A 2-factor in which each cycle has long length in claw-free graphs

Size: px
Start display at page:

Download "A 2-factor in which each cycle has long length in claw-free graphs"

Transcription

1 A -factor in which each cycle has long length in claw-free graphs Roman Čada Shuya Chiba Kiyoshi Yoshimoto 3 Department of Mathematics University of West Bohemia and Institute of Theoretical Computer Science (ITI) Charles University Univerzitní Plzeň Czech Republic. Department of Mathematical Information Science, Tokyo University of Science, -3 Kagurazaka, Shinjuku-ku, Tokyo 6-860, Japan. 3 Department of Mathematics, College of Science and Technology, Nihon University, Tokyo , Japan. Abstract A graph G is said to be claw-free if G has no induced subgraph isomorphic to K,3. In this article, we prove that every claw-free graph G with minimum degree δ(g) 4 has a -factor in which each cycle contains at least δ(g) vertices and every -connected claw-free graph G with δ(g) 3 has a -factor in which each cycle contains at least δ(g) vertices. For the case where G is -connected, the lower bound on the length of a cycle is best possible. Keywords: -factor, Claw-free graph, Minimum degree AMS Subject Classification: 05C70 Introduction In this paper, we consider finite graphs. A simple graph means an undirected graph without loops or multiple edges. A multigraph may contain multiple edges but no loops. Let G be a graph. For a vertex v of G, the degree of v in G is the number of edges incident with v. Let V (G), E(G) and δ(g) be the vertex set, the edge set and the minimum degree of G, respectively. We refer to the number of vertices of G as the order of G and denote it by G. A graph G is said to be claw-free if G has no induced subgraph isomorphic to K,3 (here K,3 denotes the An extended abstract published in Eurocomb0, Electronic Notes in Discrete Mathematics Vol. 38 (0) address: cadar@kma.zcu.cz This work was supported by No. M of the Czech Ministry of Education address: chiba@rs.kagu.tus.ac.jp This work was supported by Grant-in-Aid for Young Scientists (B) ( ) address: yosimoto@math.cst.nihon-u.ac.jp This work was supported by KAKENHI (5405)

2 complete bipartite graph with partite sets of cardinalities and 3, respectively). A -factor of G is a spanning subgraph of G in which every component is a cycle. It is a well-known conjecture that every 4-connected claw-free graph is Hamiltonian due to Matthews and Sumner []. Since a Hamilton cycle is a connected -factor, there are many results on -factors of claw-free graphs. For instance, results of both Choudum and Paulraj [4] and Egawa and Ota [5] imply that a moderate minimum degree condition already guarantees that a claw-free graph has a -factor. Theorem A ([4, 5]) Every claw-free graph G with δ(g) 4 has a -factor. For -connected claw-free graphs, the third author [5] improved the condition on minimum degree as follows. Theorem B ([5]) Every -connected claw-free graph G with δ(g) 3 has a -factor. In particular, in [], it is shown that Matthews and Sumner s conjecture and the statement that every 4-connected claw-free graph of order n has a -factor with at most f(n) components (here f(n) is a function of n with the property that lim n f(n)/n = 0) are equivalent. This indicates that it is important to study about the number of components of -factors in claw-free graphs to solve Matthews and Sumner s conjecture. Concerning the upper bound on the number of components, Broersma, Paulusma and the third author [3] and Jackson and the third author [8] proved the following, respectively (other related results can be found in [6, 9, 0,, 5]). Theorem C ([3]) Every claw-free graph G with δ(g) 4 has a -factor with at most max { G 3 δ(g), } components. Theorem D ([8]) Every -connected claw-free graph G with δ(g) 4 has a -factor with at most G + 4 components. In this paper, we approach this problem in terms of the lengths of cycles in a -factor of a clawfree graph. More precisely, we consider the functions f : {d Z d 4} {m Z m 3} and f : {d Z d 3} {m Z m 3} defined as follows: for an integer d with d 4, let f (d) := max{m every connected claw-free graph with minimum degree d has a -factor in which each cycle contains at least m vertices}, and for an integer d 3, let f (d) := max{m every -connected claw-free graph with minimum degree d has a -factor in which each cycle contains at least m vertices}. Concerning the determinations of f (d) and f (d), we will show the following two results in Sections 3 and 4. Theorem Every claw-free graph G with δ(g) 4 has a -factor in which each cycle contains at least δ(g) vertices.

3 G u H K d+ K d+ K d+ v u H K d+ K d+ K d+ v u 3 H 3 K d+ K d+ K d+ v 3 Figure : The graph G Theorem Every -connected claw-free graph G with δ(g) 3 has a -factor in which each cycle contains at least δ(g) vertices. As a corollary of Theorem, we can get the following which is slightly stronger than Theorems C and D for -connected claw-free graphs. Corollary 3 Every -connected claw-free graph G with δ(g) 3 has a -factor with at most G δ(g) components. Moreover, in Theorem, the lower bound on the length of a cycle is best possible because we can construct a -connected claw-free graph G such that for each -factor of G, the minimum length of cycles in it is at most δ(g) as follows: let d 3 be an integer, and let H, H and H 3 be graphs with the connectivity one such that each block of H i ( i 3) is a complete graph of order d +. For each i 3, let u i and v i be vertices contained in distinct end blocks of H i, respectively, and u i and v i are not cut vertices of H i. Let G be a graph obtained from H H H 3 by joining u i and u i+ for i 3 and joining v i and v i+ for i 3, where let u 4 := u and v 4 := v, see Figure (here K m denotes the complete graph of order m). Then G is a -connected claw-free graph with δ(g ) = d, and for each -factor of G, the minimum length of cycles in it is at most d. So this together with Theorem implies that f (d) = d holds. On the other hand, we can obtain slightly stronger statement than Theorem if we consider only line graphs of trees as follows, which will be shown in Section 5 (here a clique-factor is a spanning subgraph in which every component is a clique). 3

4 Theorem 4 The line graph G of a tree has a clique-factor in which each clique contains at least vertices. δ(g)+ In view of Theorem 4, the following statement might hold. Conjecture 5 Every claw-free graph G with δ(g) 4 has a -factor in which each cycle contains at least δ(g)+ vertices. In Conjecture 5, the lower bound on the length of a cycle is best possible if it is true. So this together with Theorem implies that d f (d) d+ holds. In section 5, we give a graph showing the sharpness of the lower bound in Conjecture 5. Now we have that f (d) is completely determined and f (d) is almost determined, in particular, f (d) = d and d f (d) d+ hold even if we consider only graphs with sufficiently large orders compared to d (see Figure and see the second paragraph and Figure 4 in Section 5). Therefore it would be natural to consider the case where the connectivity is at least 3 as the next step. If Matthews and Sumner s conjecture is true, we can always take Hamilton cycles in 4-connected claw-free graphs. So what will happen when the connectivity is just 3? For instance, concerning the number of components of -factors in 3-connected claw-free graphs, Kužel, Ozeki and the third author [0] proved that every 3-connected claw-free graph G has a -factor with at most max { G } δ(g)+, components. Furthermore, most recently, Ozeki, Ryjáček and the third author [] proved that every 3-connected claw-free graph G has a -factor with at most 4 G 5(δ(G)+) + 5 components. In view of this result, one might expect that the coefficient of d in the lower bound on the length of a cycle would be greater than for 3-connected claw-free graphs. Problem Determine f 3 (d) := max{m every sufficiently large 3-connected claw-free graph with minimum degree d has a -factor in which each cycle contains at least m vertices}. In particular, is there an constant c > such that f 3 (d) cd holds? It is of course important to consider about the case of 4-connected claw-free graphs. As mentioned above, if there exists a function f(n) of n such that lim n f(n)/n = 0 and every 4-connected claw-free graph of order n has a -factor with at most f(n) components, then every 4-connected claw-free graph is Hamiltonian, i.e., to solve Matthews and Sumner s conjecture, it suffices to show the existence of a -factor with small number of components (not necessarily component). Therefore it could be also another possible approach to study about the lengths of cycles in -factors of 4-connected claw-free graphs. In addition, for a result similar to Theorems, and 4 concerning path-factors (here a path-factor is a spanning subgraph in which every component is a path), Ando, Egawa, Kaneko, Kawarabayashi and Matsuda [] proved that every claw-free graph G has a path-factor in which 4

5 each path contains at least δ(g) + vertices, and they conjectured that every -connected claw-free graph G has a path-factor in which each path contains at least 3δ(G) + 3 vertices. In the rest of this section, we prepare notation which we use in subsequent sections. Let G be a graph. We denote the number of edges of G by e(g) and the line graph of G by L(G). For X V (G), we let G[X] denote the subgraph induced by X in G, and let G \ X := G[V (G) \ X]. If H is a subgraph of G, then let G \ H := G \ V (H). A subset X of V (G) is called a independent set of G if G[X] is edgeless. Let H and H be subgraphs of G or subsets of V (G), respectively. If H and H have no any common vertex in G, we define E G (H, H ) to be the set of edges of G between H and H, and let e G (H, H ) := E G (H, H ). For a vertex v of G, we denote by N G (v) and d G (v) the neighborhood and the degree of v in G, respectively. Let o(g) the set of vertices with odd degree in G. For a positive integer l, we define V l (G) := {v V (G) d G (v) = l}, and let V l (G) := m l V m(g) and V l (G) := m l V m(g). Let e = uv E(G). We denote by V (e) the set of end vertices of e, i.e., V (e) = {u, v}. The edge degree of e in G is defined by the number of edges incident with e, and is denoted by ξ G (e), i.e., ξ G (e) = {f E(G) f e, V (f) V (e) }. Note that if G is a simple graph, then ξ G (e) = e G (V (e), G \ e) = d G (u) + d G (v). Let ξ(g) be the minimum edge degree of G. Outline of the proofs of Theorems, and 4 In this section, we give an outline of the proofs of Theorems, and 4. To prove Theorems and, we use Ryjáček closure which is defined as follows. Let G be a claw-free graph. For each vertex v of G, G[N G (v)] has at most two components; otherwise G contains a K,3 as an induced subgraph. If G[N G (v)] has two components, both of them must be cliques. In the case that G[N G (v)] is connected, we add edges joining all pairs of nonadjacent vertices in N G (v). The closure cl(g) of G is a graph obtained by recursively repeating this operation, as long as this is possible. In [3], it is shown that cl(g) is uniquely defined and cl(g) is the line graph of some triangle-free simple graph. On the other hand, in [4, Theoerm 4], Ryjáček, Saito and Schelp proved that for any vertex-disjoint cycles D,..., D q in cl(g), G has vertex-disjoint cycles C,..., C p with p q such that q i= V (D i) p i= V (C i). By modifying the proof, we can easily improve this result as follows (see [0, Lemma 3]): for any vertex-disjoint cycles D,..., D q in cl(g), G has vertex-disjoint cycles C,..., C p with p q such that for each j with j q, there exists i with i p such that V (D j ) V (C i ). These imply that for a claw-free graph G, G has a -factor in which each cycle contains at least m vertices if and only if cl(g) has a -factor in which each cycle contains at least m vertices. By this fact, to prove Theorems and, it suffices to show that the following hold (here a graph H is called essentially k-edge-connected if e(h) k + and H \ F has at most one component which contains an edge 5

6 for every F E(H) with F < k. It is easy to see that for a graph H such that L(H) is not complete, H is essentially k-edge-connected if and only if L(H) is k-connected). Theorem 6 Let G be the line graph of some triangle-free simple graph and δ(g) 4. Then G has a -factor in which each cycle contains at least δ(g) vertices. Theorem 7 Let G be the line graph of some essentially -edge-connected triangle-free simple graph and δ(g) 3. Then G has a -factor in which each cycle contains at least δ(g) vertices. Moreover, to prove Theorems 7 and 4, we consider about some particular set of subgraphs. Now let H be a multigraph. We call a subgraph S of H a star if S consists of a vertex (called a center) and edges incident with the center. So a star in this paper is not necessary a tree. A closed trail T in H is called a dominating closed trail if H \ T is edgeless. It is known that for a connected multigraph H with e(h) 3, H has a dominating closed trail if and only if L(H) is Hamiltonian (see [7]). A set D is called a cover set of E(H) if (i) D is a set of edge-disjoint connected subgraphs in H such that D D E(D) = E(H), and (ii) for each D D, D is a star or D has a dominating closed trail. Let D be a cover set of E(H). If D is a star for all D D, then D is called a star cover set of E(H). Note that for each D D, if D is a star, then L(D) is a clique. Therefore, to prove Theorems 7 and 4, it suffices to show that the following hold, respectively. Theorem 8 Let G be an essentially -edge-connected triangle-free simple graph with ξ(g) 3. Then G has a cover set D of E(G) such that e(d) ξ(g) for all D D. Theorem 9 A tree G with ξ(g) has a star cover set S of E(G) such that e(s) ξ(g)+ for all S S. The following lemma is used to find dominating closed trails in the proof of Theorem 8. Lemma ([5]) If G is an essentially -edge-connected graph with ξ(g) 3, then there exists a set T of mutually vertex-disjoint closed trails in G such that V 3 (G \ V (G)) T T V (T ). 3 Proof of Theorem 8 If G is a star, then the assertion clearly holds. Thus we may assume that G is not a star. Then since G is essentially -edge-connected, we have δ(g \ V (G)). By Lemma, there exists a set T of mutually vertex-disjoint closed trails in G such that V 3 (G \ V (G)) T T V (T ). 6

7 G T G v T T v T T v T Figure : The graph G Since δ(g \ V (G)) and V 3 (G \ V (G)) T T V (T ), v V (G \ V (G)) for all v V 3 (G) \ T T V (T ). This implies that for each v V 3(G) \ T T V (T ), there exist exactly two vertices u, u N G (v) with u u such that u i V (G) for i =, and N G (v) \ {u, u } V (G); (3.) in particular, N G (v) \ {u, u } = since v V 3 (G), that is, N G (v) V (G), and hence N G (v) \ {u, u } d G (v) ξ(g). Let G be a graph obtained from G by contracting an induced subgraph G[V (T )] of G to a vertex v T for each T T (note that G may be a multigraph, see Figure ). Let X := {v T T T }. Note that X = T since T is a set of mutually vertex-disjoint closed trails in G. By the definition of G, d G (v) = d G (v) for all v V (G ) \ X. (3.) By (3.) and since V (G) ( T T V (T )) =, V (G) = V (G ) \ X. (3.3) By the definition of G and (3.) and since ξ(g) 3, we also have that V (G ) \ X is an independent set of G. To show the existence of a cover set D of E(G), we find a mapping ϕ : E(G ) V (G ) so that (M) ϕ(e) = u or ϕ(e) = v for all e = uv E(G ), (M) ϕ (v) = 0 for all v V (G ) \ X, (M3) ϕ (v) ξ(g) for all v V 3 (G ) \ X, (M4) ϕ (v T ) + e(g[v (T )]) ξ(g) for all v T X. 7

8 Suppose that there exists such a mapping ϕ. Let S := {S v v V 3 (G ) X} be a set of stars such that for each S v S, S v is a star consisting of a vertex v (as the center) and the edges in ϕ (v). Then by the conditions (M) and (M), S is a star cover set of E(G ). Furthermore by the conditions (M3) and (M4), e(s v ) = ϕ (v) ξ(g) for each v V 3 (G ) \ X and e(s vt ) = ϕ (v T ) ξ(g) e(g[v (T )]) for each v T X. Hence by the definition of G, and by considering a subset of E(G) corresponding to E(S v ) for each v V 3 (G ) X and replacing v T with G[V (T )] for each v T X, we can find a cover set D of E(G) such that e(d) ξ(g) for all D D. Thus it suffices to show the existence of such a mapping ϕ. Let G := G \ (V (G ) \ X). To show the existence of a mapping ϕ satisfying the conditions (M) (M4), we define a mapping ϕ : E(G ) V (G ) as follows. Since the number of vertices of odd degree is even in G, there exists a collection of paths P,..., P l in G such that each vertex in o(g ) appears in the set of end vertices of them exactly one (note that l = o(g ) /). By considering the symmetric difference of them, we may assume that P,..., P l are pairwise edge-disjoint. For each i l, let x i xi xi 3... xi P i xi P i := P i, and let e i j := xi j xi j+ for each j P i, and we define ϕ (e i j ) := xi j+ for each j P i. Let G := G \ l i= E(P i). By the definitions of P,..., P l, we have o(g ) =. Hence the edges of G can be covered by pairwise edge-disjoint cycles. For each cycle, written by y y y 3... y m y m (= y ), we define ϕ (e j ) := y j+, where e j := y j y j+ for each j m. Then by the definition of ϕ, for each v V (G ), ( (dg ϕ (v) (d G (v) )/ = (v) (N G (v) V (G )) \ X ) ) /. (3.4) Now we define a mapping ϕ : E(G ) V (G ) as follows: for each e = uv E(G ), we let { u if v V (G ) \ X ϕ(e) := ϕ (e) otherwise. Since V (G ) \ X is an independent set of G, ϕ is well defined. By the definitions of ϕ and ϕ, we can easily see that ϕ satisfies the conditions (M) and (M). So we show that ϕ satisfies the conditions (M3) and (M4). Since (V (G ) \ X) V (G ) = by the definition of G, it follows from the definition of ϕ that ϕ (v) ϕ (v) + (N G (v) V (G )) \ X for all v X. (3.5) We first show that ϕ satisfies the condition (M3). Let v V 3 (G ) \ X. Then by (3.) and the definitions of G and X, v V 3 (G) \ T T V (T ). Hence by (3.), there exist exactly two vertices u, u N G (v) with u u such that u i V (G) for i =,, N G (v)\{u, u } V (G) and N G (v) \ {u, u } ξ(g). Therefore by (3.), (3.3) and the definition of G, there exist two distinct edges vu, vu E(G ) such that u i V (G ) X for i =,, N G (v) \ {u, u } 8

9 V (G ) \ X and N G (v) \ {u, u } ξ(g) (possibly u = u, i.e., vu and vu may be parallel edges in G ). If u i V (G ) \ X for some i = or, then by the definition of ϕ, we have ϕ (v) (N G (v) V (G )) \ X + (N G (v) V (G )) \ X N G (v) \ {u, u } + (ξ(g) )+ = ξ(g). Thus we may assume that u i V 3(G ) X for i =,. Note that by the definition of G, u i V (G ) for i =,. Since N G (v)\{u, u } V (G )\X, we have v V (G ) and vu i E(G ) for i =,. Hence by the definition of ϕ, ϕ (vu i ) = v and ϕ (vu 3 i ) = u 3 i for some i = or. Then by the definition of ϕ and since {v, u, u } V 3(G ) X, ϕ(vu i ) = v for some i = or. Therefore ϕ (v) (N G (v) V (G ))\X + {vu i } N G (v)\{u, u } + (ξ(g) ) + = ξ(g) holds for some i = or. Thus ϕ satisfies the condition (M3). We next show that ϕ satisfies the condition (M4). Let T T. Since G is triangle-free, all cycle which is contained in T has order at least four. Hence there exist two independent edges e and e in T. For each i =,, let ɛ i := {e E(G[V (T )]) e ei, V (e) V (e i ) }. Since G is triangle-free, {e E(G[V (T )]) V (e) V (ei ) for i =, }. Hence by the definition of ɛ i, e(g[v (T )]) (ɛ + ɛ ) + {e, e } = ɛ + ɛ. (3.6) We also have e G (V (e i ), G \ T ) ξ(g) ɛ i for each i =,. Hence since d G (v T ) = e G (T, G \ T ) by the definition of G and since E G (V (e ), G \ T ) E G (V (e ), G \ T ) =, we obtain d G (v T ) = e G (T, G \ T ) e G (V (e ), G \ T ) + e G (V (e ), G \ T ) ξ(g) (ɛ + ɛ ). (3.7) Then by (3.4), (3.5), (3.6) and (3.7), ϕ (v T ) ϕ (v T ) + (N G (v T ) V (G )) \ X ( d G (v T ) (N G (v T ) V (G )) \ X ) / + (N G (v T ) V (G )) \ X ( ξ(g) (ɛ + ɛ ) ) / = ξ(g) ( (ɛ + ɛ ) + ) / ξ(g) ( e(g[v (T )]) + ) /. Since e(g[v (T )]) 4, we get ϕ (v T ) +e(g[v (T )]) ξ(g) ( e(g[v (T )])+ ) /+e(g[v (T )]) ξ(g) + ( e(g[v (T )]) ) / > ξ(g). Thus ϕ satisfies the condition (M4). This completes the proof of Theorem 8. 9

10 T B 0 = {B 0 } C 0 B C B C C m B m Figure 3: Subsets B 0,..., B m and subsets C 0,..., C m 4 Proof of Theorem 6 To prove Theorem 6, we use Theorem and the following proposition. Proposition 0 Let G be a line graph with δ(g) 4. Then there exists a set H of mutually vertex-disjoint subgraphs in G such that H H V (H) = V (G), and H is a -connected claw-free graph and δ(h) δ(g) for all H H. Proof of Proposition 0. It suffices to consider the case where G is connected. By the assumption, we may assume that the connectivity of G is one. Let B be the set of blocks of G and C be the set of cut vertices of G. We consider a block cut tree T of G, i.e., V (T ) = B C and E(T ) = {Bv B B, v V (B) C}. Since G is a line graph, for each v V (G), G[N G (v)] has a clique-factor with at most components. (4.) Hence d T (v) = for all v C. Let B 0 B be a root of T. We consider T as an oriented tree from B 0 to leaves, and denote it T. For each v C, we let B v + (resp. B v ) denote a successor (resp. a predecessor) of v along T (note that B v + and B v are uniquely defined because d T (v) =, and note also that B v +, B v B). For each B B \ {B 0 }, we let v B denote a predecessor of B along T (note that v B is uniquely defined). We define subsets B 0,..., B m of B and subsets C 0,..., C m of C inductively by the following procedure. First let B 0 := {B 0 }, and let C 0 := {v C B v = B 0 }. Now let i, and assume that we have defined B 0,..., B i and C 0,..., C i. If C i, then let B i := {B v + v C i }, and let C i := {v C B v B i }; if C i =, we let m := i and terminate the procedure (see Figure 3). Then it follows from 0

11 the definitions of B 0,..., B m and C 0,..., C m that B is disjoint union of B 0,..., B m and C is disjoint union of C 0,..., C m. We define a mapping ϕ : C B inductively as follows. First for each v C 0, let { B ϕ(v) := v if N G (v) V (B v ) δ(g). B v + otherwise Next for each v C i with i m, let ϕ(v) := B v if ϕ(v ) = B Bv v and N G(v) V (B v ) δ(g) B v if ϕ(v ) B Bv v and N G(v) V (B v ) δ(g)+ B v B v + if ϕ(v ) B Bv v, N G(v) V (B v ) = δ(g) and vv Bv otherwise / E(G). Let H := {G[(V (B) \ C) ϕ (B)] B B}. We show that H is a desired set. By the definition of H, it is easy to check that H is a set of mutually vertex-disjoint subgraphs in G such that H H V (H) = V (G) and H is claw-free for all H H. Let H H, and let H = G[(V (B) \ C) ϕ (B)] for some B B i with 0 i m. We first show that δ(h) δ(g) Case. B B 0, i.e., B = B 0.. Let u V (H). Assume for the moment that u ϕ (B 0 ). Then by the definition of ϕ, N G (u) V (B 0 ) δ(g). Since G[N G(u) V (B 0 )] is a complete graph by (4.), N G (v) V (B 0 ) δ(g) for all v N G (u) V (B 0 ). Hence by the definition of ϕ, ϕ(v) = B 0 for all v N G (u) V (B 0 ) C. Since H = G[(V (B 0 ) \ C) ϕ (B 0 )], this implies that (N G (u) V (B 0 )) {u} V (H), and hence d H (u) = N G (u) V (B 0 ) δ(g). Thus we may assume that u V (B 0) \ C. Then d B0 (u) = d G (u) δ(g). Hence by (4.), there exists a complete subgraph F of G[N B0 (u) {u}] such that u V (F ) and F δ(g)+. Then N G (v) V (B 0 ) F δ(g) for all v V (F ). Hence by the definition of ϕ, ϕ(v) = B 0 for all v V (F ) C. Since H = G[(V (B 0 )\C) ϕ (B 0 )], this implies that V (F ) V (H), and hence d H (u) F δ(g). Case. B B i with i m and u ϕ (B). Assume for the moment that u = v B, or u v B and ϕ(v B ) = B. Then by the definition of ϕ, N G (u) V (B) δ(g). Since G[N G(u) V (B)] is a complete graph by (4.), N G (v) V (B) δ(g) for all v N G (u) V (B). Since ϕ(v B ) = B, it follows from the definition of ϕ that ϕ(v) = B for all v N G (u) V (B) C. Since H = G[(V (B) \ C) ϕ (B)], this implies that (N G (u) V (B)) {u} V (H), and hence d H (u) = N G (u) V (B) δ(g). Thus we may

12 assume that u v B and ϕ(v B ) B. Then by the definition of ϕ, (i) N G (u) V (B) δ(g)+, or (ii) N G (u) V (B) = δ(g) and uv B / E(G). Since G[N G (u) V (B)] is a complete graph by (4.), for each v N G (u) V (B), N G (v) V (B) δ(g)+, or N G (v) V (B) = δ(g) and vv B / E(G). Hence by the definition of ϕ, ϕ(v) = B for all v N G (u) V (B) (C \ {v B }). Since H = G[(V (B) \ C) ϕ (B)], this implies that ( (N G (u) V (B)) {u} ) \ {v B } V (H), and hence d H (u) (N G (u) V (B)) \ {v B } δ(g). Case 3. B B i with i m and u / ϕ (B). Then u V (B) \ C, and hence d B (u) = d G (u) δ(g). Therefore by (4.), there exists a complete subgraph F of B[N B (u) {u}] such that (i) u V (F ) and F δ(g)+3, or (ii) u V (F ), F = δ(g)+ and v B / V (F ). Then since F is a complete graph, for each v V (F ), N G (v) V (B) δ(g)+, or N G (v) V (B) = δ(g) and vv B / E(G). Hence by the definition of ϕ, ϕ(v) = B for all v V (F ) (C \ {v B }). Since H = G[(V (B) \ C) ϕ (B)], this implies that V (F ) \ {v B } V (H), and hence d H (u) V (F ) \ {u, v B } δ(g) By Cases, and 3, d H (u) δ(g) We next show that H is -connected. Suppose that H is not -connected. Since δ(h) δ(g).. Since u is an arbitrary vertex in H, δ(h) δ(g), H 3. Hence there exist two distinct subgraphs F and F of H such that V (F j ) \ V (F 3 j ) for j =,, and V (F ) V (F ), V (H) = V (F ) V (F ) and E G (F \ F, F \ F ) =. Since B H 3, we also have that B is -connected. Hence V (B \ H) = (V (B) C) \ ϕ (B). Let w V (F ) V (F ) if V (F ) V (F ) ; otherwise, let w be an arbitrary vertex in B \ H. Let U := {u V (B \ H) N G (u) (V (F ) \ {w}) }. Since B is -connected, U. If there exists u U such that N G (u) (V (F ) \ {w}), then G[V (F F B u +) {u}] contains K,3 as an induced subgraph because E G (B \ {u}, B u +) = since u is a cut vertex of G, a contradiction. Thus N G (u) (V (F )\{w}) = for all u U. Hence since B is -connected, there exist u U and v V (B)\(V (H) U) such that uv E(G). Then G[V (F B u +) {u, v}] contains K,3 as an induced subgraph because E G (B \ {u}, B u +) = since u is a cut vertex of G, a contradiction again. Thus H is -connected. This completes the proof of Proposition 0. Proof of Theorem 6. Let G be as in Theorem 6. By Theorem A, we may assume that δ(g) 6. By Proposition 0, there exists a set H of mutually vertex-disjoint subgraphs in G such that H H V (H) = V (G), and H is a -connected claw-free graph and δ(h) δ(g) 3 for all H H. Then by Theorem, H has a -factor in which each cycle contains at least δ(h) δ(g) vertices for all H H. Since V (G) = H H V (H) (disjoint union), this implies that G has a -factor in which each cycle contains at least δ(g) vertices..

13 G K d K (d+)/ K (d+)/ K d K d + + Y + + K (d+)/ K (d+)/ y + + x X Y X K d K (d+)/ K (d+)/ K d K d K d K d Figure 4: The graph G 5 Proof of Theorem 9 As is mentioned in Section, in this section, we give a graph showing the sharpness of the lower bound on the length of a cycle in Conjecture 5, and we prove Theorem 9. The graph G illustrated in Figure 4 (here, in Figure 4, + means the join of vertices) is a claw-free graph with minimum degree d ( 4), and for each -factor of G, the minimum length of cycles in it is at most d+, and G has a -factor such that the minimum length of cycles in it is just d+. To see this, let C be a set of mutually vertex-disjoint cycles in G such that C C C is a -factor of G. If x X and y Y are contained in same cycle in C, then by the definition of G, the maximum size of the cycle containing both x and y is d+. Hence by the symmetry, we may assume that for all x X X and all y Y Y, the cycle containing x and the cycle containing y in C are distinct. Then by the definition of G, there exists a subset C of C such that C C V (C) = X or C C V (C) = X. Since X = X = d+, the minimum length of cycles in C is at most d+. Moreover, by these arguments, we can take a set C so that the minimum length of cycles in C is just d+. (Note that by adding X, Y, X and Y iteratively, we can construct a sufficiently large order graph.) To prove Theorem 9, we prove slightly stronger statement than Theorem 9 as follows (note that for each tree G with ξ(g), there exist vertices u V ξ(g) + (G) and u N G (u ) such that N G (u ) \ {u } V (G), and hence Theorem implies Theorem 9). Theorem Let G be a tree with ξ(g), and let u V l+ (G) and u N G (u ) such 3

14 T 0 G G i T 0 X u T 0 u u x x x m x i T T T m T i Figure 5: The tree G i that N G (u ) \ {u } V (G), where let l := ξ(g). Then the following hold. (I) If u V l (G), then G has a star cover set S of E(G) such that e(s) ξ(g)+ for all S S, and there exists S u S such that u u E(S u ) and u is the center of S u. (II) If u V l+ (G), then G has two star cover sets S and S of E(G) such that for each i =,, the following hold: (i) e(s) ξ(g)+ for all S Si. (ii) there exists S i S i such that u u E(S i ) and u i is the center of S i. Proof of Theorem. We prove Theorem by induction on e(g). If N G (u ) = V (G), then S := {G} is a star cover set of E(G) such that S satisfies the statement (I) in Theorem. Thus we may assume that N G (u ) V (G). Write N G (u ) \ {u } = {x, x,..., x m }. Let X be a subset of N G (u ) \ {u } such that N G (u ) \ ({u } X) = ξ(g) (note that d G (u ) ξ(g) + since d G (u ) l + and N G (u ) \ {u } V (G)). Let T 0, T,..., T m be components of G \ {u } such that T 0 contains a vertex u, and T i contains a vertex x i for each i m, and let T 0 := T 0 \ X. We construct m trees G, G,..., G m as follows. For each i m, let V (G i ) := V (T 0 ) V (T i ) and E(G i ) := E(T 0 ) E(T i ) {u x i } (see Figure 5). Then by the definitions of T 0, T,..., T m and G,..., G m, for each i m, E(G i ) < E(G) and d Gi (v) = d G (v) for all v V (G i ) \ {u }. (5.) 4

15 Since e(t0 ) = ξ(g), we also have ξ(g i ) = ξ(g) for each i m. (5.) We divide the proof into three cases according as u V l (G), or u V l+ (G) and N G (u ) V l+ (G), or u V l+ (G) and N G (u ) V l+ (G). Case : u V l (G). Then N G (u ) V l+ (G) (otherwise, ξ G (u x) < ξ(g) for x N G (u ) V l (G), a contradiction). Fix i with i m. Then by (5.) and (5.) and since e(t 0 ) = ξ(g), {u, x i } V l+ (G i ) = V ξ(gi ) + (G i). Therefore by the induction hypothesis and (5.), G i has a star cover set S i of E(G i) such that ξ(gi ) + ξ(g) + e(s) = for all S S i, (5.3) and there exists S xi S i such that u x i E(S xi ) and x i is the center of S xi. Note that T 0 S i because S x i S i and e(t 0 ) = ξ(g i) by (5.). Since i is an arbitrary integer with i m, there exists such a star cover set S i of E(G i) for all i with i m. For each i m, let Sx i be a star consisting of a vertex x i (as the center) and the edges in (E(S xi ) \ {u x i }) {u x i }, and let Su be a star consisting of a vertex u (as the center) and the edges in E(T 0 ) {u u }. Then by the definitions of Sx i and Su, e(sx i ) = e(s xi ) for each i m and e(su ) e(t0 ) = ξ(g). Hence by (5.3) and the definitions of S x i and Su, S := m ( i= S i \ {S xi, T0 }) {Su, Sx, Sx,..., Sx m } is a desired star cover set of E(G) (note that Su is a star in S such that u u E(Su ) and u is the center of Su ). Thus the statement (I) in Theorem holds. Case : u V l+ (G) and N G (u ) V l+ (G). Then we may assume that there exists an integer s with 0 s m such that {x,..., x s } V l+ (G) and {x s+,..., x m } V l (G). Since N G (u ) V l (G), we have ξ(g) + m (otherwise, ξ G (u x i ) < ξ(g) for s + i m, a contradiction). Fix i with i m. Then by (5.) and (5.), x i V l+ (G i ) = V ξ(gi ) + (G i) if i s; otherwise, x i V l (G i ) = V ξ(gi ) (Gi ). Therefore by the induction hypothesis, G i has a star cover set S i of E(G i) such that ξ(gi ) + ξ(g) + e(s) = for all S S i, (5.5) and there exists S i u S i such that u x i E(S i u ) and u is the center of S i u. Since i is an arbitrary integer with i m, there exists such a star cover set S i of E(G i) for all i 5 (5.4)

16 with i m. For each i m, let Su i := {S S i u is the center of S}. Then S Su i E(S) = E(T0 ) {u x i } for each i m because Su i S i. Let Su be a star consisting of a vertex u (as the center) and the edges in E(T 0 ) {u u }, Su be a star consisting of a vertex u (as the center) and the edges in E(T 0 ), Su be a star consisting of a vertex u (as the center) and the edges in {u x i i m}, and S u be a star consisting of a vertex u (as the center) and the edges in {u x i i m} {u u }. Then by the definitions of S u, S u, S u and Su, e(su ) > e(su ) e(t0 ) = ξ(g) and e(s u ) = e(su ) + = m +. Hence by (5.4), (5.5) and the definitions of Su, Su, Su E(T0 ) {u x i } for each i m, we have that S := m S := m i= and S u and since S S i u E(S) = i= ( S i \ S i u ) {S u, S u } and ( S i \ S i u ) {S u, S u } are desired star cover sets of E(G) (note that S u is a star in S such that u u E(Su ) and u is the center of Su, and Su is a star in S such that u u E(Su ) and u is the center of Su ). Thus the statement (II) in Theorem holds. Case 3: u V l+ (G) and N G (u ) V l+ (G). Fix i with i m. Then by (5.), (5.) and the assumption of Case 3, {u, x i } V l+ (G i ) = V ξ(gi ) + (G i). Therefore by the induction hypothesis and (5.), G i has two star cover sets S i and S i of E(G i) such that ξ(gi ) + ξ(g) + e(s) = for all S S i S i, (5.6) and there exists S i u S i such that u x i E(S i u ) and u is the center of S i u, and there exists S xi S i such that u x i E(S xi ) and x i is the center of S xi. Since i is an arbitrary integer with i m, there exist such star cover sets S i and S i of E(G i) for all i with i m. We first find a star cover set S of E(G). Note that T0 S i for each i m because e(t0 ) = ξ(g) and S x i S i. For each i m, let S x i be a star consisting of a vertex x i (as the center) and the edges in (E(S xi ) \ {u x i }) {u x i }, and let Su be a star consisting of a vertex u (as the center) and the edges in E(T 0 ) {u u }. Then by the definitions of Sx i and Su, e(sx i ) = e(s xi ) for each i m and e(su ) e(t0 ) = ξ(g). Hence by (5.6) and the definitions of Sx i and Su, S := m ( i= S i \ {S xi, T0 }) {Su, Sx, Sx,..., Sx m } is a desired star cover set of E(G) (note that Su is a star in S such that u u E(Su ) and u is the center of S u ). We next find a star cover set S of E(G). For each i m, let S i u := {S S i u is the center of S}. Then S S i u E(S) = E(T 0 ) {u x i } for each i m because S i u S i. Let Su be a star consisting of a vertex u (as the center) and the edges in E(T 0 ) and Su be a star consisting of a vertex u (as the center) and the edges in {u x i i m} {u u }. Then by the definitions of Su and Su and the assumption of Case 3, e(su ) e(t0 ) = ξ(g) and e(su ) = m + = d G (u ) l + = ξ(g) +. Hence by (5.6) and the definitions of 6

17 Su and Su and since S Su i E(S) = E(T0 ) {u x i } for each i m, we have that S := m ( i= S i \ Su i ) {S u, Su } is a desired star cover set of E(G) (note that Su is a star in S such that u u E(Su ) and u is the center of Su ). Thus the statement (II) in Theorem holds. References [] K. Ando, Y. Egawa, A. Kaneko, K. Kawarabayashi and H. Matsuda, Path factors in clawfree graphs, Discrete Math. 43 (00) [] H. J. Broersma, M. Kriesell and Z. Ryjáček, On factors of 4-connected claw-free graphs, J. Graph Theory 37 (00), [3] H. J. Broersma, D. Paulusma and K. Yoshimoto, Sharp upper bounds for the minimum number of components of -factors in claw-free graphs, Graphs Combin. 5 (009) [4] S. A. Choudum and M. S. Paulraj, Regular factors in K,3 -free graphs, J. Graph Theory 5 (99) [5] Y. Egawa and K. Ota, Regular factors in K,n -free graphs, J. Graph Theory 5 (99) [6] R. J. Faudree, O. Favaron, E. Flandrin, H. Li and Z. Liu, On -factors in claw-free graphs, Discrete Math. 06 (999) [7] F. Harary and C. St. J. A. Nash-Williams, On Eulerian and Hamiltonian graphs and line graphs, Can. Math. Bull. 8 (965) [8] B. Jackson and K. Yoshimoto, Even subgraphs of bridgeless graphs and -factors of line graphs, Discrete Math. 307 (007) [9] B. Jackson and K. Yoshimoto, Spanning even subgraphs of 3-edge-connected graphs, J. Graph Theory 6 (009) [0] R. Kužel, K. Ozeki and K. Yoshimoto, -factors and independent sets on claw-free graphs, Discrete Math. 3 (0), [] M. M. Matthews and D. P. Sumner, Hamiltonian results in K,3 -free graphs, J. Graph Theory 8 (984) [] K. Ozeki, Z. Ryjáček and K. Yoshimoto, -factors with bounded number of components in claw-free graphs, preprint. [3] Z. Ryjáček, On a closure concept in claw-free graphs, J. Combin. Theory Ser. B 70 (997) 7 4. [4] Z. Ryjáček, A. Saito, and R.H. Schelp, Closure, -factors, and cycle coverings in claw-free graphs, J. Graph Theory 3 (999) [5] K. Yoshimoto, On the number of components in -factors of claw-free graphs, Discrete Math. 307 (007)

8. Matchings and Factors

8. Matchings and Factors 8. Matchings and Factors Consider the formation of an executive council by the parliament committee. Each committee needs to designate one of its members as an official representative to sit on the council,

More information

Mean Ramsey-Turán numbers

Mean Ramsey-Turán numbers Mean Ramsey-Turán numbers Raphael Yuster Department of Mathematics University of Haifa at Oranim Tivon 36006, Israel Abstract A ρ-mean coloring of a graph is a coloring of the edges such that the average

More information

A Turán Type Problem Concerning the Powers of the Degrees of a Graph

A Turán Type Problem Concerning the Powers of the Degrees of a Graph A Turán Type Problem Concerning the Powers of the Degrees of a Graph Yair Caro and Raphael Yuster Department of Mathematics University of Haifa-ORANIM, Tivon 36006, Israel. AMS Subject Classification:

More information

ON INDUCED SUBGRAPHS WITH ALL DEGREES ODD. 1. Introduction

ON INDUCED SUBGRAPHS WITH ALL DEGREES ODD. 1. Introduction ON INDUCED SUBGRAPHS WITH ALL DEGREES ODD A.D. SCOTT Abstract. Gallai proved that the vertex set of any graph can be partitioned into two sets, each inducing a subgraph with all degrees even. We prove

More information

Non-Separable Detachments of Graphs

Non-Separable Detachments of Graphs Egerváry Research Group on Combinatorial Optimization Technical reports TR-2001-12. Published by the Egrerváry Research Group, Pázmány P. sétány 1/C, H 1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres.

More information

Best Monotone Degree Bounds for Various Graph Parameters

Best Monotone Degree Bounds for Various Graph Parameters Best Monotone Degree Bounds for Various Graph Parameters D. Bauer Department of Mathematical Sciences Stevens Institute of Technology Hoboken, NJ 07030 S. L. Hakimi Department of Electrical and Computer

More information

Graphs without proper subgraphs of minimum degree 3 and short cycles

Graphs without proper subgraphs of minimum degree 3 and short cycles Graphs without proper subgraphs of minimum degree 3 and short cycles Lothar Narins, Alexey Pokrovskiy, Tibor Szabó Department of Mathematics, Freie Universität, Berlin, Germany. August 22, 2014 Abstract

More information

SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS. Nickolay Khadzhiivanov, Nedyalko Nenov

SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS. Nickolay Khadzhiivanov, Nedyalko Nenov Serdica Math. J. 30 (2004), 95 102 SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS Nickolay Khadzhiivanov, Nedyalko Nenov Communicated by V. Drensky Abstract. Let Γ(M) where M V (G) be the set of all vertices

More information

All trees contain a large induced subgraph having all degrees 1 (mod k)

All trees contain a large induced subgraph having all degrees 1 (mod k) All trees contain a large induced subgraph having all degrees 1 (mod k) David M. Berman, A.J. Radcliffe, A.D. Scott, Hong Wang, and Larry Wargo *Department of Mathematics University of New Orleans New

More information

The Independence Number in Graphs of Maximum Degree Three

The Independence Number in Graphs of Maximum Degree Three The Independence Number in Graphs of Maximum Degree Three Jochen Harant 1 Michael A. Henning 2 Dieter Rautenbach 1 and Ingo Schiermeyer 3 1 Institut für Mathematik, TU Ilmenau, Postfach 100565, D-98684

More information

Minimum degree condition forcing complete graph immersion

Minimum degree condition forcing complete graph immersion Minimum degree condition forcing complete graph immersion Matt DeVos Department of Mathematics Simon Fraser University Burnaby, B.C. V5A 1S6 Jacob Fox Department of Mathematics MIT Cambridge, MA 02139

More information

Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010. Chapter 7: Digraphs

Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010. Chapter 7: Digraphs MCS-236: Graph Theory Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010 Chapter 7: Digraphs Strong Digraphs Definitions. A digraph is an ordered pair (V, E), where V is the set

More information

Large induced subgraphs with all degrees odd

Large induced subgraphs with all degrees odd Large induced subgraphs with all degrees odd A.D. Scott Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, England Abstract: We prove that every connected graph of order

More information

SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH

SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH 31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,

More information

A Study of Sufficient Conditions for Hamiltonian Cycles

A Study of Sufficient Conditions for Hamiltonian Cycles DeLeon 1 A Study of Sufficient Conditions for Hamiltonian Cycles Melissa DeLeon Department of Mathematics and Computer Science Seton Hall University South Orange, New Jersey 07079, U.S.A. ABSTRACT A graph

More information

Cycles and clique-minors in expanders

Cycles and clique-minors in expanders Cycles and clique-minors in expanders Benny Sudakov UCLA and Princeton University Expanders Definition: The vertex boundary of a subset X of a graph G: X = { all vertices in G\X with at least one neighbor

More information

Combinatorial 5/6-approximation of Max Cut in graphs of maximum degree 3

Combinatorial 5/6-approximation of Max Cut in graphs of maximum degree 3 Combinatorial 5/6-approximation of Max Cut in graphs of maximum degree 3 Cristina Bazgan a and Zsolt Tuza b,c,d a LAMSADE, Université Paris-Dauphine, Place du Marechal de Lattre de Tassigny, F-75775 Paris

More information

136 CHAPTER 4. INDUCTION, GRAPHS AND TREES

136 CHAPTER 4. INDUCTION, GRAPHS AND TREES 136 TER 4. INDUCTION, GRHS ND TREES 4.3 Graphs In this chapter we introduce a fundamental structural idea of discrete mathematics, that of a graph. Many situations in the applications of discrete mathematics

More information

Labeling outerplanar graphs with maximum degree three

Labeling outerplanar graphs with maximum degree three Labeling outerplanar graphs with maximum degree three Xiangwen Li 1 and Sanming Zhou 2 1 Department of Mathematics Huazhong Normal University, Wuhan 430079, China 2 Department of Mathematics and Statistics

More information

On 2-vertex-connected orientations of graphs

On 2-vertex-connected orientations of graphs On 2-vertex-connected orientations of graphs Zoltán Szigeti Laboratoire G-SCOP INP Grenoble, France 12 January 2012 Joint work with : Joseph Cheriyan (Waterloo) and Olivier Durand de Gevigney (Grenoble)

More information

3. Eulerian and Hamiltonian Graphs

3. Eulerian and Hamiltonian Graphs 3. Eulerian and Hamiltonian Graphs There are many games and puzzles which can be analysed by graph theoretic concepts. In fact, the two early discoveries which led to the existence of graphs arose from

More information

On end degrees and infinite cycles in locally finite graphs

On end degrees and infinite cycles in locally finite graphs On end degrees and infinite cycles in locally finite graphs Henning Bruhn Maya Stein Abstract We introduce a natural extension of the vertex degree to ends. For the cycle space C(G) as proposed by Diestel

More information

SHORT CYCLE COVERS OF GRAPHS WITH MINIMUM DEGREE THREE

SHORT CYCLE COVERS OF GRAPHS WITH MINIMUM DEGREE THREE SHOT YLE OVES OF PHS WITH MINIMUM DEEE THEE TOMÁŠ KISE, DNIEL KÁL, END LIDIKÝ, PVEL NEJEDLÝ OET ŠÁML, ND bstract. The Shortest ycle over onjecture of lon and Tarsi asserts that the edges of every bridgeless

More information

Generalized Induced Factor Problems

Generalized Induced Factor Problems Egerváry Research Group on Combinatorial Optimization Technical reports TR-2002-07. Published by the Egrerváry Research Group, Pázmány P. sétány 1/C, H 1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres.

More information

Total colorings of planar graphs with small maximum degree

Total colorings of planar graphs with small maximum degree Total colorings of planar graphs with small maximum degree Bing Wang 1,, Jian-Liang Wu, Si-Feng Tian 1 Department of Mathematics, Zaozhuang University, Shandong, 77160, China School of Mathematics, Shandong

More information

High degree graphs contain large-star factors

High degree graphs contain large-star factors High degree graphs contain large-star factors Dedicated to László Lovász, for his 60th birthday Noga Alon Nicholas Wormald Abstract We show that any finite simple graph with minimum degree d contains a

More information

On the k-path cover problem for cacti

On the k-path cover problem for cacti On the k-path cover problem for cacti Zemin Jin and Xueliang Li Center for Combinatorics and LPMC Nankai University Tianjin 300071, P.R. China zeminjin@eyou.com, x.li@eyou.com Abstract In this paper we

More information

On the independence number of graphs with maximum degree 3

On the independence number of graphs with maximum degree 3 On the independence number of graphs with maximum degree 3 Iyad A. Kanj Fenghui Zhang Abstract Let G be an undirected graph with maximum degree at most 3 such that G does not contain any of the three graphs

More information

On Integer Additive Set-Indexers of Graphs

On Integer Additive Set-Indexers of Graphs On Integer Additive Set-Indexers of Graphs arxiv:1312.7672v4 [math.co] 2 Mar 2014 N K Sudev and K A Germina Abstract A set-indexer of a graph G is an injective set-valued function f : V (G) 2 X such that

More information

Every tree contains a large induced subgraph with all degrees odd

Every tree contains a large induced subgraph with all degrees odd Every tree contains a large induced subgraph with all degrees odd A.J. Radcliffe Carnegie Mellon University, Pittsburgh, PA A.D. Scott Department of Pure Mathematics and Mathematical Statistics University

More information

An inequality for the group chromatic number of a graph

An inequality for the group chromatic number of a graph An inequality for the group chromatic number of a graph Hong-Jian Lai 1, Xiangwen Li 2 and Gexin Yu 3 1 Department of Mathematics, West Virginia University Morgantown, WV 26505 USA 2 Department of Mathematics

More information

Odd induced subgraphs in graphs of maximum degree three

Odd induced subgraphs in graphs of maximum degree three Odd induced subgraphs in graphs of maximum degree three David M. Berman, Hong Wang, and Larry Wargo Department of Mathematics University of New Orleans New Orleans, Louisiana, USA 70148 Abstract A long-standing

More information

Graph theoretic techniques in the analysis of uniquely localizable sensor networks

Graph theoretic techniques in the analysis of uniquely localizable sensor networks Graph theoretic techniques in the analysis of uniquely localizable sensor networks Bill Jackson 1 and Tibor Jordán 2 ABSTRACT In the network localization problem the goal is to determine the location of

More information

Removing Even Crossings

Removing Even Crossings EuroComb 2005 DMTCS proc. AE, 2005, 105 110 Removing Even Crossings Michael J. Pelsmajer 1, Marcus Schaefer 2 and Daniel Štefankovič 2 1 Department of Applied Mathematics, Illinois Institute of Technology,

More information

Tree-representation of set families and applications to combinatorial decompositions

Tree-representation of set families and applications to combinatorial decompositions Tree-representation of set families and applications to combinatorial decompositions Binh-Minh Bui-Xuan a, Michel Habib b Michaël Rao c a Department of Informatics, University of Bergen, Norway. buixuan@ii.uib.no

More information

Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs

Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs Kousha Etessami U. of Edinburgh, UK Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 1 / 13 Overview Graphs and Graph

More information

Zachary Monaco Georgia College Olympic Coloring: Go For The Gold

Zachary Monaco Georgia College Olympic Coloring: Go For The Gold Zachary Monaco Georgia College Olympic Coloring: Go For The Gold Coloring the vertices or edges of a graph leads to a variety of interesting applications in graph theory These applications include various

More information

P. Jeyanthi and N. Angel Benseera

P. Jeyanthi and N. Angel Benseera Opuscula Math. 34, no. 1 (014), 115 1 http://dx.doi.org/10.7494/opmath.014.34.1.115 Opuscula Mathematica A TOTALLY MAGIC CORDIAL LABELING OF ONE-POINT UNION OF n COPIES OF A GRAPH P. Jeyanthi and N. Angel

More information

Cycles in a Graph Whose Lengths Differ by One or Two

Cycles in a Graph Whose Lengths Differ by One or Two Cycles in a Graph Whose Lengths Differ by One or Two J. A. Bondy 1 and A. Vince 2 1 LABORATOIRE DE MATHÉMATIQUES DISCRÉTES UNIVERSITÉ CLAUDE-BERNARD LYON 1 69622 VILLEURBANNE, FRANCE 2 DEPARTMENT OF MATHEMATICS

More information

Single machine parallel batch scheduling with unbounded capacity

Single machine parallel batch scheduling with unbounded capacity Workshop on Combinatorics and Graph Theory 21th, April, 2006 Nankai University Single machine parallel batch scheduling with unbounded capacity Yuan Jinjiang Department of mathematics, Zhengzhou University

More information

A DIRAC TYPE RESULT ON HAMILTON CYCLES IN ORIENTED GRAPHS

A DIRAC TYPE RESULT ON HAMILTON CYCLES IN ORIENTED GRAPHS A DIRAC TYPE RESULT ON HAMILTON CYCLES IN ORIENTED GRAPHS LUKE KELLY, DANIELA KÜHN AND DERYK OSTHUS Abstract. We show that for each α > every sufficiently large oriented graph G with δ + (G), δ (G) 3 G

More information

MATHEMATICAL ENGINEERING TECHNICAL REPORTS. The Independent Even Factor Problem

MATHEMATICAL ENGINEERING TECHNICAL REPORTS. The Independent Even Factor Problem MATHEMATICAL ENGINEERING TECHNICAL REPORTS The Independent Even Factor Problem Satoru IWATA and Kenjiro TAKAZAWA METR 2006 24 April 2006 DEPARTMENT OF MATHEMATICAL INFORMATICS GRADUATE SCHOOL OF INFORMATION

More information

An inequality for the group chromatic number of a graph

An inequality for the group chromatic number of a graph Discrete Mathematics 307 (2007) 3076 3080 www.elsevier.com/locate/disc Note An inequality for the group chromatic number of a graph Hong-Jian Lai a, Xiangwen Li b,,1, Gexin Yu c a Department of Mathematics,

More information

On an anti-ramsey type result

On an anti-ramsey type result On an anti-ramsey type result Noga Alon, Hanno Lefmann and Vojtĕch Rödl Abstract We consider anti-ramsey type results. For a given coloring of the k-element subsets of an n-element set X, where two k-element

More information

Degree Hypergroupoids Associated with Hypergraphs

Degree Hypergroupoids Associated with Hypergraphs Filomat 8:1 (014), 119 19 DOI 10.98/FIL1401119F Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Degree Hypergroupoids Associated

More information

Degree-associated reconstruction parameters of complete multipartite graphs and their complements

Degree-associated reconstruction parameters of complete multipartite graphs and their complements Degree-associated reconstruction parameters of complete multipartite graphs and their complements Meijie Ma, Huangping Shi, Hannah Spinoza, Douglas B. West January 23, 2014 Abstract Avertex-deleted subgraphofagraphgisacard.

More information

BOUNDARY EDGE DOMINATION IN GRAPHS

BOUNDARY EDGE DOMINATION IN GRAPHS BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 0-4874, ISSN (o) 0-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 5(015), 197-04 Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA

More information

Cycle transversals in bounded degree graphs

Cycle transversals in bounded degree graphs Electronic Notes in Discrete Mathematics 35 (2009) 189 195 www.elsevier.com/locate/endm Cycle transversals in bounded degree graphs M. Groshaus a,2,3 P. Hell b,3 S. Klein c,1,3 L. T. Nogueira d,1,3 F.

More information

JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS. Received December May 12, 2003; revised February 5, 2004

JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS. Received December May 12, 2003; revised February 5, 2004 Scientiae Mathematicae Japonicae Online, Vol. 10, (2004), 431 437 431 JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS Ondřej Čepeka and Shao Chin Sung b Received December May 12, 2003; revised February

More information

Graphical degree sequences and realizations

Graphical degree sequences and realizations swap Graphical and realizations Péter L. Erdös Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences MAPCON 12 MPIPKS - Dresden, May 15, 2012 swap Graphical and realizations Péter L. Erdös

More information

The chromatic spectrum of mixed hypergraphs

The chromatic spectrum of mixed hypergraphs The chromatic spectrum of mixed hypergraphs Tao Jiang, Dhruv Mubayi, Zsolt Tuza, Vitaly Voloshin, Douglas B. West March 30, 2003 Abstract A mixed hypergraph is a triple H = (X, C, D), where X is the vertex

More information

most 4 Mirka Miller 1,2, Guillermo Pineda-Villavicencio 3, The University of Newcastle Callaghan, NSW 2308, Australia University of West Bohemia

most 4 Mirka Miller 1,2, Guillermo Pineda-Villavicencio 3, The University of Newcastle Callaghan, NSW 2308, Australia University of West Bohemia Complete catalogue of graphs of maimum degree 3 and defect at most 4 Mirka Miller 1,2, Guillermo Pineda-Villavicencio 3, 1 School of Electrical Engineering and Computer Science The University of Newcastle

More information

A REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE. 1. Introduction and Preliminaries

A REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE. 1. Introduction and Preliminaries Acta Math. Univ. Comenianae Vol. LXVI, 2(1997), pp. 285 291 285 A REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE E. T. BASKORO, M. MILLER and J. ŠIRÁŇ Abstract. It is well known that Moore digraphs do

More information

Connectivity and cuts

Connectivity and cuts Math 104, Graph Theory February 19, 2013 Measure of connectivity How connected are each of these graphs? > increasing connectivity > I G 1 is a tree, so it is a connected graph w/minimum # of edges. Every

More information

FALSE ALARMS IN FAULT-TOLERANT DOMINATING SETS IN GRAPHS. Mateusz Nikodem

FALSE ALARMS IN FAULT-TOLERANT DOMINATING SETS IN GRAPHS. Mateusz Nikodem Opuscula Mathematica Vol. 32 No. 4 2012 http://dx.doi.org/10.7494/opmath.2012.32.4.751 FALSE ALARMS IN FAULT-TOLERANT DOMINATING SETS IN GRAPHS Mateusz Nikodem Abstract. We develop the problem of fault-tolerant

More information

A threshold for the Maker-Breaker clique game

A threshold for the Maker-Breaker clique game A threshold for the Maker-Breaker clique game Tobias Müller Miloš Stojaković October 7, 01 Abstract We study the Maker-Breaker k-clique game played on the edge set of the random graph G(n, p. In this game,

More information

The degree, size and chromatic index of a uniform hypergraph

The degree, size and chromatic index of a uniform hypergraph The degree, size and chromatic index of a uniform hypergraph Noga Alon Jeong Han Kim Abstract Let H be a k-uniform hypergraph in which no two edges share more than t common vertices, and let D denote the

More information

Exponential time algorithms for graph coloring

Exponential time algorithms for graph coloring Exponential time algorithms for graph coloring Uriel Feige Lecture notes, March 14, 2011 1 Introduction Let [n] denote the set {1,..., k}. A k-labeling of vertices of a graph G(V, E) is a function V [k].

More information

The positive minimum degree game on sparse graphs

The positive minimum degree game on sparse graphs The positive minimum degree game on sparse graphs József Balogh Department of Mathematical Sciences University of Illinois, USA jobal@math.uiuc.edu András Pluhár Department of Computer Science University

More information

Stationary random graphs on Z with prescribed iid degrees and finite mean connections

Stationary random graphs on Z with prescribed iid degrees and finite mean connections Stationary random graphs on Z with prescribed iid degrees and finite mean connections Maria Deijfen Johan Jonasson February 2006 Abstract Let F be a probability distribution with support on the non-negative

More information

Examination paper for MA0301 Elementær diskret matematikk

Examination paper for MA0301 Elementær diskret matematikk Department of Mathematical Sciences Examination paper for MA0301 Elementær diskret matematikk Academic contact during examination: Iris Marjan Smit a, Sverre Olaf Smalø b Phone: a 9285 0781, b 7359 1750

More information

Global secure sets of trees and grid-like graphs. Yiu Yu Ho

Global secure sets of trees and grid-like graphs. Yiu Yu Ho Global secure sets of trees and grid-like graphs by Yiu Yu Ho B.S. University of Central Florida, 2006 M.S. University of Central Florida, 2010 A dissertation submitted in partial fulfillment of the requirements

More information

Mathematics for Algorithm and System Analysis

Mathematics for Algorithm and System Analysis Mathematics for Algorithm and System Analysis for students of computer and computational science Edward A. Bender S. Gill Williamson c Edward A. Bender & S. Gill Williamson 2005. All rights reserved. Preface

More information

Disjoint Compatible Geometric Matchings

Disjoint Compatible Geometric Matchings Disjoint Compatible Geometric Matchings Mashhood Ishaque Diane L. Souvaine Csaba D. Tóth Abstract We prove that for every even set of n pairwise disjoint line segments in the plane in general position,

More information

Ramsey numbers for bipartite graphs with small bandwidth

Ramsey numbers for bipartite graphs with small bandwidth Ramsey numbers for bipartite graphs with small bandwidth Guilherme O. Mota 1,, Gábor N. Sárközy 2,, Mathias Schacht 3,, and Anusch Taraz 4, 1 Instituto de Matemática e Estatística, Universidade de São

More information

DEGREES OF CATEGORICITY AND THE HYPERARITHMETIC HIERARCHY

DEGREES OF CATEGORICITY AND THE HYPERARITHMETIC HIERARCHY DEGREES OF CATEGORICITY AND THE HYPERARITHMETIC HIERARCHY BARBARA F. CSIMA, JOHANNA N. Y. FRANKLIN, AND RICHARD A. SHORE Abstract. We study arithmetic and hyperarithmetic degrees of categoricity. We extend

More information

Balloons, Cut-Edges, Matchings, and Total Domination in Regular Graphs of Odd Degree

Balloons, Cut-Edges, Matchings, and Total Domination in Regular Graphs of Odd Degree Balloons, Cut-Edges, Matchings, and Total Domination in Regular Graphs of Odd Degree Suil O, Douglas B. West November 9, 2008; revised June 2, 2009 Abstract A balloon in a graph G is a maximal 2-edge-connected

More information

CS 598CSC: Combinatorial Optimization Lecture date: 2/4/2010

CS 598CSC: Combinatorial Optimization Lecture date: 2/4/2010 CS 598CSC: Combinatorial Optimization Lecture date: /4/010 Instructor: Chandra Chekuri Scribe: David Morrison Gomory-Hu Trees (The work in this section closely follows [3]) Let G = (V, E) be an undirected

More information

ON DEGREES IN THE HASSE DIAGRAM OF THE STRONG BRUHAT ORDER

ON DEGREES IN THE HASSE DIAGRAM OF THE STRONG BRUHAT ORDER Séminaire Lotharingien de Combinatoire 53 (2006), Article B53g ON DEGREES IN THE HASSE DIAGRAM OF THE STRONG BRUHAT ORDER RON M. ADIN AND YUVAL ROICHMAN Abstract. For a permutation π in the symmetric group

More information

Social Media Mining. Graph Essentials

Social Media Mining. Graph Essentials Graph Essentials Graph Basics Measures Graph and Essentials Metrics 2 2 Nodes and Edges A network is a graph nodes, actors, or vertices (plural of vertex) Connections, edges or ties Edge Node Measures

More information

Math 55: Discrete Mathematics

Math 55: Discrete Mathematics Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 5, due Wednesday, February 22 5.1.4 Let P (n) be the statement that 1 3 + 2 3 + + n 3 = (n(n + 1)/2) 2 for the positive integer n. a) What

More information

MATHEMATICAL ENGINEERING TECHNICAL REPORTS. An Improved Approximation Algorithm for the Traveling Tournament Problem

MATHEMATICAL ENGINEERING TECHNICAL REPORTS. An Improved Approximation Algorithm for the Traveling Tournament Problem MATHEMATICAL ENGINEERING TECHNICAL REPORTS An Improved Approximation Algorithm for the Traveling Tournament Problem Daisuke YAMAGUCHI, Shinji IMAHORI, Ryuhei MIYASHIRO, Tomomi MATSUI METR 2009 42 September

More information

Tenacity and rupture degree of permutation graphs of complete bipartite graphs

Tenacity and rupture degree of permutation graphs of complete bipartite graphs Tenacity and rupture degree of permutation graphs of complete bipartite graphs Fengwei Li, Qingfang Ye and Xueliang Li Department of mathematics, Shaoxing University, Shaoxing Zhejiang 312000, P.R. China

More information

Class One: Degree Sequences

Class One: Degree Sequences Class One: Degree Sequences For our purposes a graph is a just a bunch of points, called vertices, together with lines or curves, called edges, joining certain pairs of vertices. Three small examples of

More information

A Graph-Theoretic Network Security Game

A Graph-Theoretic Network Security Game A Graph-Theoretic Network Security Game Marios Mavronicolas 1, Vicky Papadopoulou 1, Anna Philippou 1, and Paul Spirakis 2 1 Department of Computer Science, University of Cyprus, Nicosia CY-1678, Cyprus.

More information

On parsimonious edge-colouring of graphs with maximum degree three

On parsimonious edge-colouring of graphs with maximum degree three On parsimonious edge-colouring of graphs with maximum degree three Jean-Luc Fouquet, Jean-Marie Vanherpe To cite this version: Jean-Luc Fouquet, Jean-Marie Vanherpe. On parsimonious edge-colouring of graphs

More information

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS STEVEN P. LALLEY AND ANDREW NOBEL Abstract. It is shown that there are no consistent decision rules for the hypothesis testing problem

More information

Tools for parsimonious edge-colouring of graphs with maximum degree three. J.L. Fouquet and J.M. Vanherpe. Rapport n o RR-2010-10

Tools for parsimonious edge-colouring of graphs with maximum degree three. J.L. Fouquet and J.M. Vanherpe. Rapport n o RR-2010-10 Tools for parsimonious edge-colouring of graphs with maximum degree three J.L. Fouquet and J.M. Vanherpe LIFO, Université d Orléans Rapport n o RR-2010-10 Tools for parsimonious edge-colouring of graphs

More information

Computer Science Department. Technion - IIT, Haifa, Israel. Itai and Rodeh [IR] have proved that for any 2-connected graph G and any vertex s G there

Computer Science Department. Technion - IIT, Haifa, Israel. Itai and Rodeh [IR] have proved that for any 2-connected graph G and any vertex s G there - 1 - THREE TREE-PATHS Avram Zehavi Alon Itai Computer Science Department Technion - IIT, Haifa, Israel Abstract Itai and Rodeh [IR] have proved that for any 2-connected graph G and any vertex s G there

More information

On the maximum average degree and the incidence chromatic number of a graph

On the maximum average degree and the incidence chromatic number of a graph Discrete Mathematics and Theoretical Computer Science DMTCS ol. 7, 2005, 203 216 On the maximum aerage degree and the incidence chromatic number of a graph Mohammad Hosseini Dolama 1 and Eric Sopena 2

More information

V. Adamchik 1. Graph Theory. Victor Adamchik. Fall of 2005

V. Adamchik 1. Graph Theory. Victor Adamchik. Fall of 2005 V. Adamchik 1 Graph Theory Victor Adamchik Fall of 2005 Plan 1. Basic Vocabulary 2. Regular graph 3. Connectivity 4. Representing Graphs Introduction A.Aho and J.Ulman acknowledge that Fundamentally, computer

More information

SCORE SETS IN ORIENTED GRAPHS

SCORE SETS IN ORIENTED GRAPHS Applicable Analysis and Discrete Mathematics, 2 (2008), 107 113. Available electronically at http://pefmath.etf.bg.ac.yu SCORE SETS IN ORIENTED GRAPHS S. Pirzada, T. A. Naikoo The score of a vertex v in

More information

Product irregularity strength of certain graphs

Product irregularity strength of certain graphs Also available at http://amc.imfm.si ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 7 (014) 3 9 Product irregularity strength of certain graphs Marcin Anholcer

More information

UPPER BOUNDS ON THE L(2, 1)-LABELING NUMBER OF GRAPHS WITH MAXIMUM DEGREE

UPPER BOUNDS ON THE L(2, 1)-LABELING NUMBER OF GRAPHS WITH MAXIMUM DEGREE UPPER BOUNDS ON THE L(2, 1)-LABELING NUMBER OF GRAPHS WITH MAXIMUM DEGREE ANDREW LUM ADVISOR: DAVID GUICHARD ABSTRACT. L(2,1)-labeling was first defined by Jerrold Griggs [Gr, 1992] as a way to use graphs

More information

On one-factorizations of replacement products

On one-factorizations of replacement products Filomat 27:1 (2013), 57 63 DOI 10.2298/FIL1301057A Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat On one-factorizations of replacement

More information

Strong Ramsey Games: Drawing on an infinite board

Strong Ramsey Games: Drawing on an infinite board Strong Ramsey Games: Drawing on an infinite board Dan Hefetz Christopher Kusch Lothar Narins Alexey Pokrovskiy Clément Requilé Amir Sarid arxiv:1605.05443v2 [math.co] 25 May 2016 May 26, 2016 Abstract

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory Allen Dickson October 2006 1 The Königsberg Bridge Problem The city of Königsberg was located on the Pregel river in Prussia. The river divided the city into four separate

More information

COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH. 1. Introduction

COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH. 1. Introduction COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH ZACHARY ABEL 1. Introduction In this survey we discuss properties of the Higman-Sims graph, which has 100 vertices, 1100 edges, and is 22 regular. In fact

More information

Cacti with minimum, second-minimum, and third-minimum Kirchhoff indices

Cacti with minimum, second-minimum, and third-minimum Kirchhoff indices MATHEMATICAL COMMUNICATIONS 47 Math. Commun., Vol. 15, No. 2, pp. 47-58 (2010) Cacti with minimum, second-minimum, and third-minimum Kirchhoff indices Hongzhuan Wang 1, Hongbo Hua 1, and Dongdong Wang

More information

On three zero-sum Ramsey-type problems

On three zero-sum Ramsey-type problems On three zero-sum Ramsey-type problems Noga Alon Department of Mathematics Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University, Tel Aviv, Israel and Yair Caro Department of Mathematics

More information

HAMILTONIAN DEGREE SEQUENCES IN DIGRAPHS

HAMILTONIAN DEGREE SEQUENCES IN DIGRAPHS HAMILTONIAN DEGREE SEQUENCES IN DIGRAPHS DANIELA KÜHN, DERYK OSTHUS AND ANDREW TREGLOWN Abstract. We show that for each η > 0 every digraph G of sufficiently large order n is Hamiltonian if its out- and

More information

Rising Rates in Random institute (R&I)

Rising Rates in Random institute (R&I) 139. Proc. 3rd Car. Conf. Comb. & Comp. pp. 139-143 SPANNING TREES IN RANDOM REGULAR GRAPHS Brendan D. McKay Computer Science Dept., Vanderbilt University, Nashville, Tennessee 37235 Let n~ < n2

More information

Degrees that are not degrees of categoricity

Degrees that are not degrees of categoricity Degrees that are not degrees of categoricity Bernard A. Anderson Department of Mathematics and Physical Sciences Gordon State College banderson@gordonstate.edu www.gordonstate.edu/faculty/banderson Barbara

More information

A Sublinear Bipartiteness Tester for Bounded Degree Graphs

A Sublinear Bipartiteness Tester for Bounded Degree Graphs A Sublinear Bipartiteness Tester for Bounded Degree Graphs Oded Goldreich Dana Ron February 5, 1998 Abstract We present a sublinear-time algorithm for testing whether a bounded degree graph is bipartite

More information

Extremal Wiener Index of Trees with All Degrees Odd

Extremal Wiener Index of Trees with All Degrees Odd MATCH Communications in Mathematical and in Computer Chemistry MATCH Commun. Math. Comput. Chem. 70 (2013) 287-292 ISSN 0340-6253 Extremal Wiener Index of Trees with All Degrees Odd Hong Lin School of

More information

F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein)

F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein) Journal of Algerian Mathematical Society Vol. 1, pp. 1 6 1 CONCERNING THE l p -CONJECTURE FOR DISCRETE SEMIGROUPS F. ABTAHI and M. ZARRIN (Communicated by J. Goldstein) Abstract. For 2 < p

More information

Collinear Points in Permutations

Collinear Points in Permutations Collinear Points in Permutations Joshua N. Cooper Courant Institute of Mathematics New York University, New York, NY József Solymosi Department of Mathematics University of British Columbia, Vancouver,

More information

MA651 Topology. Lecture 6. Separation Axioms.

MA651 Topology. Lecture 6. Separation Axioms. MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples

More information

About the inverse football pool problem for 9 games 1

About the inverse football pool problem for 9 games 1 Seventh International Workshop on Optimal Codes and Related Topics September 6-1, 013, Albena, Bulgaria pp. 15-133 About the inverse football pool problem for 9 games 1 Emil Kolev Tsonka Baicheva Institute

More information

Removing even crossings

Removing even crossings Removing even crossings Michael J. Pelsmajer a, Marcus Schaefer b, Daniel Štefankovič c a Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616, USA b Department of Computer

More information