Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs
|
|
|
- Lynn Kelley
- 10 years ago
- Views:
Transcription
1 CSE599s: Extremal Combinatorics November 21, 2011 Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs Lecturer: Anup Rao 1 An Arithmetic Circuit Lower Bound An arithmetic circuit is just like a boolean circuit, except that the gates are either multiplication or addition gates, and the inputs are either variables or constants. Formally, it is a directed acyclic graph where every vertex has in-degree (aka fan-in) 2 or 0, each vertex (aka gate) of in-degree 0 is labeled by a variable or a field element, and every other vertex is labeled either + or. The fan-out of a gate is its out-degree. We say that a circuit computes the polynomial p(x 1,..., X n ) if there is gate in the circuit whose evaluation gives the polynomial p(x 1,..., X n ). Note that although every function from F2 n F 2 can be represented as a polynomial, and multiplication and addition (over F 2 ) can be used to simulate any boolean function on 2 bits, it is harder to design a small arithmetic circuit for computing a particular polynomial than it is to design a boolean circuit that computes the corresponding function. This is because many polynomials can evaluate to the same function on F n 2 F 2. For example, the polynomial (X + Y )(X + Z) evaluates to the same function as the polynomial X + Y + Z + Y Z, so if you want to compute the function X + Y + Z + Y Z, you can do it with three gates, even though computing the polynomial requires 4 gates. A boolean circuit can choose to evaluate the easiest polynomial, and so be of smaller size. Indeed, this restriction allows us to prove stronger lower bounds on arithmetic circuits, and gives us more techniques to attack them. Suppose we want to compute the polynomial X d. This can be done by repeatedly squaring X with a circuit of size log d. It is easy to see that this construction is tight: each additional gate can at most double the degree of the polynomials computed by the circuit, so at least log d multiplications are needed to get degree d. What about if we want a circuit that simultaneously computes each of the polynomials X1 d, Xd 2, Xd 3,..., Xd n? One way to do this is to compute each one separately, for a total size of n log d. Is this the best one can do? Theorem 1 (Bauer and Strassen). Any arithmetic circuit computing X d 1 + Xd Xd n must use Ω(n log d) wires. In particular, we get the following easy corollary: Corollary 2. Any arithmetic circuit computing each of X d 1, Xd 2,..., Xd n must use Ω(n log d) wires. There are two parts to the proof of Theorem 1. First we prove Corollary 2. Then we show that any size s circuit that computes X d Xd n can be used to obtain a size O(s + n) circuit computing X d 1, Xd 2,..., Xd n. Actually you can show that any circuit that computes a polynomial p can be used to obtain a circuit that computes all the partial derivatives of p in similar size, which gives what we want. Here we shall just prove the first part with a proof due to Smolensky that is based on dimension counting. 15 An Arithmetic Circuit Lowerbound and Flows in Graphs-1
2 Suppose that there is some circuit C with s wires that computes X d 1,..., Xd n. For a polynomial r(y ; Z) in variables partitioned into two lists Y, Z, we say r has degree (d 1, 1) if the degree of any variable in Y is at most d 1 and any variable in Z is at most 1. Given two lists of polynomials p = p 1,..., p k F[X 1,..., X n ] and q = q 1,..., q l F[X 1,..., X n ], define the set of polynomials We have the following claims: τ(p q) = {r(p; q) : r has degree (d 1, 1) }. Claim 3. If f = g h, then τ(f, p 1,..., p k q 1,..., q l ) τ(g, h, p 1,..., p k q 1,..., q l ). Indeed, in any degree (d 1, 1) polynomial r, f t = g t h t, so we obtain a new polynomial r in one additional variable that computes the same thing as r. Claim 4. If f = g + h, then τ(f, p 1,..., p k q 1..., q l ) τ(g, h, p 1,..., p k q 1... q l ). Again, in any degree (d 1, 1) polynomial r, we can replace f t = (g + h) t and again obtain a degree (d 1, 1) polynomial q that computes the same thing as q. Claim 5. τ(f, f, p 1,..., p k q 1,..., q l ) τ(f, p 1,..., p k f d, q 1,..., q l ). To prove this claim, note that since r has access to two copies of f, it can actually compute f t for any t 2(d 1). To simulate this new computation, it is enough to have access to f d with degree up to 1 and f with degree up to d 1. Claim 6. If a circuit C uses s wires to compute polynomials p 1,..., p k at k distinct gates, then there exist at most s polynomials q 1,..., q s such that τ(p 1,..., p k ) τ(x 1,..., X n q 1,..., q s ). Proof We prove the claim inductively. Suppose we are working with the space τ(p 1,..., p k q 1,..., q r ), where each p i is a polynomial computed at a distinct gate of the circuit. Suppose p 1 is a polynomial of maximal depth in the circuit (namely it corresponds to the gate that is farthest away from an input variable). If p 1 is equal to X i for some i, then we are done, since all p i s must be at depth 0. Otherwise, by Claims 3 or 4, we get that τ(p 1,..., p k q 1,..., q r ) τ(g, h, p 2,..., p k q 1,..., q r ), where g, h are polynomials computed at gates of lower depth in the circuit. g, h may correspond to the same gate as one of the p i s, in which case we apply Claim 5 (possibly twice) to take care of this duplication. If we repeatedly apply this argument, note that we can apply Claim 5 at most s times. This proves the claim. All that remains is to count dimensions. Note that τ(x d 1,..., Xd n, X 1,..., X n ) is simply the set of all polynomials in X 1,..., X n whose degree in each variable is less than d 2. The dimension of this space is thus (d 2 ) n = d 2n. On the other hand, τ(x 1,..., X n q 1,..., q s ) is spanned by a set of at most 2 s d n polynomials. Thus 2 s d n d 2n s n log d. 2 Schwartz Zippel Lemma Lemma 7. Let 0 p F[X 1,..., X n ] be a polynomial of total degree at most d. Then p has at most d F n 1 roots. 15 An Arithmetic Circuit Lowerbound and Flows in Graphs-2
3 Proof We proceed by induction on n. The base case is that a univariate polynomial of degree d can have at most d roots, which we have shown. If n > 1, let p = g t (X 2,..., X n )X1 t + g t 1(X 2,..., X n )X1 t g 0 (X 2,..., X n ). Now consider what happens when we evaluate p at a random point in (a 1,..., a n ) F n, by first sampling X 2,..., X n and then sampling X 1. By induction, Pr[g t (a 2,..., a n ) = 0] (d t)/ F, since it has total degree d t. If g t does not vanish, we are left with a univariate non-zero polynomial of degree t. Thus Pr[p(a 1,..., a n ) = 0 g t (a 2,..., a n ) 0] t/ F. The union bound then completes the argument. 3 Computing Edge Connectivity Given a directed graph G and two vertices s, t, and s t cut in the graph is a subset of vertices S such that s S, t / S. The size of the cut is the number of edges that go from S to the complement of S. The following is a well known theorem: Theorem 8 (Max Flow-Min Cut). The maximum number of edge disjoint paths from s to t is the same the minimum size of an s t cut. Proof Suppose the maximum number of edge disjoint paths is k, and the minimum size of an s t cut is c. Then clearly k c, since each edge disjoint path must cross the cut using a different edge. Let P be a set of k edge disjoint paths. Then consider the graph G P which is obtained from G by reversing the direction of each edge involved in a path of P. If there is a path s t path p in G P, then this path can be used to obtain k + 1 edge disjoint paths from s to t in G as follows. Let E P denote the set of edges involved in the paths P, R p denote the set of edges of E P that were used in p in the reverse direction, and U p denote the set of edges of p that did not come from P. Then it is easy to check that E P U p R p is a set of k + 1 edge disjoint paths. Thus G P contains no s t path. Let S denote the set of vertices reachable from s in G P. There is no edge leaving S in G P. None of the paths in P can enter S from the outside, since otherwise there would be an edge leaving S in G P. Every edge leaving S in G must be used by a path of P, or else again there would be an edge leaving S in G P. Thus there must be at most k edges leaving S, since each path can leave S at most once. This implies that k c. We remark that the above theorem can easily be strengthened to the case of weighted directed graphs, where the weights are viewed as capacities. Then we can talk about flows from s to t, where a flow is an assignment of non-negative values to edges, such that in every vertex except for s and t, the flow in is equal to the flow out. Similarly, the size of a cut can be defined to be the total weight of out going edges that are cut. Essentially the same proof as above can be used to show that the maximum flow is equal to the size of the minimum cut. Here we give a beautiful algorithm by Cheung, Lau and Leung for computing the number of edge disjoint paths. A major selling point of the algorithm is that given a vertex s, it simultaneously computes the number of edge disjoint paths to all vertices t, with a running time that is faster than previously known algorithms for doing this. Another advantage is that the algorithm is extremely simple. Suppose the graph has n vertices and m edges. We work with a vector space over a finite field F t. For every pair of edges e 1, e 2 in the graph, we sample a uniformly random element c e1,e 2 F. 15 An Arithmetic Circuit Lowerbound and Flows in Graphs-3
4 For every edge e in the graph, we shall attempt to associate a vector a e F t, in such a way that the following linear constraints are satisfied: For the j th edge e = (s, v) leaving s, if g 1,..., g l are the edges that come in to s, then a e = i c gi,e a gi + a j, where a j denotes the j th unit vector. For every other edge e = (u, v), if g 1,..., g l are the edges that come in to u, then a e = i c gi,e a gi We can easily express the above linear constraints using matrices. Let C be the matrix whose rows and columns are both indexed by the edges such that C e,e = c e,e. Let A denote the matrix whose rows are indexed by edges, such that the e th row is a e. Then the above linear constraints can be written A = C A + H, where H is matrix that captures the contributions to the constraints that come from the unit vectors (it is independent of the c e,e s). If I C is invertible, then A = (I C) 1 H. Lemma 9. I C is invertible except with probability m/ F. Proof Since C is 0 on the diagonal, I C has ones on the diagonal. Every off-diagonal coordinate is either 0 or a variable. In other words, when all the constants are chosen to be 0, this matrix is the identity. Thus the determinant det(i C) is a non-zero polynomial in the c e,e s of degree at most m. By the Schwartz-Zippel lemma, the probability that the determinant vanishes is at most m/ F, so it has an inverse except with probability m/ F. So with high probability, we get a unique solution A = (I C) 1 H. Next we shall argue that the number of edge disjoint paths from s to t is equal to the rank of the vectors coming in to t with high probability. Let A t denote the matrix whose rows are the vectors a e for edges e coming in to t. Theorem 10. The rank rk(a t ) is equal to the number of edge disjoint paths from s to t, except with probability m 2 / F. Proof Let k be the size of a minimum s t cut S. Then observe that the vectors for edges that are outside S can be expressed as linear combinations of vectors associated with the edges leaving S. Thus, the rk(a t ) k. Consider any set of k edge disjoint paths P from s to t. If we set c e,e = 1 for each pair of edges that are adjacent in P, and set all other constants to 0, then the constraints are satisfied by the vectors that send a distinct unit vector along each path to t. Thus, in this case A t contains k distinct unit vectors, as rows and so must contain a k k submatrix of rank k. Call this submatrix A t. We shall argue that rk(a t) = k with high probability. Indeed, each entry of A = (I C) 1 H is a polynomial of degree m 1, divided by det(i C). Thus det(a t) is a polynomial of degree at most k(m 1) m(m 1), divided by det(i C) k. These 15 An Arithmetic Circuit Lowerbound and Flows in Graphs-4
5 polynomials do have some setting that gives them a non-zero value, as we saw by considering the k disjoint paths. By the union bound, the probability that either the numerator or denominators vanish is at most m(m 1)/ F + m/ F. The algorithm involves computing A = (I C) 1 H, and then computing the rank of A t for each t. 15 An Arithmetic Circuit Lowerbound and Flows in Graphs-5
Lecture 1: Course overview, circuits, and formulas
Lecture 1: Course overview, circuits, and formulas Topics in Complexity Theory and Pseudorandomness (Spring 2013) Rutgers University Swastik Kopparty Scribes: John Kim, Ben Lund 1 Course Information Swastik
Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.
Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(
2.1 Complexity Classes
15-859(M): Randomized Algorithms Lecturer: Shuchi Chawla Topic: Complexity classes, Identity checking Date: September 15, 2004 Scribe: Andrew Gilpin 2.1 Complexity Classes In this lecture we will look
Lecture 4: AC 0 lower bounds and pseudorandomness
Lecture 4: AC 0 lower bounds and pseudorandomness Topics in Complexity Theory and Pseudorandomness (Spring 2013) Rutgers University Swastik Kopparty Scribes: Jason Perry and Brian Garnett In this lecture,
Similarity and Diagonalization. Similar Matrices
MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a
3. Linear Programming and Polyhedral Combinatorics
Massachusetts Institute of Technology Handout 6 18.433: Combinatorial Optimization February 20th, 2009 Michel X. Goemans 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the
Orthogonal Diagonalization of Symmetric Matrices
MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding
(67902) Topics in Theory and Complexity Nov 2, 2006. Lecture 7
(67902) Topics in Theory and Complexity Nov 2, 2006 Lecturer: Irit Dinur Lecture 7 Scribe: Rani Lekach 1 Lecture overview This Lecture consists of two parts In the first part we will refresh the definition
Lecture 3: Finding integer solutions to systems of linear equations
Lecture 3: Finding integer solutions to systems of linear equations Algorithmic Number Theory (Fall 2014) Rutgers University Swastik Kopparty Scribe: Abhishek Bhrushundi 1 Overview The goal of this lecture
MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.
MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column
Mathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
Discrete Mathematics. Hans Cuypers. October 11, 2007
Hans Cuypers October 11, 2007 1 Contents 1. Relations 4 1.1. Binary relations................................ 4 1.2. Equivalence relations............................. 6 1.3. Relations and Directed Graphs.......................
1 The Line vs Point Test
6.875 PCP and Hardness of Approximation MIT, Fall 2010 Lecture 5: Low Degree Testing Lecturer: Dana Moshkovitz Scribe: Gregory Minton and Dana Moshkovitz Having seen a probabilistic verifier for linearity
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +
DATA ANALYSIS II. Matrix Algorithms
DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where
SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH
31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,
DETERMINANTS IN THE KRONECKER PRODUCT OF MATRICES: THE INCIDENCE MATRIX OF A COMPLETE GRAPH
DETERMINANTS IN THE KRONECKER PRODUCT OF MATRICES: THE INCIDENCE MATRIX OF A COMPLETE GRAPH CHRISTOPHER RH HANUSA AND THOMAS ZASLAVSKY Abstract We investigate the least common multiple of all subdeterminants,
Methods for Finding Bases
Methods for Finding Bases Bases for the subspaces of a matrix Row-reduction methods can be used to find bases. Let us now look at an example illustrating how to obtain bases for the row space, null space,
Zachary Monaco Georgia College Olympic Coloring: Go For The Gold
Zachary Monaco Georgia College Olympic Coloring: Go For The Gold Coloring the vertices or edges of a graph leads to a variety of interesting applications in graph theory These applications include various
Algebraic Computation Models. Algebraic Computation Models
Algebraic Computation Models Ζυγομήτρος Ευάγγελος ΜΠΛΑ 201118 Φεβρουάριος, 2013 Reasons for using algebraic models of computation The Turing machine model captures computations on bits. Many algorithms
LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS. 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method
LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method Introduction to dual linear program Given a constraint matrix A, right
8 Square matrices continued: Determinants
8 Square matrices continued: Determinants 8. Introduction Determinants give us important information about square matrices, and, as we ll soon see, are essential for the computation of eigenvalues. You
Linear Codes. Chapter 3. 3.1 Basics
Chapter 3 Linear Codes In order to define codes that we can encode and decode efficiently, we add more structure to the codespace. We shall be mainly interested in linear codes. A linear code of length
THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS
THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear
Classification of Cartan matrices
Chapter 7 Classification of Cartan matrices In this chapter we describe a classification of generalised Cartan matrices This classification can be compared as the rough classification of varieties in terms
Split Nonthreshold Laplacian Integral Graphs
Split Nonthreshold Laplacian Integral Graphs Stephen Kirkland University of Regina, Canada [email protected] Maria Aguieiras Alvarez de Freitas Federal University of Rio de Janeiro, Brazil [email protected]
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation
ISOMETRIES OF R n KEITH CONRAD
ISOMETRIES OF R n KEITH CONRAD 1. Introduction An isometry of R n is a function h: R n R n that preserves the distance between vectors: h(v) h(w) = v w for all v and w in R n, where (x 1,..., x n ) = x
Practical Guide to the Simplex Method of Linear Programming
Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear
Applied Algorithm Design Lecture 5
Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design
IE 680 Special Topics in Production Systems: Networks, Routing and Logistics*
IE 680 Special Topics in Production Systems: Networks, Routing and Logistics* Rakesh Nagi Department of Industrial Engineering University at Buffalo (SUNY) *Lecture notes from Network Flows by Ahuja, Magnanti
MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.
MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all n-dimensional column
Analysis of Algorithms, I
Analysis of Algorithms, I CSOR W4231.002 Eleni Drinea Computer Science Department Columbia University Thursday, February 26, 2015 Outline 1 Recap 2 Representing graphs 3 Breadth-first search (BFS) 4 Applications
The Goldberg Rao Algorithm for the Maximum Flow Problem
The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }
Chapter 6. Orthogonality
6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be
Approximation Algorithms
Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms
A note on companion matrices
Linear Algebra and its Applications 372 (2003) 325 33 www.elsevier.com/locate/laa A note on companion matrices Miroslav Fiedler Academy of Sciences of the Czech Republic Institute of Computer Science Pod
THE DIMENSION OF A VECTOR SPACE
THE DIMENSION OF A VECTOR SPACE KEITH CONRAD This handout is a supplementary discussion leading up to the definition of dimension and some of its basic properties. Let V be a vector space over a field
GENERATING SETS KEITH CONRAD
GENERATING SETS KEITH CONRAD 1 Introduction In R n, every vector can be written as a unique linear combination of the standard basis e 1,, e n A notion weaker than a basis is a spanning set: a set of vectors
On the representability of the bi-uniform matroid
On the representability of the bi-uniform matroid Simeon Ball, Carles Padró, Zsuzsa Weiner and Chaoping Xing August 3, 2012 Abstract Every bi-uniform matroid is representable over all sufficiently large
SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by
SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples
o-minimality and Uniformity in n 1 Graphs
o-minimality and Uniformity in n 1 Graphs Reid Dale July 10, 2013 Contents 1 Introduction 2 2 Languages and Structures 2 3 Definability and Tame Geometry 4 4 Applications to n 1 Graphs 6 5 Further Directions
AN ALGORITHM FOR DETERMINING WHETHER A GIVEN BINARY MATROID IS GRAPHIC
AN ALGORITHM FOR DETERMINING WHETHER A GIVEN BINARY MATROID IS GRAPHIC W. T. TUTTE. Introduction. In a recent series of papers [l-4] on graphs and matroids I used definitions equivalent to the following.
IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction
IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL R. DRNOVŠEK, T. KOŠIR Dedicated to Prof. Heydar Radjavi on the occasion of his seventieth birthday. Abstract. Let S be an irreducible
On Integer Additive Set-Indexers of Graphs
On Integer Additive Set-Indexers of Graphs arxiv:1312.7672v4 [math.co] 2 Mar 2014 N K Sudev and K A Germina Abstract A set-indexer of a graph G is an injective set-valued function f : V (G) 2 X such that
ONLINE DEGREE-BOUNDED STEINER NETWORK DESIGN. Sina Dehghani Saeed Seddighin Ali Shafahi Fall 2015
ONLINE DEGREE-BOUNDED STEINER NETWORK DESIGN Sina Dehghani Saeed Seddighin Ali Shafahi Fall 2015 ONLINE STEINER FOREST PROBLEM An initially given graph G. s 1 s 2 A sequence of demands (s i, t i ) arriving
Chapter 17. Orthogonal Matrices and Symmetries of Space
Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length
GROUPS ACTING ON A SET
GROUPS ACTING ON A SET MATH 435 SPRING 2012 NOTES FROM FEBRUARY 27TH, 2012 1. Left group actions Definition 1.1. Suppose that G is a group and S is a set. A left (group) action of G on S is a rule for
Large induced subgraphs with all degrees odd
Large induced subgraphs with all degrees odd A.D. Scott Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, England Abstract: We prove that every connected graph of order
Solving Linear Systems, Continued and The Inverse of a Matrix
, Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing
Social Media Mining. Graph Essentials
Graph Essentials Graph Basics Measures Graph and Essentials Metrics 2 2 Nodes and Edges A network is a graph nodes, actors, or vertices (plural of vertex) Connections, edges or ties Edge Node Measures
Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 [email protected].
Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 [email protected] This paper contains a collection of 31 theorems, lemmas,
Tree-representation of set families and applications to combinatorial decompositions
Tree-representation of set families and applications to combinatorial decompositions Binh-Minh Bui-Xuan a, Michel Habib b Michaël Rao c a Department of Informatics, University of Bergen, Norway. [email protected]
Math 312 Homework 1 Solutions
Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please
! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm.
Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of three
V. Adamchik 1. Graph Theory. Victor Adamchik. Fall of 2005
V. Adamchik 1 Graph Theory Victor Adamchik Fall of 2005 Plan 1. Basic Vocabulary 2. Regular graph 3. Connectivity 4. Representing Graphs Introduction A.Aho and J.Ulman acknowledge that Fundamentally, computer
High degree graphs contain large-star factors
High degree graphs contain large-star factors Dedicated to László Lovász, for his 60th birthday Noga Alon Nicholas Wormald Abstract We show that any finite simple graph with minimum degree d contains a
Inner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
Nimble Algorithms for Cloud Computing. Ravi Kannan, Santosh Vempala and David Woodruff
Nimble Algorithms for Cloud Computing Ravi Kannan, Santosh Vempala and David Woodruff Cloud computing Data is distributed arbitrarily on many servers Parallel algorithms: time Streaming algorithms: sublinear
Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.
Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry
USE OF EIGENVALUES AND EIGENVECTORS TO ANALYZE BIPARTIVITY OF NETWORK GRAPHS
USE OF EIGENVALUES AND EIGENVECTORS TO ANALYZE BIPARTIVITY OF NETWORK GRAPHS Natarajan Meghanathan Jackson State University, 1400 Lynch St, Jackson, MS, USA [email protected] ABSTRACT This
6. Cholesky factorization
6. Cholesky factorization EE103 (Fall 2011-12) triangular matrices forward and backward substitution the Cholesky factorization solving Ax = b with A positive definite inverse of a positive definite matrix
Lecture 7: NP-Complete Problems
IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 7: NP-Complete Problems David Mix Barrington and Alexis Maciel July 25, 2000 1. Circuit
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory
Introduction to computer science
Introduction to computer science Michael A. Nielsen University of Queensland Goals: 1. Introduce the notion of the computational complexity of a problem, and define the major computational complexity classes.
Social Media Mining. Network Measures
Klout Measures and Metrics 22 Why Do We Need Measures? Who are the central figures (influential individuals) in the network? What interaction patterns are common in friends? Who are the like-minded users
5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1
5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 General Integer Linear Program: (ILP) min c T x Ax b x 0 integer Assumption: A, b integer The integrality condition
Minimally Infeasible Set Partitioning Problems with Balanced Constraints
Minimally Infeasible Set Partitioning Problems with alanced Constraints Michele Conforti, Marco Di Summa, Giacomo Zambelli January, 2005 Revised February, 2006 Abstract We study properties of systems of
Determination of the normalization level of database schemas through equivalence classes of attributes
Computer Science Journal of Moldova, vol.17, no.2(50), 2009 Determination of the normalization level of database schemas through equivalence classes of attributes Cotelea Vitalie Abstract In this paper,
Continued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs
Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs Kousha Etessami U. of Edinburgh, UK Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 1 / 13 Overview Graphs and Graph
Graph theoretic techniques in the analysis of uniquely localizable sensor networks
Graph theoretic techniques in the analysis of uniquely localizable sensor networks Bill Jackson 1 and Tibor Jordán 2 ABSTRACT In the network localization problem the goal is to determine the location of
1 Formulating The Low Degree Testing Problem
6.895 PCP and Hardness of Approximation MIT, Fall 2010 Lecture 5: Linearity Testing Lecturer: Dana Moshkovitz Scribe: Gregory Minton and Dana Moshkovitz In the last lecture, we proved a weak PCP Theorem,
G = G 0 > G 1 > > G k = {e}
Proposition 49. 1. A group G is nilpotent if and only if G appears as an element of its upper central series. 2. If G is nilpotent, then the upper central series and the lower central series have the same
Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs
Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs Yong Zhang 1.2, Francis Y.L. Chin 2, and Hing-Fung Ting 2 1 College of Mathematics and Computer Science, Hebei University,
Lecture 4: Partitioned Matrices and Determinants
Lecture 4: Partitioned Matrices and Determinants 1 Elementary row operations Recall the elementary operations on the rows of a matrix, equivalent to premultiplying by an elementary matrix E: (1) multiplying
Orthogonal Projections
Orthogonal Projections and Reflections (with exercises) by D. Klain Version.. Corrections and comments are welcome! Orthogonal Projections Let X,..., X k be a family of linearly independent (column) vectors
Discuss the size of the instance for the minimum spanning tree problem.
3.1 Algorithm complexity The algorithms A, B are given. The former has complexity O(n 2 ), the latter O(2 n ), where n is the size of the instance. Let n A 0 be the size of the largest instance that can
4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION
4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION STEVEN HEILMAN Contents 1. Review 1 2. Diagonal Matrices 1 3. Eigenvectors and Eigenvalues 2 4. Characteristic Polynomial 4 5. Diagonalizability 6 6. Appendix:
Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010. Chapter 7: Digraphs
MCS-236: Graph Theory Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010 Chapter 7: Digraphs Strong Digraphs Definitions. A digraph is an ordered pair (V, E), where V is the set
1 Sets and Set Notation.
LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most
α = u v. In other words, Orthogonal Projection
Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v
The Characteristic Polynomial
Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem
Midterm Practice Problems
6.042/8.062J Mathematics for Computer Science October 2, 200 Tom Leighton, Marten van Dijk, and Brooke Cowan Midterm Practice Problems Problem. [0 points] In problem set you showed that the nand operator
Logistic Regression. Jia Li. Department of Statistics The Pennsylvania State University. Logistic Regression
Logistic Regression Department of Statistics The Pennsylvania State University Email: [email protected] Logistic Regression Preserve linear classification boundaries. By the Bayes rule: Ĝ(x) = arg max
The Basics of Graphical Models
The Basics of Graphical Models David M. Blei Columbia University October 3, 2015 Introduction These notes follow Chapter 2 of An Introduction to Probabilistic Graphical Models by Michael Jordan. Many figures
ON INDUCED SUBGRAPHS WITH ALL DEGREES ODD. 1. Introduction
ON INDUCED SUBGRAPHS WITH ALL DEGREES ODD A.D. SCOTT Abstract. Gallai proved that the vertex set of any graph can be partitioned into two sets, each inducing a subgraph with all degrees even. We prove
Determinants in the Kronecker product of matrices: The incidence matrix of a complete graph
FPSAC 2009 DMTCS proc (subm), by the authors, 1 10 Determinants in the Kronecker product of matrices: The incidence matrix of a complete graph Christopher R H Hanusa 1 and Thomas Zaslavsky 2 1 Department
FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT MINING SYSTEM
International Journal of Innovative Computing, Information and Control ICIC International c 0 ISSN 34-48 Volume 8, Number 8, August 0 pp. 4 FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT
Definition 11.1. Given a graph G on n vertices, we define the following quantities:
Lecture 11 The Lovász ϑ Function 11.1 Perfect graphs We begin with some background on perfect graphs. graphs. First, we define some quantities on Definition 11.1. Given a graph G on n vertices, we define
136 CHAPTER 4. INDUCTION, GRAPHS AND TREES
136 TER 4. INDUCTION, GRHS ND TREES 4.3 Graphs In this chapter we introduce a fundamental structural idea of discrete mathematics, that of a graph. Many situations in the applications of discrete mathematics
MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).
MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0
Lecture 17 : Equivalence and Order Relations DRAFT
CS/Math 240: Introduction to Discrete Mathematics 3/31/2011 Lecture 17 : Equivalence and Order Relations Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Last lecture we introduced the notion
CS 598CSC: Combinatorial Optimization Lecture date: 2/4/2010
CS 598CSC: Combinatorial Optimization Lecture date: /4/010 Instructor: Chandra Chekuri Scribe: David Morrison Gomory-Hu Trees (The work in this section closely follows [3]) Let G = (V, E) be an undirected
Introduction to Finite Fields (cont.)
Chapter 6 Introduction to Finite Fields (cont.) 6.1 Recall Theorem. Z m is a field m is a prime number. Theorem (Subfield Isomorphic to Z p ). Every finite field has the order of a power of a prime number
LINEAR ALGEBRA W W L CHEN
LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,
