ALGEBRA 2/TRIGONOMETRY
|
|
|
- Lee Martin
- 9 years ago
- Views:
Transcription
1 ALGEBRA /TRIGONOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA /TRIGONOMETRY Tuesday, January 8, 014 1:15 to 4:15 p.m., only Student Name: School Name: The possession or use of any communications device is strictly prohibited when taking this examination. If you have or use any communications device, no matter how briefly, your examination will be invalidated and no score will be calculated for you. Print your name and the name of your school on the lines above. A separate answer sheet for Part I has been provided to you. Follow the instructions from the proctor for completing the student information on your answer sheet. This examination has four parts, with a total of 39 questions. You must answer all questions in this examination. Record your answers to the Part I multiple-choice questions on the separate answer sheet. Write your answers to the questions in Parts II, III, and IV directly in this booklet. All work should be written in pen, except for graphs and drawings, which should be done in pencil. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. The formulas that you may need to answer some questions in this examination are found at the end of the examination. This sheet is perforated so you may remove it from this booklet. Scrap paper is not permitted for any part of this examination, but you may use the blank spaces in this booklet as scrap paper. A perforated sheet of scrap graph paper is provided at the end of this booklet for any question for which graphing may be helpful but is not required. You may remove this sheet from this booklet. Any work done on this sheet of scrap graph paper will not be scored. When you have completed the examination, you must sign the statement printed at the end of the answer sheet, indicating that you had no unlawful knowledge of the questions or answers prior to the examination and that you have neither given nor received assistance in answering any of the questions during the examination. Your answer sheet cannot be accepted if you fail to sign this declaration. Notice A graphing calculator and a straightedge (ruler) must be available for you to use while taking this examination. DO NOT OPEN THIS EXAMINATION BOOKLET UNTIL THE SIGNAL IS GIVEN. ALGEBRA /TRIGONOMETRY
2 Part I Answer all 7 questions in this part. Each correct answer will receive credits. For each statement or question, choose the word or expression that, of those given, best completes the statement or answers the question. Record your answers on your separate answer sheet. [54] 1 What is the common difference in the sequence a 1, 4a 4, 6a 7, 8a 10,...? (1) a 3 (3) a 5 () a 3 (4) a 5 Use this space for computations. Which expression is equivalent to 3 x 1 ( )? 1 1 (1) (3) 3x 9x () 3x (4) 9x 3 If g(x) 1 x 8 and h(x) 1 x, what is the value of g(h( 8))? (1) 0 (3) 5 () 9 (4) The expression 7 11 is equivalent to (1) 7 11 (3) () 7 11 (4) Algebra /Trigonometry January 14 []
3 b a c 5 The expression is equivalent to b d c c 1 (1) (3) d 1 ac cd b b Use this space for computations. a b () (4) d b ac cd A school cafeteria has five different lunch periods. The cafeteria staff wants to find out which items on the menu are most popular, so they give every student in the first lunch period a list of questions to answer in order to collect data to represent the school. Which type of study does this represent? (1) observation (3) population survey () controlled experiment (4) sample survey 7 Which relation is both one-to-one and onto? r m h s 4 5 r m h s (1) (3) r m h s r m h s () (4) Algebra /Trigonometry January 14 [3] [OVER]
4 8 Max solves a quadratic equation by completing the square. He shows a correct step: Use this space for computations. (x ) 9 What are the solutions to his equation? (1) 3i (3) 3 i () 3i (4) 3 i 9 Which expression represents the total number of different 11-letter arrangements that can be made using the letters in the word MATHEMATICS? (1) 11! 3! (3) () 11!!!! (4) 11! 8! 11!!!! 10 If $5000 is invested at a rate of 3% interest compounded quarterly, what is the value of the investment in 5 years? (Use the formula A P r ( 1 nt n ), where A is the amount accrued, P is the principal, r is the interest rate, n is the number of times per year the money is compounded, and t is the length of time, in years.) (1) $ (3) $ () $ (4) $ The roots of the equation x 4 9x are (1) real, rational, and equal () real, rational, and unequal (3) real, irrational, and unequal (4) imaginary Algebra /Trigonometry January 14 [4]
5 1 If d varies inversely as t, and d 0 when t, what is the value of t when d 5? (1) 8 (3) 8 () (4) Use this space for computations. 13 If sin A 7 and A terminates in Quadrant IV, tan A equals 5 (1) 7 5 (3) () 7 4 (4) Which expression is equivalent to ( a n) n 1 (1) a 17 (3) a 10a 17 () 4a 30 (4) 4a 0a 30 4? 15 What are the coordinates of the center of a circle whose equation is x y 16x 6y 53 0? (1) ( 8, 3) (3) (8, 3) () ( 8,3) (4) (8,3) Algebra /Trigonometry January 14 [5] [OVER]
6 16 For y 3, what are the domain and range? x 4 (1) {x x 4} and {y y 0} (3) {x x 4} and {y y 0} () {x x 4} and {y y 0} (4) {x x 4} and {y y 0} Use this space for computations. 17 A math club has 30 boys and 0 girls. Which expression represents the total number of different 5-member teams, consisting of 3 boys and girls, that can be formed? (1) 30 P 3 0 P (3) 30 P 3 0 P () 30 C 3 0 C (4) 30 C 3 0 C 18 What is the product of the roots of x 4x k 0 if one of the roots is 7? (1) 1 (3) 1 () 11 (4) In DEF, d 5, e 8, and m D 3. How many distinct triangles can be drawn given these measurements? (1) 1 (3) 3 () (4) 0 0 Liz has applied to a college that requires students to score in the top 6.7% on the mathematics portion of an aptitude test. The scores on the test are approximately normally distributed with a mean score of 576 and a standard deviation of 104. What is the minimum score Liz must earn to meet this requirement? (1) 680 (3) 740 () 73 (4) 784 Algebra /Trigonometry January 14 [6]
7 3 3 ( )( 4 ) 1 The expression 7x 16x is equivalent to Use this space for computations. 3 (1) 1x (3) 6x x 3 () 1x x (4) 6x 3 3 Which sketch shows the inverse of y a x, where a 1? y y 1 x 1 x (1) (3) y y 1 x 1 x () (4) Algebra /Trigonometry January 14 [7] [OVER]
8 x 9x 3 The expression ( x) is equivalent to x 11 (1) x 11 (3) 11 x 1 1 () x 11 (4) 11 x Use this space for computations. 4 Which graph represents the solution set of x 16 x 7? (1) 0 5 () 0 5 (3) 0 5 (4) 0 5 Algebra /Trigonometry January 14 [8]
9 5 Which equation represents a graph that has a period of 4π? Use this space for computations. (1) y 3 sin 1 x (3) y 3 sin 1 4 x () y 3 sin x (4) y 3 sin 4x 6 The expression x (x ) (x ) is equivalent to (1) x (3) x 3 x x () x 1 (4) (x 1)(x 1)(x ) 7 Approximately how many degrees does five radians equal? π (1) 86 (3) 36 () 900 (4) 5π Algebra /Trigonometry January 14 [9] [OVER]
10 Part II Answer all 8 questions in this part. Each correct answer will receive credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [16] 8 Show that sec θ sin θ cot θ 1 is an identity. 9 Find, to the nearest tenth of a square foot, the area of a rhombus that has a side of 6 feet and an angle of 50. Algebra /Trigonometry January 14 [10]
11 30 The following is a list of the individual points scored by all twelve members of the Webster High School basketball team at a recent game: Find the interquartile range for this set of data. 31 Determine algebraically the x-coordinate of all points where the graphs of xy 10 and y x 3 intersect. Algebra /Trigonometry January 14 [11] [OVER]
12 3 Solve 4x 5 13 algebraically for x. 33 Express 4xi 5yi 8 6xi 3 yi 4 in simplest a bi form. Algebra /Trigonometry January 14 [1]
13 34 In an arithmetic sequence, a 4 19 and a Determine a formula for a n, the n th term of this sequence. Algebra /Trigonometry January 14 [13] [OVER]
14 35 Circle O shown below has a radius of 1 centimeters. To the nearest tenth of a centimeter, determine the length of the arc, x, subtended by an angle of x 1 cm O Algebra /Trigonometry January 14 [14]
15 Part III Answer all 3 questions in this part. Each correct answer will receive 4 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [1] 36 Solve algebraically for all exact values of x in the interval 0 x π: sin x 5 sin x 3 Algebra /Trigonometry January 14 [15] [OVER]
16 37 Because Sam s backyard gets very little sunlight, the probability that a geranium planted there will flower is 0.8. Sam planted five geraniums. Determine the probability, to the nearest thousandth, that at least four geraniums will flower. Algebra /Trigonometry January 14 [16]
17 38 Two sides of a parallelogram measure 7 cm and 3 cm. The included angle measures 48. Find the length of the longer diagonal of the parallelogram, to the nearest centimeter. Algebra /Trigonometry January 14 [17] [OVER]
18 Part IV Answer the question in this part. A correct answer will receive 6 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. A correct numerical answer with no work shown will receive only 1 credit. The answer should be written in pen. [6] 39 Solve algebraically for all values of x: log (x 3) (x 3) log (x 3) (x 5) Algebra /Trigonometry January 14 [18]
19 Tear Here Tear Here Area of a Triangle K _ 1 ab sin C Functions of the Sum of Two Angles sin (A + B) sin A cos B + cos A sin B cos (A + B) cos A cos B sin A sin B tan A + tan B tan (A + B) 1 tan A tan B Functions of the Difference of Two Angles sin (A B) sin A cos B cos A sin B cos (A B) cos A cos B + sin A sin B tan A tan B tan (A B) 1 + tan A tan B Law of Sines a sin A b sin B c sin C Reference Sheet Law of Cosines a b + c bc cos A Functions of the Double Angle sin A sin A cos A cos A cos A sin A cos A cos A 1 cos A 1 sin A tan A tan A 1 tan A Functions of the Half Angle sin _ 1 A 1 cos A cos _ 1 A 1 + cos A tan _ 1 A 1 cos A 1 + cos A Sum of a Finite Arithmetic Series S n n(a 1 + a n ) Sum of a Finite Geometric Series S n a 1(1 r n ) Binomial Theorem 1 r (a + b) n n C 0 a n b 0 + n C 1 a n 1 b 1 + n C a n b n C n a 0 b n n (a + b) n nc r a n r b r r = 0 Algebra /Trigonometry January 14 [19]
20 Tear Here Tear Here
21 Tear Here Tear Here Scrap Graph Paper This sheet will not be scored.
22 Scrap Graph Paper This sheet will not be scored. Tear Here Tear Here
23
24 ALGEBRA /TRIGONOMETRY Printed on Recycled Paper ALGEBRA /TRIGONOMETRY
ALGEBRA 2/TRIGONOMETRY
ALGEBRA /TRIGONOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA /TRIGONOMETRY Thursday, January 9, 015 9:15 a.m to 1:15 p.m., only Student Name: School Name: The possession
Friday, January 29, 2016 9:15 a.m. to 12:15 p.m., only
ALGEBRA /TRIGONOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA /TRIGONOMETRY Friday, January 9, 016 9:15 a.m. to 1:15 p.m., only Student Name: School Name: The possession
ALGEBRA 2/TRIGONOMETRY
ALGEBRA /TRIGONOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA /TRIGONOMETRY Tuesday, June 1, 011 1:15 to 4:15 p.m., only Student Name: School Name: Print your name
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS B. Tuesday, August 16, 2005 8:30 to 11:30 a.m.
MATHEMATICS B The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS B Tuesday, August 16, 2005 8:30 to 11:30 a.m., only Print Your Name: Print Your School's Name: Print your
ALGEBRA I (Common Core) Wednesday, August 13, 2014 8:30 to 11:30 a.m., only
ALGEBRA I (COMMON CORE) The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA I (Common Core) Wednesday, August 13, 2014 8:30 to 11:30 a.m., only Student Name: School Name: The
ALGEBRA I (Common Core) Thursday, January 28, 2016 1:15 to 4:15 p.m., only
ALGEBRA I (COMMON CORE) The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA I (Common Core) Thursday, January 28, 2016 1:15 to 4:15 p.m., only Student Name: School Name: The
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS B. Thursday, January 29, 2004 9:15 a.m. to 12:15 p.m.
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS B Thursday, January 9, 004 9:15 a.m. to 1:15 p.m., only Print Your Name: Print Your School s Name: Print your name and
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION INTEGRATED ALGEBRA. Tuesday, January 22, 2013 9:15 a.m. to 12:15 p.m.
INTEGRATED ALGEBRA The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION INTEGRATED ALGEBRA Tuesday, January 22, 2013 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, August 13, 2013 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications
ALGEBRA I (Common Core) Tuesday, June 3, 2014 9:15 a.m. to 12:15 p.m., only
ALGEBRA I (COMMON CORE) The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA I (Common Core) Tuesday, June 3, 2014 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION INTEGRATED ALGEBRA. Thursday, August 16, 2012 8:30 to 11:30 a.m.
INTEGRATED ALGEBRA The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION INTEGRATED ALGEBRA Thursday, August 16, 2012 8:30 to 11:30 a.m., only Student Name: School Name: Print your name
ALGEBRA I (Common Core) Thursday, June 16, 2016 9:15 a.m. to 12:15 p.m., only
ALGEBRA I (COMMON CORE) The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA I (Common Core) Thursday, June 16, 2016 9:15 a.m. to 12:15 p.m., only Student Name: School Name:
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, June 20, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS A. Thursday, January 29, 2009 1:15 to 4:15 p.m.
MATHEMATICS A The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS A Thursday, January 29, 2009 1:15 to 4:15 p.m., only Print Your Name: Print Your School s Name: Print your
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION INTEGRATED ALGEBRA. Wednesday, June 12, 2013 1:15 to 4:15 p.m.
INTEGRATED ALGEBRA The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION INTEGRATED ALGEBRA Wednesday, June 12, 2013 1:15 to 4:15 p.m., only Student Name: School Name: The possession
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION INTEGRATED ALGEBRA. Thursday, June 14, 2012 1:15 to 4:15 p.m.
INTEGRATED ALGEBRA The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION INTEGRATED ALGEBRA Thursday, June 14, 2012 1:15 to 4:15 p.m., only Student Name: School Name: Print your name
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION INTEGRATED ALGEBRA. Tuesday, January 27, 2015 1:15 to 4:15 p.m.
INTEGRATED ALGEBRA The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION INTEGRATED ALGEBRA Tuesday, January 27, 2015 1:15 to 4:15 p.m., only Student Name: School Name: The possession
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2015 8:30 to 11:30 a.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2015 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, January 26, 2016 1:15 to 4:15 p.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, January 26, 2016 1:15 to 4:15 p.m., only Student Name: School Name: The possession or use of any communications
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, August 18, 2010 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, June 17, 2010 1:15 to 4:15 p.m., only Student Name: School Name: Print your name and the name of your
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS A. Tuesday, August 13, 2002 8:30 to 11:30 a.m.
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS A Tuesday, August 13, 2002 8:30 to 11:30 a.m., only Print Your Name: Print Your School s Name: Print your name and the
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2009 8:30 to 11:30 a.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2009 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your
ALGEBRA I (Common Core) Monday, January 26, 2015 1:15 to 4:15 p.m., only
ALGEBRA I (COMMON CORE) The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA I (Common Core) Monday, January 26, 2015 1:15 to 4:15 p.m., only Student Name: School Name: The possession
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 16, 2012 8:30 to 11:30 a.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 16, 2012 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS A. Monday, January 27, 2003 1:15 to 4:15 p.m.
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS A Monday, January 27, 2003 1:15 to 4:15 p.m., only Print Your Name: Print Your School s Name: Print your name and the
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXMINTION GEOMETRY Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name
GEOMETRY (Common Core)
GEOMETRY (COMMON CORE) The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY (Common Core) Thursday, January 28, 2016 9:15 a.m. to 12:15 p.m., only Student Name: School Name:
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION INTEGRATED ALGEBRA. Tuesday, January 24, 2012 9:15 a.m. to 12:15 p.m.
INTEGRATED ALGEBRA The Universit of the State of New York REGENTS HIGH SCHOOL EXAMINATION INTEGRATED ALGEBRA Tuesda, Januar 4, 01 9:15 a.m. to 1:15 p.m., onl Student Name: School Name: Print our name and
GEOMETRY (Common Core)
GEOMETRY (COMMON CORE) The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY (Common Core) Tuesday, June 2, 2015 1:15 to 4:15 p.m., only Student Name: School Name: The possession
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS A. Monday, January 26, 2004 1:15 to 4:15 p.m.
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS A Monday, January 26, 2004 1:15 to 4:15 p.m., only Print Your Name: Print Your School s Name: Print your name and the
Math Placement Test Practice Problems
Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211
WEDNESDAY, 2 MAY 1.30 PM 2.25 PM. 3 Full credit will be given only where the solution contains appropriate working.
C 500/1/01 NATIONAL QUALIFICATIONS 01 WEDNESDAY, MAY 1.0 PM.5 PM MATHEMATICS STANDARD GRADE Credit Level Paper 1 (Non-calculator) 1 You may NOT use a calculator. Answer as many questions as you can. Full
You must have: Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.
Write your name here Surname Other names Pearson Edexcel International GCSE Mathematics A Paper 3HR Centre Number Tuesday 6 January 015 Afternoon Time: hours Candidate Number Higher Tier Paper Reference
Sample Test Questions
mathematics College Algebra Geometry Trigonometry Sample Test Questions A Guide for Students and Parents act.org/compass Note to Students Welcome to the ACT Compass Sample Mathematics Test! You are about
South Carolina College- and Career-Ready (SCCCR) Pre-Calculus
South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know
Dear Accelerated Pre-Calculus Student:
Dear Accelerated Pre-Calculus Student: I am very excited that you have decided to take this course in the upcoming school year! This is a fastpaced, college-preparatory mathematics course that will also
MATHEMATICS Unit Pure Core 2
General Certificate of Education January 2008 Advanced Subsidiary Examination MATHEMATICS Unit Pure Core 2 MPC2 Wednesday 9 January 2008 1.30 pm to 3.00 pm For this paper you must have: an 8-page answer
SAT Subject Math Level 2 Facts & Formulas
Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Arithmetic Sequences: PEMDAS (Parentheses
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION COURSE I. Thursday, August 16, 2001 8:30 to 11:30 a.m.
The Universit of the State of New York REGENTS HIGH SCHOOL EXAMINATION THREE-YEAR SEQUENCE FOR HIGH SCHOOL MATHEMATICS COURSE I Thursda, August 16, 2001 8:30 to 11:30 a.m., onl Notice... Scientific calculators
2312 test 2 Fall 2010 Form B
2312 test 2 Fall 2010 Form B 1. Write the slope-intercept form of the equation of the line through the given point perpendicular to the given lin point: ( 7, 8) line: 9x 45y = 9 2. Evaluate the function
Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123
Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from
PRE-CALCULUS GRADE 12
PRE-CALCULUS GRADE 12 [C] Communication Trigonometry General Outcome: Develop trigonometric reasoning. A1. Demonstrate an understanding of angles in standard position, expressed in degrees and radians.
ALGEBRA 2/ TRIGONOMETRY
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA 2/ TRIGONOMETRY Wednesday, June 18, 2014 1:15 4:15 p.m. SAMPLE RESPONSE SET Table of Contents Question 28...................
Paper Reference. Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser. Tracing paper may be used.
Centre No. Candidate No. Paper Reference 1 3 8 0 3 H Paper Reference(s) 1380/3H Edexcel GCSE Mathematics (Linear) 1380 Paper 3 (Non-Calculator) Higher Tier Monday 18 May 2009 Afternoon Time: 1 hour 45
Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress
Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation
Core Maths C2. Revision Notes
Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...
6.1 Basic Right Triangle Trigonometry
6.1 Basic Right Triangle Trigonometry MEASURING ANGLES IN RADIANS First, let s introduce the units you will be using to measure angles, radians. A radian is a unit of measurement defined as the angle at
MCA Formula Review Packet
MCA Formula Review Packet 1 3 4 5 6 7 The MCA-II / BHS Math Plan Page 1 of 15 Copyright 005 by Claude Paradis 8 9 10 1 11 13 14 15 16 17 18 19 0 1 3 4 5 6 7 30 8 9 The MCA-II / BHS Math Plan Page of 15
Mathematics (Project Maths Phase 1)
2011. S133S Coimisiún na Scrúduithe Stáit State Examinations Commission Junior Certificate Examination Sample Paper Mathematics (Project Maths Phase 1) Paper 2 Ordinary Level Time: 2 hours 300 marks Running
National Quali cations SPECIMEN ONLY. Forename(s) Surname Number of seat. Date of birth Day Month Year Scottish candidate number
N5 SQ9/N5/0 Date Not applicable Duration hour FOR OFFICIAL USE National Quali cations SPECIMEN ONLY Mark Mathematics Paper (Non-Calculator) *SQ9N50* Fill in these boxes and read what is printed below.
You must have: Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.
Write your name here Surname Other names Pearson Edexcel Certificate Pearson Edexcel International GCSE Mathematics A Paper 4H Centre Number Monday 1 January 015 Afternoon Time: hours Candidate Number
Higher Education Math Placement
Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication
Friday 13 June 2014 Morning
H Friday 13 June 2014 Morning GCSE MATHEMATICS B J567/04 Paper 4 (Higher Tier) * 3 0 5 9 4 6 2 0 7 5 * Candidates answer on the Question Paper. OCR supplied materials: None Other materials required: Geometrical
GRE Prep: Precalculus
GRE Prep: Precalculus Franklin H.J. Kenter 1 Introduction These are the notes for the Precalculus section for the GRE Prep session held at UCSD in August 2011. These notes are in no way intended to teach
Georgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1
Accelerated Mathematics 3 This is a course in precalculus and statistics, designed to prepare students to take AB or BC Advanced Placement Calculus. It includes rational, circular trigonometric, and inverse
MATHS LEVEL DESCRIPTORS
MATHS LEVEL DESCRIPTORS Number Level 3 Understand the place value of numbers up to thousands. Order numbers up to 9999. Round numbers to the nearest 10 or 100. Understand the number line below zero, and
Advanced Math Study Guide
Advanced Math Study Guide Topic Finding Triangle Area (Ls. 96) using A=½ bc sin A (uses Law of Sines, Law of Cosines) Law of Cosines, Law of Cosines (Ls. 81, Ls. 72) Finding Area & Perimeters of Regular
Mathematics (Project Maths)
2010. M130 S Coimisiún na Scrúduithe Stáit State Examinations Commission Leaving Certificate Examination Sample Paper Mathematics (Project Maths) Paper 2 Higher Level Time: 2 hours, 30 minutes 300 marks
FOR TEACHERS ONLY. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA 2/TRIGONOMETRY
FOR TEACHERS ONLY The University of the State of New Yk REGENTS HIGH SCHOOL EXAMINATION ALGEBRA 2/TRIGONOMETRY Tuesday, January 28, 2014 1:15 to 4:15 p.m., only SCORING KEY AND RATING GUIDE Mechanics of
Parallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular.
CONDENSED L E S S O N. Parallel and Perpendicular In this lesson you will learn the meaning of parallel and perpendicular discover how the slopes of parallel and perpendicular lines are related use slopes
Mathematics Pre-Test Sample Questions A. { 11, 7} B. { 7,0,7} C. { 7, 7} D. { 11, 11}
Mathematics Pre-Test Sample Questions 1. Which of the following sets is closed under division? I. {½, 1,, 4} II. {-1, 1} III. {-1, 0, 1} A. I only B. II only C. III only D. I and II. Which of the following
Paper Reference. Edexcel GCSE Mathematics (Linear) 1380 Paper 4 (Calculator) Monday 5 March 2012 Afternoon Time: 1 hour 45 minutes
Centre No. Candidate No. Paper Reference 1 3 8 0 4 H Paper Reference(s) 1380/4H Edexcel GCSE Mathematics (Linear) 1380 Paper 4 (Calculator) Higher Tier Monday 5 March 2012 Afternoon Time: 1 hour 45 minutes
Unit 6 Trigonometric Identities, Equations, and Applications
Accelerated Mathematics III Frameworks Student Edition Unit 6 Trigonometric Identities, Equations, and Applications nd Edition Unit 6: Page of 3 Table of Contents Introduction:... 3 Discovering the Pythagorean
Mathematics Placement Examination (MPE)
Practice Problems for Mathematics Placement Eamination (MPE) Revised August, 04 When you come to New Meico State University, you may be asked to take the Mathematics Placement Eamination (MPE) Your inital
Wednesday 6 November 2013 Morning
H Wednesday 6 November 2013 Morning GCSE MATHEMATICS B J567/03 Paper 3 (Higher Tier) *J540550313* Candidates answer on the Question Paper. OCR supplied materials: None Other materials required: Geometrical
Tuesday 6 November 2012 Morning
H Tuesday 6 November 2012 Morning GCSE MATHEMATICS A A502/02 Unit B (Higher Tier) *A516821112* Candidates answer on the Question Paper. OCR supplied materials: None Other materials required: Geometrical
X On record with the USOE.
Textbook Alignment to the Utah Core Algebra 2 Name of Company and Individual Conducting Alignment: Chris McHugh, McHugh Inc. A Credential Sheet has been completed on the above company/evaluator and is
7. 080207a, P.I. A.A.17
Math A Regents Exam 080 Page 1 1. 08001a, P.I. A.A.6 On a map, 1 centimeter represents 40 kilometers. How many kilometers are represented by 8 centimeters? [A] 48 [B] 30 [C] 5 [D] 80. 0800a, P.I. G.G.38
Give an expression that generates all angles coterminal with the given angle. Let n represent any integer. 9) 179
Trigonometry Chapters 1 & 2 Test 1 Name Provide an appropriate response. 1) Find the supplement of an angle whose measure is 7. Find the measure of each angle in the problem. 2) Perform the calculation.
Semester 2, Unit 4: Activity 21
Resources: SpringBoard- PreCalculus Online Resources: PreCalculus Springboard Text Unit 4 Vocabulary: Identity Pythagorean Identity Trigonometric Identity Cofunction Identity Sum and Difference Identities
Law of Cosines. If the included angle is a right angle then the Law of Cosines is the same as the Pythagorean Theorem.
Law of Cosines In the previous section, we learned how the Law of Sines could be used to solve oblique triangles in three different situations () where a side and two angles (SAA) were known, () where
ANALYTICAL METHODS FOR ENGINEERS
UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations
Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary)
Core Standards of the Course Standard 1 Students will acquire number sense and perform operations with real and complex numbers. Objective 1.1 Compute fluently and make reasonable estimates. 1. Simplify
Solutions to Homework 10
Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x
Thursday 28 February 2013 Afternoon
H Thursday 28 February 2013 Afternoon GCSE MATHEMATICS B J567/03 Paper 3 (Higher Tier) *J533610313* Candidates answer on the Question Paper. OCR supplied materials: None Other materials required: Geometrical
Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression.
MAC 1105 Final Review Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression. 1) 8x 2-49x + 6 x - 6 A) 1, x 6 B) 8x - 1, x 6 x -
Coimisiún na Scrúduithe Stáit State Examinations Commission. Leaving Certificate Examination 2015. Mathematics
015. M7 Coimisiún na Scrúduithe Stáit State Examinations Commission Leaving Certificate Examination 015 Mathematics Paper 1 Ordinary Level Friday 5 June Afternoon :00 4:30 300 marks Running total Examination
Chapter 7 Outline Math 236 Spring 2001
Chapter 7 Outline Math 236 Spring 2001 Note 1: Be sure to read the Disclaimer on Chapter Outlines! I cannot be responsible for misfortunes that may happen to you if you do not. Note 2: Section 7.9 will
Section 7.1 Solving Right Triangles
Section 7.1 Solving Right Triangles Note that a calculator will be needed for most of the problems we will do in class. Test problems will involve angles for which no calculator is needed (e.g., 30, 45,
General Certificate of Secondary Education January 2014. Mathematics Unit T3 (With calculator) Higher Tier [GMT31] FRIDAY 10 JANUARY, 9.15am 11.
Centre Number 71 Candidate Number General Certificate of Secondary Education January 2014 Mathematics Unit T3 (With calculator) Higher Tier [GMT31] MV18 FRIDAY 10 JANUARY, 9.15am 11.15 am TIME 2 hours,
Solutions to Exercises, Section 5.1
Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle
Wednesday 15 January 2014 Morning Time: 2 hours
Write your name here Surname Other names Pearson Edexcel Certificate Pearson Edexcel International GCSE Mathematics A Paper 4H Centre Number Wednesday 15 January 2014 Morning Time: 2 hours Candidate Number
Teacher Page Key. Geometry / Day # 13 Composite Figures 45 Min.
Teacher Page Key Geometry / Day # 13 Composite Figures 45 Min. 9-1.G.1. Find the area and perimeter of a geometric figure composed of a combination of two or more rectangles, triangles, and/or semicircles
Thursday 8 November 2012 Afternoon
H Thursday 8 November 2012 Afternoon GCSE MATHEMATICS B J567/04 Paper 4 (Higher Tier) *J517181112* Candidates answer on the Question Paper. OCR supplied materials: None Other materials required: Geometrical
In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data.
MATHEMATICS: THE LEVEL DESCRIPTIONS In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. Attainment target
CSU Fresno Problem Solving Session. Geometry, 17 March 2012
CSU Fresno Problem Solving Session Problem Solving Sessions website: http://zimmer.csufresno.edu/ mnogin/mfd-prep.html Math Field Day date: Saturday, April 21, 2012 Math Field Day website: http://www.csufresno.edu/math/news
Trigonometry Hard Problems
Solve the problem. This problem is very difficult to understand. Let s see if we can make sense of it. Note that there are multiple interpretations of the problem and that they are all unsatisfactory.
Additional Topics in Math
Chapter Additional Topics in Math In addition to the questions in Heart of Algebra, Problem Solving and Data Analysis, and Passport to Advanced Math, the SAT Math Test includes several questions that are
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:
GEOMETRY The University of the State of New Yk REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, June 17, 2010 1:15 to 4:15 p.m., only Student Name: School Name: Print your name and the name of your school
High School Geometry Test Sampler Math Common Core Sampler Test
High School Geometry Test Sampler Math Common Core Sampler Test Our High School Geometry sampler covers the twenty most common questions that we see targeted for this level. For complete tests and break
Angles and Quadrants. Angle Relationships and Degree Measurement. Chapter 7: Trigonometry
Chapter 7: Trigonometry Trigonometry is the study of angles and how they can be used as a means of indirect measurement, that is, the measurement of a distance where it is not practical or even possible
Paper Reference. Edexcel GCSE Mathematics (Linear) 1380 Paper 3 (Non-Calculator) Monday 6 June 2011 Afternoon Time: 1 hour 45 minutes
Centre No. Candidate No. Paper Reference 1 3 8 0 3 H Paper Reference(s) 1380/3H Edexcel GCSE Mathematics (Linear) 1380 Paper 3 (Non-Calculator) Higher Tier Monday 6 June 2011 Afternoon Time: 1 hour 45
SOLVING TRIGONOMETRIC INEQUALITIES (CONCEPT, METHODS, AND STEPS) By Nghi H. Nguyen
SOLVING TRIGONOMETRIC INEQUALITIES (CONCEPT, METHODS, AND STEPS) By Nghi H. Nguyen DEFINITION. A trig inequality is an inequality in standard form: R(x) > 0 (or < 0) that contains one or a few trig functions
