1 L 1 L 2 which implies that L 1 (L 1 L 2 ) (see item a. above) and similarly L 2 (L 1 L 2 ). c. The inclusion L 1 L 2 (L 1 L 2 ) may be strict: for L 1 = {0} and L 2 = {1} we have {0} {1} {0, 1}. d. If L 1 L 2 then L 1 L 2 = L 2 and since L 1 L 1 L 2 also (L 1 L 2 ) (L 2 L 2) = L 2. Similarly, L 2 L 1 implies that L 1 L 2 = L 1 = (L 1 L 2 ). Next consider L 1 = {0 2, 0 5 } and L 2 = {0 3, 0 5 }. Then L 1 = {Λ, 02, 0 4, 0 5,...} = {0} {0, 0 3 } and 2
3 L 2 = {Λ, 03, 0 5, 0 6, 0 8, 0 9,...} = {0} {0, 0 2, 0 4, 0 7 }. Thus neither L 1 L 2 nor L 2 L 1. However, L 1 L 2 = {0} {0} and also (L 1 L 2 ) = {0 2, 0 3, 0 5 } = {Λ, 0 2, 0 3, 0 4, 0 5,...} = {0} {0}. List some elements of {a, ab} and give a proposition describing all and only these elements. Further try to find a procedure to test if a word x satisfies your proposition. {a, ab} contains (among others) the following words: Λ, a, ab, aab, aba, aa, abab, aaa, aaab, aaba, etc. a. {a, ab} is precisely the set of strings in which every b is preceded by at least one a or alternatively {a, ab} is precisely the set of strings which do not start with b and do not have a subword bb. b. Hence a procedure to test whether a word belongs to {a, ab} is to simply go from left to right through the string, symbol by symbol: it should not begin with b and after every occurrence of b either the next letter is an a or the end of the string has been reached L consists of all strings from {a, b} that do not end with b and do not have a subword bb. a. L = {a, ba}. b. Consider now the language K consisting of all strings from {a, b} that do not have a subword bb. Assume that K = S for a finite set S. Then b K = S. Since S = S S, it follows that bb S S = S = K, a contradiction. Hence there cannot exist a finite S such that K = S Let L 1, L 2, L 3 Σ for some alphabet Σ. a. L 1 (L 2 L 3 ) L 1 L 2 L 1 L 3, because w L 1 (L 2 L 3 ) implies that w = xy with x L 1 and y L 2 L 3. Consequently, w L 1 L 2 and w L 1 L 3. Equality does not necessarily hold. Let L 1 = {a, ab}, L 2 = {ba}, and L 3 = {a}. Then L 1 (L 2 L 3 ) = {aba} = {aba, abba} {aa, aba} = L 1 L 2 L 1 L 3, b. L 1 L 2 (L 1 L 2 ), because w (L 1 L 2 ) implies that w is a concatenation of 0 or more words from L 1 L 2. Consequently, w L 1 and w L 2. Equality does not necessarily hold. Let L 1 = {a} and L 2 = {aa}. Then L 1 L 2 = {a} {aa} = {aa} {Λ} = = (L 1 L 2 ). c. L 1 L 2 and (L 1L 2 ) are not necessarily included in one another. Let L 1 = {a} and L 2 = {b}. Then L 1 L 2 = {a} {b} consisting of words with a number of a s followed by some number of b s and (L 1 L 2 ) = {ab} consisting of words with alternating a s and b s. These two languages are incomparable: aab L 1 L 2 (L 1L 2 ) and abab (L 1 L 2 ) L 1 L 2. 3
4 Let x, y Σ for some alphabet Σ. Whereas in general xy and yx are two different words, equality is possible, for instance if x = Λ or y = Λ. Can this still happen if x and y are both nonnull? Describe the precise conditions when this can happen. Assume that x Λ and y Λ and xy = yx holds. Before giving a characterization of the conditions allowing this situation, we first informally explore what is going on. If x = y, then it must be the case that x = y. If x = y we may assume that x > y ; the other case follows by symmetry. x > y in combination with xy = yx implies that there exists a non-empty word z such that x = yz = zy. Since y Λ, we have yz = x < yx and we may use induction to prove the following Claim For all s, t Σ such that s Λ t: st = ts if and only if there exists a word u and natural numbers p, q such that s = u p and t = u q. Proof of claimthe if-direction is obvious: st = u p u q = u p+q = u q u p = ts. For the only-if-direction we use induction on st : If s = 1 = t, then s = a and t = b for some a, b Σ. From st = st it follows that a = b. Hence we let u = a and p = q = 1 and we are done. Next assume that s > t 1. Then as argued above, there exists a word z such that s = tz = zt. Since tz = tz < st = ts we can apply the induction hypothesis: there exists a word u and natural numbers r, q such that z = u r and t = u q. Consequently, s = u r+q and we are done with p = r + q. Show that there is no language L so that L = {aa, bb} {ab, ba}. We prove by contradiction that exists no language L such that L = {aa, bb} {ab, ba}. Suppose that L is such that L = {aa, bb} {ab, ba}. Consequently, aa L and ab L which implies that abaa L. However, abaa is not an element of {aa, bb} {ab, ba}. Let L = {x {0, 1} x = yy for some string y}. Prove or disprove that there exist two languages L 1 {Λ} and L 2 {Λ} such that L 1 L 2 = L. We prove by contradiction that the statement is not true: Suppose L 1 and L 2 are such that L 1 L 2 = L. Observe that {00} and {11} are both subsets of L = L 1 L 2. If 0 i L 1 and 1 j L 2 for some i, j 1, then 0 i 1 j L 1 L 2 = L, a contradiction. Similarly, we arrive at a contradiction if 1 i L 1 and 0 j L 2 for some i, j 1. Hence it must be the case that either L 1 or L 2 contains only mixed strings with at least one occurrence of a 0 and at least one occurrence of a 1. We 4
5 only consider the case that L 1 has this property. The case that it would be L 2 is symmetrical. Let w = x 1 0x 2 1x 3 be such a word. Consider 1 j L 2 with j w. Then x 1 0x 2 1x 3 1 j L 1 L 2, but it cannot be an element of L, a contradiction. The remaining case (w = x 1 1x 2 0x 3 ) is dealt with in an analogous way. Hence we arrive in all cases at a contradiction and the assumed languaes L 1, L 2 cannot exist. version 2 September
Formal Languages and Automata Theory - Regular Expressions and Finite Automata -
Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Samarjit Chakraborty Computer Engineering and Networks Laboratory Swiss Federal Institute of Technology (ETH) Zürich March
CMPSCI 250: Introduction to Computation. Lecture #19: Regular Expressions and Their Languages David Mix Barrington 11 April 2013
CMPSCI 250: Introduction to Computation Lecture #19: Regular Expressions and Their Languages David Mix Barrington 11 April 2013 Regular Expressions and Their Languages Alphabets, Strings and Languages
CS103B Handout 17 Winter 2007 February 26, 2007 Languages and Regular Expressions
CS103B Handout 17 Winter 2007 February 26, 2007 Languages and Regular Expressions Theory of Formal Languages In the English language, we distinguish between three different identities: letter, word, sentence.
Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products
Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing
I. GROUPS: BASIC DEFINITIONS AND EXAMPLES
I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called
(IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems.
3130CIT: Theory of Computation Turing machines and undecidability (IALC, Chapters 8 and 9) Introduction to Turing s life, Turing machines, universal machines, unsolvable problems. An undecidable problem
Regular Languages and Finite State Machines
Regular Languages and Finite State Machines Plan for the Day: Mathematical preliminaries - some review One application formal definition of finite automata Examples 1 Sets A set is an unordered collection
Automata and Formal Languages
Automata and Formal Languages Winter 2009-2010 Yacov Hel-Or 1 What this course is all about This course is about mathematical models of computation We ll study different machine models (finite automata,
God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886)
Chapter 2 Numbers God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886) God created the integers and the rest is the work
Local periods and binary partial words: An algorithm
Local periods and binary partial words: An algorithm F. Blanchet-Sadri and Ajay Chriscoe Department of Mathematical Sciences University of North Carolina P.O. Box 26170 Greensboro, NC 27402 6170, USA E-mail:
C H A P T E R Regular Expressions regular expression
7 CHAPTER Regular Expressions Most programmers and other power-users of computer systems have used tools that match text patterns. You may have used a Web search engine with a pattern like travel cancun
Page 331, 38.4 Suppose a is a positive integer and p is a prime. Prove that p a if and only if the prime factorization of a contains p.
Page 331, 38.2 Assignment #11 Solutions Factor the following positive integers into primes. a. 25 = 5 2. b. 4200 = 2 3 3 5 2 7. c. 10 10 = 2 10 5 10. d. 19 = 19. e. 1 = 1. Page 331, 38.4 Suppose a is a
2110711 THEORY of COMPUTATION
2110711 THEORY of COMPUTATION ATHASIT SURARERKS ELITE Athasit Surarerks ELITE Engineering Laboratory in Theoretical Enumerable System Computer Engineering, Faculty of Engineering Chulalongkorn University
k, then n = p2α 1 1 pα k
Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square
Math 312 Homework 1 Solutions
Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please
MATHEMATICAL INDUCTION. Mathematical Induction. This is a powerful method to prove properties of positive integers.
MATHEMATICAL INDUCTION MIGUEL A LERMA (Last updated: February 8, 003) Mathematical Induction This is a powerful method to prove properties of positive integers Principle of Mathematical Induction Let P
1. Prove that the empty set is a subset of every set.
1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: [email protected] Proof: For any element x of the empty set, x is also an element of every set since
Mathematical Induction
Mathematical Induction In logic, we often want to prove that every member of an infinite set has some feature. E.g., we would like to show: N 1 : is a number 1 : has the feature Φ ( x)(n 1 x! 1 x) How
Matrix Representations of Linear Transformations and Changes of Coordinates
Matrix Representations of Linear Transformations and Changes of Coordinates 01 Subspaces and Bases 011 Definitions A subspace V of R n is a subset of R n that contains the zero element and is closed under
(a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9
Homework #01, due 1/20/10 = 9.1.2, 9.1.4, 9.1.6, 9.1.8, 9.2.3 Additional problems for study: 9.1.1, 9.1.3, 9.1.5, 9.1.13, 9.2.1, 9.2.2, 9.2.4, 9.2.5, 9.2.6, 9.3.2, 9.3.3 9.1.1 (This problem was not assigned
THE BANACH CONTRACTION PRINCIPLE. Contents
THE BANACH CONTRACTION PRINCIPLE ALEX PONIECKI Abstract. This paper will study contractions of metric spaces. To do this, we will mainly use tools from topology. We will give some examples of contractions,
Pushdown Automata. place the input head on the leftmost input symbol. while symbol read = b and pile contains discs advance head remove disc from pile
Pushdown Automata In the last section we found that restricting the computational power of computing devices produced solvable decision problems for the class of sets accepted by finite automata. But along
Vector and Matrix Norms
Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a non-empty
Math 319 Problem Set #3 Solution 21 February 2002
Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod
Cartesian Products and Relations
Cartesian Products and Relations Definition (Cartesian product) If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) :(a A) and (b B)}. The following points are worth special
Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson
Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement
Mathematical Induction
Mathematical Induction (Handout March 8, 01) The Principle of Mathematical Induction provides a means to prove infinitely many statements all at once The principle is logical rather than strictly mathematical,
1 if 1 x 0 1 if 0 x 1
Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or
Handout #1: Mathematical Reasoning
Math 101 Rumbos Spring 2010 1 Handout #1: Mathematical Reasoning 1 Propositional Logic A proposition is a mathematical statement that it is either true or false; that is, a statement whose certainty or
Cardinality. The set of all finite strings over the alphabet of lowercase letters is countable. The set of real numbers R is an uncountable set.
Section 2.5 Cardinality (another) Definition: The cardinality of a set A is equal to the cardinality of a set B, denoted A = B, if and only if there is a bijection from A to B. If there is an injection
Reading 13 : Finite State Automata and Regular Expressions
CS/Math 24: Introduction to Discrete Mathematics Fall 25 Reading 3 : Finite State Automata and Regular Expressions Instructors: Beck Hasti, Gautam Prakriya In this reading we study a mathematical model
Basic Proof Techniques
Basic Proof Techniques David Ferry [email protected] September 13, 010 1 Four Fundamental Proof Techniques When one wishes to prove the statement P Q there are four fundamental approaches. This document
Solutions to TOPICS IN ALGEBRA I.N. HERSTEIN. Part II: Group Theory
Solutions to TOPICS IN ALGEBRA I.N. HERSTEIN Part II: Group Theory No rights reserved. Any part of this work can be reproduced or transmitted in any form or by any means. Version: 1.1 Release: Jan 2013
3. Mathematical Induction
3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)
Mathematical Induction. Lecture 10-11
Mathematical Induction Lecture 10-11 Menu Mathematical Induction Strong Induction Recursive Definitions Structural Induction Climbing an Infinite Ladder Suppose we have an infinite ladder: 1. We can reach
So let us begin our quest to find the holy grail of real analysis.
1 Section 5.2 The Complete Ordered Field: Purpose of Section We present an axiomatic description of the real numbers as a complete ordered field. The axioms which describe the arithmetic of the real numbers
Regular Expressions with Nested Levels of Back Referencing Form a Hierarchy
Regular Expressions with Nested Levels of Back Referencing Form a Hierarchy Kim S. Larsen Odense University Abstract For many years, regular expressions with back referencing have been used in a variety
CS 103X: Discrete Structures Homework Assignment 3 Solutions
CS 103X: Discrete Structures Homework Assignment 3 s Exercise 1 (20 points). On well-ordering and induction: (a) Prove the induction principle from the well-ordering principle. (b) Prove the well-ordering
Gröbner Bases and their Applications
Gröbner Bases and their Applications Kaitlyn Moran July 30, 2008 1 Introduction We know from the Hilbert Basis Theorem that any ideal in a polynomial ring over a field is finitely generated [3]. However,
SYSTEMS OF PYTHAGOREAN TRIPLES. Acknowledgements. I would like to thank Professor Laura Schueller for advising and guiding me
SYSTEMS OF PYTHAGOREAN TRIPLES CHRISTOPHER TOBIN-CAMPBELL Abstract. This paper explores systems of Pythagorean triples. It describes the generating formulas for primitive Pythagorean triples, determines
Set Theory Basic Concepts and Definitions
Set Theory Basic Concepts and Definitions The Importance of Set Theory One striking feature of humans is their inherent need and ability to group objects according to specific criteria. Our prehistoric
Chapter 17. Orthogonal Matrices and Symmetries of Space
Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length
INCIDENCE-BETWEENNESS GEOMETRY
INCIDENCE-BETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full
a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.
Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given
Automata on Infinite Words and Trees
Automata on Infinite Words and Trees Course notes for the course Automata on Infinite Words and Trees given by Dr. Meghyn Bienvenu at Universität Bremen in the 2009-2010 winter semester Last modified:
6.2 Permutations continued
6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of
Solutions to Homework 6 Mathematics 503 Foundations of Mathematics Spring 2014
Solutions to Homework 6 Mathematics 503 Foundations of Mathematics Spring 2014 3.4: 1. If m is any integer, then m(m + 1) = m 2 + m is the product of m and its successor. That it to say, m 2 + m is the
On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples
On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples Brian Hilley Boston College MT695 Honors Seminar March 3, 2006 1 Introduction 1.1 Mazur s Theorem Let C be a
Continued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
CHAPTER 7 GENERAL PROOF SYSTEMS
CHAPTER 7 GENERAL PROOF SYSTEMS 1 Introduction Proof systems are built to prove statements. They can be thought as an inference machine with special statements, called provable statements, or sometimes
CS 3719 (Theory of Computation and Algorithms) Lecture 4
CS 3719 (Theory of Computation and Algorithms) Lecture 4 Antonina Kolokolova January 18, 2012 1 Undecidable languages 1.1 Church-Turing thesis Let s recap how it all started. In 1990, Hilbert stated a
INTRODUCTORY SET THEORY
M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H-1088 Budapest, Múzeum krt. 6-8. CONTENTS 1. SETS Set, equal sets, subset,
Solutions for Practice problems on proofs
Solutions for Practice problems on proofs Definition: (even) An integer n Z is even if and only if n = 2m for some number m Z. Definition: (odd) An integer n Z is odd if and only if n = 2m + 1 for some
Lemma 5.2. Let S be a set. (1) Let f and g be two permutations of S. Then the composition of f and g is a permutation of S.
Definition 51 Let S be a set bijection f : S S 5 Permutation groups A permutation of S is simply a Lemma 52 Let S be a set (1) Let f and g be two permutations of S Then the composition of f and g is a
Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 Proofs Intuitively, the concept of proof should already be familiar We all like to assert things, and few of us
NOTES ON LINEAR TRANSFORMATIONS
NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all
WRITING PROOFS. Christopher Heil Georgia Institute of Technology
WRITING PROOFS Christopher Heil Georgia Institute of Technology A theorem is just a statement of fact A proof of the theorem is a logical explanation of why the theorem is true Many theorems have this
Regular Languages and Finite Automata
Regular Languages and Finite Automata 1 Introduction Hing Leung Department of Computer Science New Mexico State University Sep 16, 2010 In 1943, McCulloch and Pitts [4] published a pioneering work on a
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly
Mathematical Induction. Mary Barnes Sue Gordon
Mathematics Learning Centre Mathematical Induction Mary Barnes Sue Gordon c 1987 University of Sydney Contents 1 Mathematical Induction 1 1.1 Why do we need proof by induction?.... 1 1. What is proof by
Solving Linear Systems, Continued and The Inverse of a Matrix
, Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing
Practice with Proofs
Practice with Proofs October 6, 2014 Recall the following Definition 0.1. A function f is increasing if for every x, y in the domain of f, x < y = f(x) < f(y) 1. Prove that h(x) = x 3 is increasing, using
8 Divisibility and prime numbers
8 Divisibility and prime numbers 8.1 Divisibility In this short section we extend the concept of a multiple from the natural numbers to the integers. We also summarize several other terms that express
Deterministic Finite Automata
1 Deterministic Finite Automata Definition: A deterministic finite automaton (DFA) consists of 1. a finite set of states (often denoted Q) 2. a finite set Σ of symbols (alphabet) 3. a transition function
The last three chapters introduced three major proof techniques: direct,
CHAPTER 7 Proving Non-Conditional Statements The last three chapters introduced three major proof techniques: direct, contrapositive and contradiction. These three techniques are used to prove statements
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 3 Binary Operations We are used to addition and multiplication of real numbers. These operations combine two real numbers
Collinear Points in Permutations
Collinear Points in Permutations Joshua N. Cooper Courant Institute of Mathematics New York University, New York, NY József Solymosi Department of Mathematics University of British Columbia, Vancouver,
MATH 289 PROBLEM SET 4: NUMBER THEORY
MATH 289 PROBLEM SET 4: NUMBER THEORY 1. The greatest common divisor If d and n are integers, then we say that d divides n if and only if there exists an integer q such that n = qd. Notice that if d divides
Every Positive Integer is the Sum of Four Squares! (and other exciting problems)
Every Positive Integer is the Sum of Four Squares! (and other exciting problems) Sophex University of Texas at Austin October 18th, 00 Matilde N. Lalín 1. Lagrange s Theorem Theorem 1 Every positive integer
SOLUTIONS TO ASSIGNMENT 1 MATH 576
SOLUTIONS TO ASSIGNMENT 1 MATH 576 SOLUTIONS BY OLIVIER MARTIN 13 #5. Let T be the topology generated by A on X. We want to show T = J B J where B is the set of all topologies J on X with A J. This amounts
On strong fairness in UNITY
On strong fairness in UNITY H.P.Gumm, D.Zhukov Fachbereich Mathematik und Informatik Philipps Universität Marburg {gumm,shukov}@mathematik.uni-marburg.de Abstract. In [6] Tsay and Bagrodia present a correct
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete
Linear Algebra. A vector space (over R) is an ordered quadruple. such that V is a set; 0 V ; and the following eight axioms hold:
Linear Algebra A vector space (over R) is an ordered quadruple (V, 0, α, µ) such that V is a set; 0 V ; and the following eight axioms hold: α : V V V and µ : R V V ; (i) α(α(u, v), w) = α(u, α(v, w)),
. 0 1 10 2 100 11 1000 3 20 1 2 3 4 5 6 7 8 9
Introduction The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive integer We say d is a
E3: PROBABILITY AND STATISTICS lecture notes
E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................
SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA
SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA This handout presents the second derivative test for a local extrema of a Lagrange multiplier problem. The Section 1 presents a geometric motivation for the
Matrix Algebra. Some Basic Matrix Laws. Before reading the text or the following notes glance at the following list of basic matrix algebra laws.
Matrix Algebra A. Doerr Before reading the text or the following notes glance at the following list of basic matrix algebra laws. Some Basic Matrix Laws Assume the orders of the matrices are such that
How To Compare A Markov Algorithm To A Turing Machine
Markov Algorithm CHEN Yuanmi December 18, 2007 1 Abstract Markov Algorithm can be understood as a priority string rewriting system. In this short paper we give the definition of Markov algorithm and also
CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12
CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.
6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010. Class 4 Nancy Lynch
6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010 Class 4 Nancy Lynch Today Two more models of computation: Nondeterministic Finite Automata (NFAs)
FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22
FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22 RAVI VAKIL CONTENTS 1. Discrete valuation rings: Dimension 1 Noetherian regular local rings 1 Last day, we discussed the Zariski tangent space, and saw that it
MATH10040 Chapter 2: Prime and relatively prime numbers
MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive
n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +...
6 Series We call a normed space (X, ) a Banach space provided that every Cauchy sequence (x n ) in X converges. For example, R with the norm = is an example of Banach space. Now let (x n ) be a sequence
Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.
Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole
Just the Factors, Ma am
1 Introduction Just the Factors, Ma am The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive
The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.
The Prime Numbers Before starting our study of primes, we record the following important lemma. Recall that integers a, b are said to be relatively prime if gcd(a, b) = 1. Lemma (Euclid s Lemma). If gcd(a,
Sample Induction Proofs
Math 3 Worksheet: Induction Proofs III, Sample Proofs A.J. Hildebrand Sample Induction Proofs Below are model solutions to some of the practice problems on the induction worksheets. The solutions given
Math 4310 Handout - Quotient Vector Spaces
Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a
Full and Complete Binary Trees
Full and Complete Binary Trees Binary Tree Theorems 1 Here are two important types of binary trees. Note that the definitions, while similar, are logically independent. Definition: a binary tree T is full
CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.
CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,
GROUPS WITH TWO EXTREME CHARACTER DEGREES AND THEIR NORMAL SUBGROUPS
GROUPS WITH TWO EXTREME CHARACTER DEGREES AND THEIR NORMAL SUBGROUPS GUSTAVO A. FERNÁNDEZ-ALCOBER AND ALEXANDER MORETÓ Abstract. We study the finite groups G for which the set cd(g) of irreducible complex
Computability Theory
CSC 438F/2404F Notes (S. Cook and T. Pitassi) Fall, 2014 Computability Theory This section is partly inspired by the material in A Course in Mathematical Logic by Bell and Machover, Chap 6, sections 1-10.
GREATEST COMMON DIVISOR
DEFINITION: GREATEST COMMON DIVISOR The greatest common divisor (gcd) of a and b, denoted by (a, b), is the largest common divisor of integers a and b. THEOREM: If a and b are nonzero integers, then their
How To Factorize Of Finite Abelian Groups By A Cyclic Subset Of A Finite Group
Comment.Math.Univ.Carolin. 51,1(2010) 1 8 1 A Hajós type result on factoring finite abelian groups by subsets II Keresztély Corrádi, Sándor Szabó Abstract. It is proved that if a finite abelian group is
Discrete Structures. Lecture Notes
Discrete Structures Lecture Notes Vladlen Koltun 1 Winter 2008 1 Computer Science Department, 353 Serra Mall, Gates 374, Stanford University, Stanford, CA 94305, USA; [email protected]. Contents 1
Automata and Computability. Solutions to Exercises
Automata and Computability Solutions to Exercises Fall 25 Alexis Maciel Department of Computer Science Clarkson University Copyright c 25 Alexis Maciel ii Contents Preface vii Introduction 2 Finite Automata
