y or f (x) to determine their nature.

Size: px
Start display at page:

Download "y or f (x) to determine their nature."

Transcription

1 Level C5 of challenge: D C5 Fining stationar points of cubic functions functions Mathematical goals Starting points Materials require Time neee To enable learners to: fin the stationar points of a cubic function; etermine the nature of these stationar points; an to iscuss an unerstan these processes. Learners shoul have some knowlege of: ifferentiation of polnomials; fining stationar points of a quaratic function; using or f (x) to etermine their nature. For each learner ou will nee: mini-whiteboar; Sheet 1 Matching. For each small group of learners ou will nee: Car set A Stationar points; large sheet of paper for making a poster; glue stick; felt tip pens. At least 1 hour. Level of challenge: D C5 Fining stationar points of cubic functions C5 1

2 Level of challenge: D C5 Fining stationar points of cubic functions Suggeste approach Beginning the session Use mini-whiteboars an whole group questioning to revise ifferentiation of polnomials an stationar points of a quaratic function b asking a range of questions such as: If = 4x + 5x 1 what is? If = x 3 8x + 6x 1 what is? Fin the x coorinate of the stationar point of = x 8x + 3. How o ou know whether it is a maximum or a minimum? Explain that, to fin the stationar points on a cubic graph, exactl the same metho is use. You ma like to encourage learners to think about the likel shape of the graph. Working in groups (1) Ask learners to work in pairs. Give out Car set A Stationar points an ask learners to sort the cars into functions. Explain that the cars inclue three cubic functions an all the steps require to fin their stationar points an to etermine the nature of those stationar points. Learners have to sort the cars/steps into an appropriate orer an stick them onto the poster paper in three columns, one for each function. Learners who struggle can be given just one or two functions to sort. Learners who fin the task eas coul be aske to fin examples of cubic functions that have onl one stationar point or no stationar points. You shoul encourage them to relate their answers to the erive quaratic functions. Whole group iscussion When all learners have complete at least one function, iscuss the orer in which the have stuck own the steps. Ask learners to compare their orers with pairs sitting near them an to report an ifferences. Discuss how the orers can be checke an which orers are logicall correct. Working in groups () Ask learners to write a comment besie each step of one of their functions, explaining its purpose. Finall, ask them to sketch a graph of the function, marking the stationar points. C5

3 What learners might o next Further ieas Reviewing an extening the learning Give iniviual learners Sheet 1 Matching an ask them to match the equations to the graphs, justifing their choice as full as the can. You ma wish to ask them to match onl two equations an graphs. Learners coul be aske to explore an then sketch a given cubic function that factorises. This woul connect work using the factor theorem with this session on stationar points. This approach coul be use to fin stationar points of other tpes of functions (e.g. functions with fractional or negative inices). This wa of sorting the orer of a solution can be use for solving multi-stage problems on an topic. Level of challenge: D C5 Fining stationar points of cubic functions C5 3

4 Level of challenge: D C5 Fining stationar points of cubic functions BLANK PAGE FOR NOTES C5 4

5 C5 Car set A Stationar points (page 1) 3 3 = x 4x + 5x + 11 = x x x + 3 = x 7x 5x + 9 3x 8x + 5 = 0 6x 8 = 5 = 3x 14x 5 C5 Fining stationar points of cubic functions x = 1 3, = K x = 5 3, x = 1 = 3x x 1 6x = x = 1, = K x = 1 3, x = 5 ( x )( x ) = 0 x = 1, = K 3x 14x 5 = 0 3x x 1 = 0 C5 5

6 C5 Car set A Stationar points (page ) ( 3x 5)( x 1) = 0 ( x )( x ) x = 5, x = 1 3, = K = 0 = 3x 8x + 5 = K x = 1 3, x = 1 C5 Fining stationar points of cubic functions = 6x 14 x = 5 3, = K Maximum is at Minimum is at Minimum is at Maximum is at Maximum is at Minimum is at C5 6

7 C5 Sheet 1 Matching Name: Match these equations to their graph. Give as much evience as ou can to justif our matchings. The graphs are not rawn to scale. Equation 1 Equation 3 3 = x + x 5x = x + 7x + 15x + 1 Equation Equation 4 3 = x 9x + x 10 3 = x x 13x 10 C5 Fining stationar points of cubic functions Graph A Graph B Graph C Graph D C5 7

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level C1 of challenge: D C1 Linking the properties and forms of quadratic of quadratic functions functions Mathematical goals Starting points Materials required Time needed To enable learners to: identif

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level N9 of challenge: B N9 Evaluating directed number statements statements Mathematical goals Starting points Materials required Time needed To enable learners to: make valid generalisations about the

More information

Mathematics. Circles. hsn.uk.net. Higher. Contents. Circles 119 HSN22400

Mathematics. Circles. hsn.uk.net. Higher. Contents. Circles 119 HSN22400 hsn.uk.net Higher Mathematics UNIT OUTCOME 4 Circles Contents Circles 119 1 Representing a Circle 119 Testing a Point 10 3 The General Equation of a Circle 10 4 Intersection of a Line an a Circle 1 5 Tangents

More information

For each learner you will need: mini-whiteboard. For each small group of learners you will need: Card set A Factors; Card set B True/false.

For each learner you will need: mini-whiteboard. For each small group of learners you will need: Card set A Factors; Card set B True/false. Level A11 of challenge: D A11 Mathematical goals Starting points Materials required Time needed Factorising cubics To enable learners to: associate x-intercepts with finding values of x such that f (x)

More information

Lagrangian and Hamiltonian Mechanics

Lagrangian and Hamiltonian Mechanics Lagrangian an Hamiltonian Mechanics D.G. Simpson, Ph.D. Department of Physical Sciences an Engineering Prince George s Community College December 5, 007 Introuction In this course we have been stuying

More information

Fluid Pressure and Fluid Force

Fluid Pressure and Fluid Force 0_0707.q //0 : PM Page 07 SECTION 7.7 Section 7.7 Flui Pressure an Flui Force 07 Flui Pressure an Flui Force Fin flui pressure an flui force. Flui Pressure an Flui Force Swimmers know that the eeper an

More information

10.2 Systems of Linear Equations: Matrices

10.2 Systems of Linear Equations: Matrices SECTION 0.2 Systems of Linear Equations: Matrices 7 0.2 Systems of Linear Equations: Matrices OBJECTIVES Write the Augmente Matrix of a System of Linear Equations 2 Write the System from the Augmente Matrix

More information

Representing Polynomials

Representing Polynomials CONCEPT DEVELOPMENT Mathematics Assessment Project CLASSROOM CHALLENGES A Formative Assessment Lesson Representing Polnomials Mathematics Assessment Resource Service Universit of Nottingham & UC Berkele

More information

Higher. Polynomials and Quadratics 64

Higher. Polynomials and Quadratics 64 hsn.uk.net Higher Mathematics UNIT OUTCOME 1 Polnomials and Quadratics Contents Polnomials and Quadratics 64 1 Quadratics 64 The Discriminant 66 3 Completing the Square 67 4 Sketching Parabolas 70 5 Determining

More information

Inverse Trig Functions

Inverse Trig Functions Inverse Trig Functions c A Math Support Center Capsule February, 009 Introuction Just as trig functions arise in many applications, so o the inverse trig functions. What may be most surprising is that

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level S6 of challenge: B/C S6 Interpreting frequency graphs, cumulative cumulative frequency frequency graphs, graphs, box and box whisker and plots whisker plots Mathematical goals Starting points Materials

More information

The one-year non-life insurance risk

The one-year non-life insurance risk The one-year non-life insurance risk Ohlsson, Esbjörn & Lauzeningks, Jan Abstract With few exceptions, the literature on non-life insurance reserve risk has been evote to the ultimo risk, the risk in the

More information

To differentiate logarithmic functions with bases other than e, use

To differentiate logarithmic functions with bases other than e, use To ifferentiate logarithmic functions with bases other than e, use 1 1 To ifferentiate logarithmic functions with bases other than e, use log b m = ln m ln b 1 To ifferentiate logarithmic functions with

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level A0 of challenge: D A0 Mathematical goals Starting points Materials required Time needed Connecting perpendicular lines To help learners to: identify perpendicular gradients; identify, from their

More information

f(x) = a x, h(5) = ( 1) 5 1 = 2 2 1

f(x) = a x, h(5) = ( 1) 5 1 = 2 2 1 Exponential Functions an their Derivatives Exponential functions are functions of the form f(x) = a x, where a is a positive constant referre to as the base. The functions f(x) = x, g(x) = e x, an h(x)

More information

Lecture L25-3D Rigid Body Kinematics

Lecture L25-3D Rigid Body Kinematics J. Peraire, S. Winall 16.07 Dynamics Fall 2008 Version 2.0 Lecture L25-3D Rigi Boy Kinematics In this lecture, we consier the motion of a 3D rigi boy. We shall see that in the general three-imensional

More information

Rules for Finding Derivatives

Rules for Finding Derivatives 3 Rules for Fining Derivatives It is teious to compute a limit every time we nee to know the erivative of a function. Fortunately, we can evelop a small collection of examples an rules that allow us to

More information

Example Optimization Problems selected from Section 4.7

Example Optimization Problems selected from Section 4.7 Example Optimization Problems selecte from Section 4.7 19) We are aske to fin the points ( X, Y ) on the ellipse 4x 2 + y 2 = 4 that are farthest away from the point ( 1, 0 ) ; as it happens, this point

More information

Rural Development Tools: What Are They and Where Do You Use Them?

Rural Development Tools: What Are They and Where Do You Use Them? Faculty Paper Series Faculty Paper 00-09 June, 2000 Rural Development Tools: What Are They an Where Do You Use Them? By Dennis U. Fisher Professor an Extension Economist [email protected] Juith I. Stallmann

More information

Exponential Functions: Differentiation and Integration. The Natural Exponential Function

Exponential Functions: Differentiation and Integration. The Natural Exponential Function 46_54.q //4 :59 PM Page 5 5 CHAPTER 5 Logarithmic, Eponential, an Other Transcenental Functions Section 5.4 f () = e f() = ln The inverse function of the natural logarithmic function is the natural eponential

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level A7 of challenge: C A7 Interpreting functions, graphs and tables tables Mathematical goals Starting points Materials required Time needed To enable learners to understand: the relationship between

More information

State of Louisiana Office of Information Technology. Change Management Plan

State of Louisiana Office of Information Technology. Change Management Plan State of Louisiana Office of Information Technology Change Management Plan Table of Contents Change Management Overview Change Management Plan Key Consierations Organizational Transition Stages Change

More information

Differentiability of Exponential Functions

Differentiability of Exponential Functions Differentiability of Exponential Functions Philip M. Anselone an John W. Lee Philip Anselone ([email protected]) receive his Ph.D. from Oregon State in 1957. After a few years at Johns Hopkins an

More information

20. Product rule, Quotient rule

20. Product rule, Quotient rule 20. Prouct rule, 20.1. Prouct rule Prouct rule, Prouct rule We have seen that the erivative of a sum is the sum of the erivatives: [f(x) + g(x)] = x x [f(x)] + x [(g(x)]. One might expect from this that

More information

On Adaboost and Optimal Betting Strategies

On Adaboost and Optimal Betting Strategies On Aaboost an Optimal Betting Strategies Pasquale Malacaria 1 an Fabrizio Smerali 1 1 School of Electronic Engineering an Computer Science, Queen Mary University of Lonon, Lonon, UK Abstract We explore

More information

Calculus Refresher, version 2008.4. c 1997-2008, Paul Garrett, [email protected] http://www.math.umn.edu/ garrett/

Calculus Refresher, version 2008.4. c 1997-2008, Paul Garrett, garrett@math.umn.edu http://www.math.umn.edu/ garrett/ Calculus Refresher, version 2008.4 c 997-2008, Paul Garrett, [email protected] http://www.math.umn.eu/ garrett/ Contents () Introuction (2) Inequalities (3) Domain of functions (4) Lines (an other items

More information

Representing Data Using Frequency Graphs

Representing Data Using Frequency Graphs Lesson 25 Mathematics Assessment Project Formative Assessment Lesson Materials Representing Data Using Graphs MARS Shell Center University of Nottingham & UC Berkeley Alpha Version If you encounter errors

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS Contents 1. Moment generating functions 2. Sum of a ranom number of ranom variables 3. Transforms

More information

The Quick Calculus Tutorial

The Quick Calculus Tutorial The Quick Calculus Tutorial This text is a quick introuction into Calculus ieas an techniques. It is esigne to help you if you take the Calculus base course Physics 211 at the same time with Calculus I,

More information

Introduction to Integration Part 1: Anti-Differentiation

Introduction to Integration Part 1: Anti-Differentiation Mathematics Learning Centre Introuction to Integration Part : Anti-Differentiation Mary Barnes c 999 University of Syney Contents For Reference. Table of erivatives......2 New notation.... 2 Introuction

More information

Math 230.01, Fall 2012: HW 1 Solutions

Math 230.01, Fall 2012: HW 1 Solutions Math 3., Fall : HW Solutions Problem (p.9 #). Suppose a wor is picke at ranom from this sentence. Fin: a) the chance the wor has at least letters; SOLUTION: All wors are equally likely to be chosen. The

More information

Answers to the Practice Problems for Test 2

Answers to the Practice Problems for Test 2 Answers to the Practice Problems for Test 2 Davi Murphy. Fin f (x) if it is known that x [f(2x)] = x2. By the chain rule, x [f(2x)] = f (2x) 2, so 2f (2x) = x 2. Hence f (2x) = x 2 /2, but the lefthan

More information

Using research evidence in mental health: user-rating and focus group study of clinicians preferences for a new clinical question-answering service

Using research evidence in mental health: user-rating and focus group study of clinicians preferences for a new clinical question-answering service DOI: 10.1111/j.1471-1842.2008.00833.x Using research evience in mental health: user-rating an focus group stuy of clinicians preferences for a new clinical question-answering service Elizabeth A. Barley*,

More information

Measures of distance between samples: Euclidean

Measures of distance between samples: Euclidean 4- Chapter 4 Measures of istance between samples: Eucliean We will be talking a lot about istances in this book. The concept of istance between two samples or between two variables is funamental in multivariate

More information

Option Pricing for Inventory Management and Control

Option Pricing for Inventory Management and Control Option Pricing for Inventory Management an Control Bryant Angelos, McKay Heasley, an Jeffrey Humpherys Abstract We explore the use of option contracts as a means of managing an controlling inventories

More information

MSc. Econ: MATHEMATICAL STATISTICS, 1995 MAXIMUM-LIKELIHOOD ESTIMATION

MSc. Econ: MATHEMATICAL STATISTICS, 1995 MAXIMUM-LIKELIHOOD ESTIMATION MAXIMUM-LIKELIHOOD ESTIMATION The General Theory of M-L Estimation In orer to erive an M-L estimator, we are boun to make an assumption about the functional form of the istribution which generates the

More information

DIFFRACTION AND INTERFERENCE

DIFFRACTION AND INTERFERENCE DIFFRACTION AND INTERFERENCE In this experiment you will emonstrate the wave nature of light by investigating how it bens aroun eges an how it interferes constructively an estructively. You will observe

More information

There are two different ways you can interpret the information given in a demand curve.

There are two different ways you can interpret the information given in a demand curve. Econ 500 Microeconomic Review Deman What these notes hope to o is to o a quick review of supply, eman, an equilibrium, with an emphasis on a more quantifiable approach. Deman Curve (Big icture) The whole

More information

Risk Adjustment for Poker Players

Risk Adjustment for Poker Players Risk Ajustment for Poker Players William Chin DePaul University, Chicago, Illinois Marc Ingenoso Conger Asset Management LLC, Chicago, Illinois September, 2006 Introuction In this article we consier risk

More information

Aon Retiree Health Exchange

Aon Retiree Health Exchange 2014 2015 Meicare Insurance Guie Aon Retiree Health Exchange Recommene by Why You Nee More Coverage I alreay have coverage. Aren t Meicare Parts A an B enough? For many people, Meicare alone oes not provie

More information

Core Maths C2. Revision Notes

Core Maths C2. Revision Notes Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...

More information

Polynomials. Jackie Nicholas Jacquie Hargreaves Janet Hunter

Polynomials. Jackie Nicholas Jacquie Hargreaves Janet Hunter Mathematics Learning Centre Polnomials Jackie Nicholas Jacquie Hargreaves Janet Hunter c 26 Universit of Sdne Mathematics Learning Centre, Universit of Sdne 1 1 Polnomials Man of the functions we will

More information

Section 3.3. Differentiation of Polynomials and Rational Functions. Difference Equations to Differential Equations

Section 3.3. Differentiation of Polynomials and Rational Functions. Difference Equations to Differential Equations Difference Equations to Differential Equations Section 3.3 Differentiation of Polynomials an Rational Functions In tis section we begin te task of iscovering rules for ifferentiating various classes of

More information

15.2. First-Order Linear Differential Equations. First-Order Linear Differential Equations Bernoulli Equations Applications

15.2. First-Order Linear Differential Equations. First-Order Linear Differential Equations Bernoulli Equations Applications 00 CHAPTER 5 Differential Equations SECTION 5. First-Orer Linear Differential Equations First-Orer Linear Differential Equations Bernoulli Equations Applications First-Orer Linear Differential Equations

More information

Classifying Solutions to Systems of Equations

Classifying Solutions to Systems of Equations CONCEPT DEVELOPMENT Mathematics Assessment Project CLASSROOM CHALLENGES A Formative Assessment Lesson Classifing Solutions to Sstems of Equations Mathematics Assessment Resource Service Universit of Nottingham

More information

Towards a Framework for Enterprise Architecture Frameworks Comparison and Selection

Towards a Framework for Enterprise Architecture Frameworks Comparison and Selection Towars a Framework for Enterprise Frameworks Comparison an Selection Saber Aballah Faculty of Computers an Information, Cairo University [email protected] Abstract A number of Enterprise Frameworks

More information

Dynamic Network Security Deployment Under Partial Information

Dynamic Network Security Deployment Under Partial Information Dynamic Network Security Deployment Uner Partial nformation nvite Paper) George Theoorakopoulos EPFL Lausanne, Switzerlan Email: george.theoorakopoulos @ epfl.ch John S. Baras University of Marylan College

More information

Product Differentiation for Software-as-a-Service Providers

Product Differentiation for Software-as-a-Service Providers University of Augsburg Prof. Dr. Hans Ulrich Buhl Research Center Finance & Information Management Department of Information Systems Engineering & Financial Management Discussion Paper WI-99 Prouct Differentiation

More information

ISSN: 2277-3754 ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 12, June 2014

ISSN: 2277-3754 ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 12, June 2014 ISSN: 77-754 ISO 900:008 Certifie International Journal of Engineering an Innovative echnology (IJEI) Volume, Issue, June 04 Manufacturing process with isruption uner Quaratic Deman for Deteriorating Inventory

More information

Calculating Viscous Flow: Velocity Profiles in Rivers and Pipes

Calculating Viscous Flow: Velocity Profiles in Rivers and Pipes previous inex next Calculating Viscous Flow: Velocity Profiles in Rivers an Pipes Michael Fowler, UVa 9/8/1 Introuction In this lecture, we ll erive the velocity istribution for two examples of laminar

More information

To Be or Not To Be a Linear Equation: That Is the Question

To Be or Not To Be a Linear Equation: That Is the Question To Be or Not To Be a Linear Equation: That Is the Question Linear Equation in Two Variables A linear equation in two variables is an equation that can be written in the form A + B C where A and B are not

More information

RUNESTONE, an International Student Collaboration Project

RUNESTONE, an International Student Collaboration Project RUNESTONE, an International Stuent Collaboration Project Mats Daniels 1, Marian Petre 2, Vicki Almstrum 3, Lars Asplun 1, Christina Björkman 1, Carl Erickson 4, Bruce Klein 4, an Mary Last 4 1 Department

More information

The higher education factor: The role of higher education in the hiring and promotion practices in the fire service. By Nick Geis.

The higher education factor: The role of higher education in the hiring and promotion practices in the fire service. By Nick Geis. The higher eucation factor: The role of higher eucation in the hiring an promotion practices in the fire service. By Nick Geis Spring 2012 A paper submitte to the faculty of The University of North Carolina

More information

Setting Up the Classroom for Independent Readers and Writers

Setting Up the Classroom for Independent Readers and Writers Transforming our Teaching through Reaing/Writing Connections SESSION 4 ATAGLANCE Setting Up the Classroom for Inepenent Reaers an Writers AGENDA Engage, Reflect, Assess Discuss Professional Reaings: Align

More information

Data Center Power System Reliability Beyond the 9 s: A Practical Approach

Data Center Power System Reliability Beyond the 9 s: A Practical Approach Data Center Power System Reliability Beyon the 9 s: A Practical Approach Bill Brown, P.E., Square D Critical Power Competency Center. Abstract Reliability has always been the focus of mission-critical

More information

INCOME PROTECTION CLAIMS CLAIM FORM FOR THE SELF EMPLOYED

INCOME PROTECTION CLAIMS CLAIM FORM FOR THE SELF EMPLOYED PENSIONS INvESTMENTS LIFE INSURANCE INCOME PROTECTION CLAIMS CLAIM FORM FOR THE SELF EMPLOYED If ou are an Emploe Person o not complete this form. Please ring our Insurance Broker or Irish Life irectl

More information

Optimal Control Policy of a Production and Inventory System for multi-product in Segmented Market

Optimal Control Policy of a Production and Inventory System for multi-product in Segmented Market RATIO MATHEMATICA 25 (2013), 29 46 ISSN:1592-7415 Optimal Control Policy of a Prouction an Inventory System for multi-prouct in Segmente Market Kuleep Chauhary, Yogener Singh, P. C. Jha Department of Operational

More information

Cross-Over Analysis Using T-Tests

Cross-Over Analysis Using T-Tests Chapter 35 Cross-Over Analysis Using -ests Introuction his proceure analyzes ata from a two-treatment, two-perio (x) cross-over esign. he response is assume to be a continuous ranom variable that follows

More information

ú Ó Á É é ú ú É ú Á Á ú É É É ú É Ó É ó É Á ú ú ó Á Á ú Ó ú Ó ú É Á ú Á ú ó ú Á ú Á É Á Á Ó É Á ú ú é ú ú ú ú Á ú ó ú Ó Á Á Á Á ú ú ú é É ó é ó ú ú ú É é ú ú ú óú ú ú Ó Á ú ö é É ú ú ú úé ú ú É É Á É

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level N of challenge: B N Mathematical goals Starting points Materials required Time needed Ordering fractions and decimals To help learners to: interpret decimals and fractions using scales and areas;

More information

SAMPLE. Polynomial functions

SAMPLE. Polynomial functions Objectives C H A P T E R 4 Polnomial functions To be able to use the technique of equating coefficients. To introduce the functions of the form f () = a( + h) n + k and to sketch graphs of this form through

More information

Elliptic Functions sn, cn, dn, as Trigonometry W. Schwalm, Physics, Univ. N. Dakota

Elliptic Functions sn, cn, dn, as Trigonometry W. Schwalm, Physics, Univ. N. Dakota Elliptic Functions sn, cn, n, as Trigonometry W. Schwalm, Physics, Univ. N. Dakota Backgroun: Jacobi iscovere that rather than stuying elliptic integrals themselves, it is simpler to think of them as inverses

More information

Professional Level Options Module, Paper P4(SGP)

Professional Level Options Module, Paper P4(SGP) Answers Professional Level Options Moule, Paper P4(SGP) Avance Financial Management (Singapore) December 2007 Answers Tutorial note: These moel answers are consierably longer an more etaile than woul be

More information

Unsteady Flow Visualization by Animating Evenly-Spaced Streamlines

Unsteady Flow Visualization by Animating Evenly-Spaced Streamlines EUROGRAPHICS 2000 / M. Gross an F.R.A. Hopgoo Volume 19, (2000), Number 3 (Guest Eitors) Unsteay Flow Visualization by Animating Evenly-Space Bruno Jobar an Wilfri Lefer Université u Littoral Côte Opale,

More information

Linear Inequality in Two Variables

Linear Inequality in Two Variables 90 (7-) Chapter 7 Sstems of Linear Equations and Inequalities In this section 7.4 GRAPHING LINEAR INEQUALITIES IN TWO VARIABLES You studied linear equations and inequalities in one variable in Chapter.

More information

The Impact of Forecasting Methods on Bullwhip Effect in Supply Chain Management

The Impact of Forecasting Methods on Bullwhip Effect in Supply Chain Management The Imact of Forecasting Methos on Bullwhi Effect in Suly Chain Management HX Sun, YT Ren Deartment of Inustrial an Systems Engineering, National University of Singaore, Singaore Schoo of Mechanical an

More information

Use order of operations to simplify. Show all steps in the space provided below each problem. INTEGER OPERATIONS

Use order of operations to simplify. Show all steps in the space provided below each problem. INTEGER OPERATIONS ORDER OF OPERATIONS In the following order: 1) Work inside the grouping smbols such as parenthesis and brackets. ) Evaluate the powers. 3) Do the multiplication and/or division in order from left to right.

More information

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1 Chapter 1 INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4 This opening section introduces the students to man of the big ideas of Algebra 2, as well as different was of thinking and various problem solving strategies.

More information

Stock Market Value Prediction Using Neural Networks

Stock Market Value Prediction Using Neural Networks Stock Market Value Preiction Using Neural Networks Mahi Pakaman Naeini IT & Computer Engineering Department Islamic Aza University Paran Branch e-mail: [email protected] Hamireza Taremian Engineering

More information

Software Diversity for Information Security

Software Diversity for Information Security for Information Security Pei-yu Chen, Gaurav Kataria an Ramayya Krishnan,3 Heinz School, Tepper School an 3 Cylab Carnegie Mellon University Abstract: In this paper we analyze a software iversification-base

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level SS6 of challenge: B SS6 Mathematical goals Starting points Materials required Time needed Representing 3D shapes To enable learners to: interpret 2D representations of 3D shapes; analyse 3D shapes

More information

Mandate-Based Health Reform and the Labor Market: Evidence from the Massachusetts Reform

Mandate-Based Health Reform and the Labor Market: Evidence from the Massachusetts Reform Manate-Base Health Reform an the Labor Market: Evience from the Massachusetts Reform Jonathan T. Kolsta Wharton School, University of Pennsylvania an NBER Amana E. Kowalski Department of Economics, Yale

More information

Gender Differences in Educational Attainment: The Case of University Students in England and Wales

Gender Differences in Educational Attainment: The Case of University Students in England and Wales Gener Differences in Eucational Attainment: The Case of University Stuents in Englan an Wales ROBERT MCNABB 1, SARMISTHA PAL 1, AND PETER SLOANE 2 ABSTRACT This paper examines the eterminants of gener

More information

Modelling and Resolving Software Dependencies

Modelling and Resolving Software Dependencies June 15, 2005 Abstract Many Linux istributions an other moern operating systems feature the explicit eclaration of (often complex) epenency relationships between the pieces of software

More information

! # % & ( ) +,,),. / 0 1 2 % ( 345 6, & 7 8 4 8 & & &&3 6

! # % & ( ) +,,),. / 0 1 2 % ( 345 6, & 7 8 4 8 & & &&3 6 ! # % & ( ) +,,),. / 0 1 2 % ( 345 6, & 7 8 4 8 & & &&3 6 9 Quality signposting : the role of online information prescription in proviing patient information Liz Brewster & Barbara Sen Information School,

More information

I think that starting

I think that starting . Graphs of Functions 69. GRAPHS OF FUNCTIONS One can envisage that mathematical theor will go on being elaborated and etended indefinitel. How strange that the results of just the first few centuries

More information

y intercept Gradient Facts Lines that have the same gradient are PARALLEL

y intercept Gradient Facts Lines that have the same gradient are PARALLEL CORE Summar Notes Linear Graphs and Equations = m + c gradient = increase in increase in intercept Gradient Facts Lines that have the same gradient are PARALLEL If lines are PERPENDICULAR then m m = or

More information

A New Evaluation Measure for Information Retrieval Systems

A New Evaluation Measure for Information Retrieval Systems A New Evaluation Measure for Information Retrieval Systems Martin Mehlitz [email protected] Christian Bauckhage Deutsche Telekom Laboratories [email protected] Jérôme Kunegis [email protected]

More information

Mathematics Review for Economists

Mathematics Review for Economists Mathematics Review for Economists by John E. Floy University of Toronto May 9, 2013 This ocument presents a review of very basic mathematics for use by stuents who plan to stuy economics in grauate school

More information

Trace IP Packets by Flexible Deterministic Packet Marking (FDPM)

Trace IP Packets by Flexible Deterministic Packet Marking (FDPM) Trace P Packets by Flexible Deterministic Packet Marking (F) Yang Xiang an Wanlei Zhou School of nformation Technology Deakin University Melbourne, Australia {yxi, wanlei}@eakin.eu.au Abstract- Currently

More information

TO DETERMINE THE SHELF LIFE OF IBUPROFEN SOLUTION

TO DETERMINE THE SHELF LIFE OF IBUPROFEN SOLUTION TO DETERMINE THE SHELF LIFE OF IBUPROFEN SOLUTION AIM: To etermine the shelf life of solution using accelerate stability stuies. MATERIAL REQUIREMENT, ethanol, phenolphthalein, soium hyroxie (0.1N), glass

More information

An Introduction to Event-triggered and Self-triggered Control

An Introduction to Event-triggered and Self-triggered Control An Introuction to Event-triggere an Self-triggere Control W.P.M.H. Heemels K.H. Johansson P. Tabuaa Abstract Recent evelopments in computer an communication technologies have le to a new type of large-scale

More information

Notes on tangents to parabolas

Notes on tangents to parabolas Notes on tangents to parabolas (These are notes for a talk I gave on 2007 March 30.) The point of this talk is not to publicize new results. The most recent material in it is the concept of Bézier curves,

More information

Calibration of the broad band UV Radiometer

Calibration of the broad band UV Radiometer Calibration of the broa ban UV Raiometer Marian Morys an Daniel Berger Solar Light Co., Philaelphia, PA 19126 ABSTRACT Mounting concern about the ozone layer epletion an the potential ultraviolet exposure

More information

Lines. We have learned that the graph of a linear equation. y = mx +b

Lines. We have learned that the graph of a linear equation. y = mx +b Section 0. Lines We have learne that the graph of a linear equation = m +b is a nonvertical line with slope m an -intercept (0, b). We can also look at the angle that such a line makes with the -ais. This

More information

Search Advertising Based Promotion Strategies for Online Retailers

Search Advertising Based Promotion Strategies for Online Retailers Search Avertising Base Promotion Strategies for Online Retailers Amit Mehra The Inian School of Business yeraba, Inia Amit [email protected] ABSTRACT Web site aresses of small on line retailers are often unknown

More information

Zeros of Polynomial Functions. The Fundamental Theorem of Algebra. The Fundamental Theorem of Algebra. zero in the complex number system.

Zeros of Polynomial Functions. The Fundamental Theorem of Algebra. The Fundamental Theorem of Algebra. zero in the complex number system. _.qd /7/ 9:6 AM Page 69 Section. Zeros of Polnomial Functions 69. Zeros of Polnomial Functions What ou should learn Use the Fundamental Theorem of Algebra to determine the number of zeros of polnomial

More information

Section 7.2 Linear Programming: The Graphical Method

Section 7.2 Linear Programming: The Graphical Method Section 7.2 Linear Programming: The Graphical Method Man problems in business, science, and economics involve finding the optimal value of a function (for instance, the maimum value of the profit function

More information

View Synthesis by Image Mapping and Interpolation

View Synthesis by Image Mapping and Interpolation View Synthesis by Image Mapping an Interpolation Farris J. Halim Jesse S. Jin, School of Computer Science & Engineering, University of New South Wales Syney, NSW 05, Australia Basser epartment of Computer

More information

Dendritic Cell Based Immunotherapy for Melanoma

Dendritic Cell Based Immunotherapy for Melanoma Denritic Cell Base Immunotherapy for Melanoma Kun Dong University of California, Los Angeles Binan Gu University of Southern California Lucy Oom California State University, Fullerton Aparna Sarkar Pomona

More information