Chapter 23. The Reflection of Light: Mirrors
|
|
|
- Meryl Ferguson
- 9 years ago
- Views:
Transcription
1 Chapter 23 The Reflection of Light: Mirrors
2 Wave Fronts and Rays Defining wave fronts and rays. Consider a sound wave since it is easier to visualize. Shown is a hemispherical view of a sound wave emitted by a pulsating sphere. The rays are perpendicular to the wave fronts (e.g. crests) which are separated from each other by the wavelength of the wave, λ.
3 Wave Fronts and Rays The positions of two spherical wave fronts are shown in (a) with their diverging rays. At large distances from the source, the wave fronts become less and less curved and approach the limiting case of a plane wave shown in (b). A plane wave has flat wave fronts and rays parallel to each other. We will consider light waves as plane waves and will represent them by their rays.
4 The Reflection of Light LAW OF REFLECTION FROM FLAT MIRRORS. The incident ray, the reflected ray, and the normal to the surface all lie in the same plane, and the angle of incidence, θ i, equals the angle of reflection, θ r. θ i = θ r
5 The Reflection of Light In specular reflection, the reflected rays are parallel to each other. In diffuse reflection, light is reflected in random directions. Flat, reflective surfaces, e.g. mirrors, polished metal, surface of a calm pond of water Rough surfaces, e.g. paper, wood, unpolished metal, surface of a pond on a windy day
6 The Formation of Images by a Plane Mirror Your image in a flat mirror has four properties: 1. It is upright. 2. It is the same size as you are. 3. The image is as far behind the mirror as you are in front of it. 4. It is reversed, left <--> right The person s right hand becomes the image s left hand. Emergency vehicles are usually reverse-lettered so the lettering appears normal in the rear view mirror of a car.
7 The Formation of Images by a Plane Mirror A ray of light from the top of the chess piece reflects from the mirror. To the eye, the ray seems to come from behind the mirror. Because none of the rays actually emanate from the image, it is called a virtual image. Each point of an illuminated object emits a continuum of light rays in a range of directions. Two of these rays are shown here.
8 The Formation of Images by a Plane Mirror The geometry used to show that the image distance d i is equal to the object distance d o. Since θ = α by intersecting lines, β 1 = β 2. Thus ABC and BCD are similar triangles. Since the triangles share the common side BC, they are also identical triangles, so d o = d i
9 The Formation of Images by a Plane Mirror Conceptual Example: Full-Length Versus Half-Length Mirrors What is the minimum mirror height necessary for her to see her full image? Start with a mirror which is exactly her height. Since θ i = θ r, the triangles containing DP and CP are identical, thus DP = CP To see up to the top of her head H she only needs section CP, which is 1/2 of CD, since light emitted from H that reflects from DP will not reach her eyes. To see down to her foot F she only needs section BC, which is 1/2 of AC (for similar reasons as above), since light emitted from F that reflects from AB will not reach her eyes. Since BC + CP = (1/2)AD, she only needs a half-length mirror to see her full image.
10 The Formation of Images by a Plane Mirror Conceptual Example: Multiple Reflections A person is sitting in front of two mirrors that intersect at a right angle. The person sees three images of herself. Why are there three, rather than two, images? Image 1 is a single reflection image from Mirror 1. Image 2 is a single reflection image from Mirror 2. Image 3 is a double reflection image from Mirrors 1 and 2.
11 Spherical Mirrors If the inside surface of the spherical mirror is polished, it is a concave mirror. If the outside surface is polished, is it a convex mirror. R is the radius of curvature of the mirror. The law of reflection applies, just as it does for a plane mirror, i.e. the angles of incidence and reflection are measured from the normal to the surface of the mirror at the reflection point. The principal axis of the mirror is a straight line drawn through the center of curvature C and the midpoint of the mirror.
12 Spherical Mirrors Light rays near and parallel to the principal axis are reflected from the concave mirror and converge at the focal point F. The focal length f is the distance between the focal point and the mirror.
13 Spherical Mirrors The focal point F of a concave mirror is halfway between the center of curvature of the mirror C and the mirror at B. f = 1 2 R Proof: Assume θ is small, i.e. that the incoming parallel ray is close to the principal axis. Then, CAB and FAB are approximately right triangles with the same opposite side AB. From CAB, tanθ = AB CB = AB R From FAB, Dividing, tan2θ = AB FB = AB f tanθ tan2θ = AB R AB f = f R 1 But for small θ è tan θ ~ θ and tan 2θ ~ 2θ è è f = 2 R 2θ = f R θ 2θ f
14 Spherical Mirrors Rays that lie close to the principal axis are called paraxial rays. Rays that are far from the principal axis do not converge to a single point. The fact that a spherical mirror does not bring all parallel rays to a single point is known as spherical abberation. Spherical abberation can be minimized by using a mirror whose height is small compared with the radius of curvature.
15 Spherical Mirrors When paraxial light rays that are parallel to the principal axis strike a convex mirror, the rays appear to originate from a focal point behind the mirror. f = 1 2 R R < 0 The negative sign indicates that it is a convex mirror.
16 The Formation of Images by Spherical Mirrors IMAGING WITH CONCAVE MIRRORS To find the image of an object placed in front of a concave mirror, there are several types of rays which are particularly useful è ray tracing: This ray is initially parallel to the principal axis and passes through the focal point. This ray initially passes through the focal point, then emerges parallel to the principal axis. This ray travels along a line that passes through the center and so reflects back on itself.
17 The Formation of Images by Spherical Mirrors If the object is placed between F and C, the image is real, inverted and magnified. If the object is placed at a distance greater than C from the mirror, the image is real, inverted and reduced in size. A real image is one where light is actually passing through the image (it can be projected onto a screen). The principle of reversibility - If the direction of a light ray is reversed, the light retraces its original path.
18 The Formation of Images by Spherical Mirrors When an object is placed between the focal point F and a concave mirror, The image is virtual, upright, and magnified (as in the case of images from flat mirrors, a virtual image is one from which light appears to be emanating but through which light does not pass, e.g. it cannot be projected onto a screen).
19 The Formation of Images by Spherical Mirrors IMAGING WITH CONVEX MIRRORS For convex mirrors the image of an object is always virtual, upright, and reduced in size. Ray 1 is initially parallel to the principal axis and appears to originate from the focal point. Ray 2 heads towards the focal point, emerging parallel to the principal axis. Ray 3 travels toward the center of curvature and reflects back on itself.
20 The Mirror Equation and Magnification So far we have discussed concave and convex mirrors qualitatively and graphically. We now want to derive two simple equations which provide quantitative relationships among the quantities we have defined to describe mirrors, i.e., f = focal length d o d i = object distance = image distance m = magnification
21 The Mirror Equation and Magnification Consider the real image produced from a concave mirror. The two right triangles are similar in each case. h o = d 0 h i d i hi m = = h o minus since inverted d d i o Magnification equation h o = d o f h i f 1 d o + 1 d i = 1 f Mirror equation Both equations are valid for concave and convex mirrors and for real and virtual images.
22 The Mirror Equation and Magnification Summary of Sign Conventions for Spherical Mirrors f f is + for a is for a concave mirror. convex mirror. d o d o is + if the object is in front of the mirror. is if the object is behind the mirror. d i is + if the image object is in front of the mirror (real image). d i is if the image object is behind the mirror (virtualimage). m is + for an image upright with respect to the object. m is - for an image inverted with respect to the object.
23 Example. A Real Image formed by a Concave Mirror. A 2.0 cm high object is placed 7.10 cm from a concave mirror whose radius of curvature is cm. Find the location of the image and its size. Concave mirror: R = cm f = R 2 = = 5.10 cm 1 = 1 d i f 1 = 1 d o d i =18 cm = cm 1 è real image since positive h i = d i d o h o = = 5.1 cm è magnified and inverted
24 The Mirror Equation and Magnification Example. A Virtual Image Formed by a Convex Mirror A convex mirror is used to reflect light from an object placed 66 cm in front of the mirror. The focal length of the mirror is 46 cm in back of the mirror. Find the location of the image and the magnification. Since a convex mirror, the focal length is negative è f = -46 cm d = f i do i = 46 cm 66 cm = cm d i = 27 cm è image is virtual since negative m = d d i o = ( 27 cm) 66 cm = 0.41 è image is upright and reduced
Convex Mirrors. Ray Diagram for Convex Mirror
Convex Mirrors Center of curvature and focal point both located behind mirror The image for a convex mirror is always virtual and upright compared to the object A convex mirror will reflect a set of parallel
Geometric Optics Converging Lenses and Mirrors Physics Lab IV
Objective Geometric Optics Converging Lenses and Mirrors Physics Lab IV In this set of lab exercises, the basic properties geometric optics concerning converging lenses and mirrors will be explored. The
Lesson 26: Reflection & Mirror Diagrams
Lesson 26: Reflection & Mirror Diagrams The Law of Reflection There is nothing really mysterious about reflection, but some people try to make it more difficult than it really is. All EMR will reflect
Reflection and Refraction
Equipment Reflection and Refraction Acrylic block set, plane-concave-convex universal mirror, cork board, cork board stand, pins, flashlight, protractor, ruler, mirror worksheet, rectangular block worksheet,
1. You stand two feet away from a plane mirror. How far is it from you to your image? a. 2.0 ft c. 4.0 ft b. 3.0 ft d. 5.0 ft
Lenses and Mirrors 1. You stand two feet away from a plane mirror. How far is it from you to your image? a. 2.0 ft c. 4.0 ft b. 3.0 ft d. 5.0 ft 2. Which of the following best describes the image from
1 of 9 2/9/2010 3:38 PM
1 of 9 2/9/2010 3:38 PM Chapter 23 Homework Due: 8:00am on Monday, February 8, 2010 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]
AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light
AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,
Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 )
1 of 13 2/17/2016 5:28 PM Signed in as Weida Wu, Instructor Help Sign Out Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 ) My Courses Course Settings University Physics with Modern Physics,
Thin Lenses Drawing Ray Diagrams
Drawing Ray Diagrams Fig. 1a Fig. 1b In this activity we explore how light refracts as it passes through a thin lens. Eyeglasses have been in use since the 13 th century. In 1610 Galileo used two lenses
Chapter 36 - Lenses. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University
Chapter 36 - Lenses A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Objectives: After completing this module, you should be able to: Determine
waves rays Consider rays of light from an object being reflected by a plane mirror (the rays are diverging): mirror object
PHYS1000 Optics 1 Optics Light and its interaction with lenses and mirrors. We assume that we can ignore the wave properties of light. waves rays We represent the light as rays, and ignore diffraction.
2) A convex lens is known as a diverging lens and a concave lens is known as a converging lens. Answer: FALSE Diff: 1 Var: 1 Page Ref: Sec.
Physics for Scientists and Engineers, 4e (Giancoli) Chapter 33 Lenses and Optical Instruments 33.1 Conceptual Questions 1) State how to draw the three rays for finding the image position due to a thin
Solution Derivations for Capa #14
Solution Derivations for Capa #4 ) An image of the moon is focused onto a screen using a converging lens of focal length (f = 34.8 cm). The diameter of the moon is 3.48 0 6 m, and its mean distance from
Experiment 3 Lenses and Images
Experiment 3 Lenses and Images Who shall teach thee, unless it be thine own eyes? Euripides (480?-406? BC) OBJECTIVES To examine the nature and location of images formed by es. THEORY Lenses are frequently
Physics 25 Exam 3 November 3, 2009
1. A long, straight wire carries a current I. If the magnetic field at a distance d from the wire has magnitude B, what would be the the magnitude of the magnetic field at a distance d/3 from the wire,
Chapter 17: Light and Image Formation
Chapter 17: Light and Image Formation 1. When light enters a medium with a higher index of refraction it is A. absorbed. B. bent away from the normal. C. bent towards from the normal. D. continues in the
RAY OPTICS II 7.1 INTRODUCTION
7 RAY OPTICS II 7.1 INTRODUCTION This chapter presents a discussion of more complicated issues in ray optics that builds on and extends the ideas presented in the last chapter (which you must read first!)
Lecture 17. Image formation Ray tracing Calculation. Lenses Convex Concave. Mirrors Convex Concave. Optical instruments
Lecture 17. Image formation Ray tracing Calculation Lenses Convex Concave Mirrors Convex Concave Optical instruments Image formation Laws of refraction and reflection can be used to explain how lenses
LIGHT REFLECTION AND REFRACTION
QUESTION BANK IN SCIENCE CLASS-X (TERM-II) 10 LIGHT REFLECTION AND REFRACTION CONCEPTS To revise the laws of reflection at plane surface and the characteristics of image formed as well as the uses of reflection
Chapter 22: Mirrors and Lenses
Chapter 22: Mirrors and Lenses How do you see sunspots? When you look in a mirror, where is the face you see? What is a burning glass? Make sure you know how to:. Apply the properties of similar triangles;
C) D) As object AB is moved from its present position toward the left, the size of the image produced A) decreases B) increases C) remains the same
1. For a plane mirror, compared to the object distance, the image distance is always A) less B) greater C) the same 2. Which graph best represents the relationship between image distance (di) and object
Procedure: Geometrical Optics. Theory Refer to your Lab Manual, pages 291 294. Equipment Needed
Theory Refer to your Lab Manual, pages 291 294. Geometrical Optics Equipment Needed Light Source Ray Table and Base Three-surface Mirror Convex Lens Ruler Optics Bench Cylindrical Lens Concave Lens Rhombus
EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS
EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS The following website should be accessed before coming to class. Text reference: pp189-196 Optics Bench a) For convenience of discussion we assume that the light
Lecture Notes for Chapter 34: Images
Lecture Notes for hapter 4: Images Disclaimer: These notes are not meant to replace the textbook. Please report any inaccuracies to the professor.. Spherical Reflecting Surfaces Bad News: This subject
9/16 Optics 1 /11 GEOMETRIC OPTICS
9/6 Optics / GEOMETRIC OPTICS PURPOSE: To review the basics of geometric optics and to observe the function of some simple and compound optical devices. APPARATUS: Optical bench, lenses, mirror, target
Size Of the Image Nature Of the Image At Infinity At the Focus Highly Diminished, Point Real and Inverted
CHAPTER-10 LIGHT REFLECTION AND REFRACTION Light rays; are; electromagnetic in nature, and do not need material medium for Propagation Speed of light in vacuum in 3*10 8 m/s When a light ray falls on a
HOMEWORK 4 with Solutions
Winter 996 HOMEWORK 4 with Solutions. ind the image of the object for the single concave mirror system shown in ig. (see next pages for worksheets) by: (a) measuring the radius R and calculating the focal
OPTICAL IMAGES DUE TO LENSES AND MIRRORS *
1 OPTICAL IMAGES DUE TO LENSES AND MIRRORS * Carl E. Mungan U.S. Naval Academy, Annapolis, MD ABSTRACT The properties of real and virtual images formed by lenses and mirrors are reviewed. Key ideas are
Lesson 29: Lenses. Double Concave. Double Convex. Planoconcave. Planoconvex. Convex meniscus. Concave meniscus
Lesson 29: Lenses Remembering the basics of mirrors puts you half ways towards fully understanding lenses as well. The same sort of rules apply, just with a few modifications. Keep in mind that for an
Optics and Geometry. with Applications to Photography Tom Davis [email protected] http://www.geometer.org/mathcircles November 15, 2004
Optics and Geometry with Applications to Photography Tom Davis [email protected] http://www.geometer.org/mathcircles November 15, 2004 1 Useful approximations This paper can be classified as applied
Geometry Chapter 1. 1.1 Point (pt) 1.1 Coplanar (1.1) 1.1 Space (1.1) 1.2 Line Segment (seg) 1.2 Measure of a Segment
Geometry Chapter 1 Section Term 1.1 Point (pt) Definition A location. It is drawn as a dot, and named with a capital letter. It has no shape or size. undefined term 1.1 Line A line is made up of points
Physics, Chapter 38: Mirrors and Lenses
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 1-1-1958 Physics, Chapter 38: Mirrors and Lenses Henry
Physics 202 Problems - Week 8 Worked Problems Chapter 25: 7, 23, 36, 62, 72
Physics 202 Problems - Week 8 Worked Problems Chapter 25: 7, 23, 36, 62, 72 Problem 25.7) A light beam traveling in the negative z direction has a magnetic field B = (2.32 10 9 T )ˆx + ( 4.02 10 9 T )ŷ
EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab
EXPERIMENT O-6 Michelson Interferometer Abstract A Michelson interferometer, constructed by the student, is used to measure the wavelength of He-Ne laser light and the index of refraction of a flat transparent
Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents
Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents Name Chords and Circles: A chord is a segment that joins two points of the circle. A diameter is a chord that contains the center of the circle.
CIRCLE COORDINATE GEOMETRY
CIRCLE COORDINATE GEOMETRY (EXAM QUESTIONS) Question 1 (**) A circle has equation x + y = 2x + 8 Determine the radius and the coordinates of the centre of the circle. r = 3, ( 1,0 ) Question 2 (**) A circle
19 - RAY OPTICS Page 1 ( Answers at the end of all questions )
19 - RAY OPTICS Page 1 1 ) A ish looking up through the water sees the outside world contained in a circular horizon. I the reractive index o water is 4 / 3 and the ish is 1 cm below the surace, the radius
Revision problem. Chapter 18 problem 37 page 612. Suppose you point a pinhole camera at a 15m tall tree that is 75m away.
Revision problem Chapter 18 problem 37 page 612 Suppose you point a pinhole camera at a 15m tall tree that is 75m away. 1 Optical Instruments Thin lens equation Refractive power Cameras The human eye Combining
Chapter 27 Optical Instruments. 27.1 The Human Eye and the Camera 27.2 Lenses in Combination and Corrective Optics 27.3 The Magnifying Glass
Chapter 27 Optical Instruments 27.1 The Human Eye and the Camera 27.2 Lenses in Combination and Corrective Optics 27.3 The Magnifying Glass Figure 27 1 Basic elements of the human eye! Light enters the
Study Guide for Exam on Light
Name: Class: Date: Study Guide for Exam on Light Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which portion of the electromagnetic spectrum is used
Geometrical Optics - Grade 11
OpenStax-CNX module: m32832 1 Geometrical Optics - Grade 11 Rory Adams Free High School Science Texts Project Mark Horner Heather Williams This work is produced by OpenStax-CNX and licensed under the Creative
Analytical Geometry (4)
Analytical Geometry (4) Learning Outcomes and Assessment Standards Learning Outcome 3: Space, shape and measurement Assessment Standard As 3(c) and AS 3(a) The gradient and inclination of a straight line
4. How many integers between 2004 and 4002 are perfect squares?
5 is 0% of what number? What is the value of + 3 4 + 99 00? (alternating signs) 3 A frog is at the bottom of a well 0 feet deep It climbs up 3 feet every day, but slides back feet each night If it started
2006 Geometry Form A Page 1
2006 Geometry Form Page 1 1. he hypotenuse of a right triangle is 12" long, and one of the acute angles measures 30 degrees. he length of the shorter leg must be: () 4 3 inches () 6 3 inches () 5 inches
Trigonometric Functions and Triangles
Trigonometric Functions and Triangles Dr. Philippe B. Laval Kennesaw STate University August 27, 2010 Abstract This handout defines the trigonometric function of angles and discusses the relationship between
Co-ordinate Geometry THE EQUATION OF STRAIGHT LINES
Co-ordinate Geometry THE EQUATION OF STRAIGHT LINES This section refers to the properties of straight lines and curves using rules found by the use of cartesian co-ordinates. The Gradient of a Line. As
Interference. Physics 102 Workshop #3. General Instructions
Interference Physics 102 Workshop #3 Name: Lab Partner(s): Instructor: Time of Workshop: General Instructions Workshop exercises are to be carried out in groups of three. One report per group is due by
Basic Optics System OS-8515C
40 50 30 60 20 70 10 80 0 90 80 10 20 70 T 30 60 40 50 50 40 60 30 C 70 20 80 10 90 90 0 80 10 70 20 60 50 40 30 Instruction Manual with Experiment Guide and Teachers Notes 012-09900B Basic Optics System
Physical Science 20 - Final Exam Practice
Physical Science 20 - Final Exam Practice SHORT ANSWER IS ALL CURVED MIRRORS AND LENSES Mirrors and Lenses 1. Complete the following ray diagrams for curved mirrors. Write the 4 characteristics of each
Optical Communications
Optical Communications Telecommunication Engineering School of Engineering University of Rome La Sapienza Rome, Italy 2005-2006 Lecture #2, May 2 2006 The Optical Communication System BLOCK DIAGRAM OF
Chapter 4.1 Parallel Lines and Planes
Chapter 4.1 Parallel Lines and Planes Expand on our definition of parallel lines Introduce the idea of parallel planes. What do we recall about parallel lines? In geometry, we have to be concerned about
12. Parallels. Then there exists a line through P parallel to l.
12. Parallels Given one rail of a railroad track, is there always a second rail whose (perpendicular) distance from the first rail is exactly the width across the tires of a train, so that the two rails
CHAPTER 29 VOLUMES AND SURFACE AREAS OF COMMON SOLIDS
CHAPTER 9 VOLUMES AND SURFACE AREAS OF COMMON EXERCISE 14 Page 9 SOLIDS 1. Change a volume of 1 00 000 cm to cubic metres. 1m = 10 cm or 1cm = 10 6m 6 Hence, 1 00 000 cm = 1 00 000 10 6m = 1. m. Change
alternate interior angles
alternate interior angles two non-adjacent angles that lie on the opposite sides of a transversal between two lines that the transversal intersects (a description of the location of the angles); alternate
1 Solution of Homework
Math 3181 Dr. Franz Rothe February 4, 2011 Name: 1 Solution of Homework 10 Problem 1.1 (Common tangents of two circles). How many common tangents do two circles have. Informally draw all different cases,
Angles that are between parallel lines, but on opposite sides of a transversal.
GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,
Solutions to Practice Problems
Higher Geometry Final Exam Tues Dec 11, 5-7:30 pm Practice Problems (1) Know the following definitions, statements of theorems, properties from the notes: congruent, triangle, quadrilateral, isosceles
Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.
Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.
Lenses and Telescopes
A. Using single lenses to form images Lenses and Telescopes The simplest variety of telescope uses a single lens. The image is formed at the focus of the telescope, which is simply the focal plane of the
CHAPTER 8, GEOMETRY. 4. A circular cylinder has a circumference of 33 in. Use 22 as the approximate value of π and find the radius of this cylinder.
TEST A CHAPTER 8, GEOMETRY 1. A rectangular plot of ground is to be enclosed with 180 yd of fencing. If the plot is twice as long as it is wide, what are its dimensions? 2. A 4 cm by 6 cm rectangle has
Chapter 8 Geometry We will discuss following concepts in this chapter.
Mat College Mathematics Updated on Nov 5, 009 Chapter 8 Geometry We will discuss following concepts in this chapter. Two Dimensional Geometry: Straight lines (parallel and perpendicular), Rays, Angles
Shape, Space and Measure
Name: Shape, Space and Measure Prep for Paper 2 Including Pythagoras Trigonometry: SOHCAHTOA Sine Rule Cosine Rule Area using 1-2 ab sin C Transforming Trig Graphs 3D Pythag-Trig Plans and Elevations Area
Physics 116. Nov 4, 2011. Session 22 Review: ray optics. R. J. Wilkes Email: [email protected]
Physics 116 Session 22 Review: ray optics Nov 4, 2011 R. J. Wilkes Email: [email protected] ! Exam 2 is Monday!! All multiple choice, similar to HW problems, same format as Exam 1!!! Announcements
LIGHT SECTION 6-REFRACTION-BENDING LIGHT From Hands on Science by Linda Poore, 2003.
LIGHT SECTION 6-REFRACTION-BENDING LIGHT From Hands on Science by Linda Poore, 2003. STANDARDS: Students know an object is seen when light traveling from an object enters our eye. Students will differentiate
Understanding astigmatism Spring 2003
MAS450/854 Understanding astigmatism Spring 2003 March 9th 2003 Introduction Spherical lens with no astigmatism Crossed cylindrical lenses with astigmatism Horizontal focus Vertical focus Plane of sharpest
Geometry Regents Review
Name: Class: Date: Geometry Regents Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If MNP VWX and PM is the shortest side of MNP, what is the shortest
www.sakshieducation.com
LENGTH OF THE PERPENDICULAR FROM A POINT TO A STRAIGHT LINE AND DISTANCE BETWEEN TWO PAPALLEL LINES THEOREM The perpendicular distance from a point P(x 1, y 1 ) to the line ax + by + c 0 is ax1+ by1+ c
Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance. Your name Lab section
Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance Your name Lab section 1. What do you investigate in this lab? 2. Two straight wires are in parallel and carry electric currents in opposite directions
Selected practice exam solutions (part 5, item 2) (MAT 360)
Selected practice exam solutions (part 5, item ) (MAT 360) Harder 8,91,9,94(smaller should be replaced by greater )95,103,109,140,160,(178,179,180,181 this is really one problem),188,193,194,195 8. On
Basic Geometrical Optics
F UNDAMENTALS OF PHOTONICS Module 1.3 Basic Geometrical Optics Leno S. Pedrotti CORD Waco, Texas Optics is the cornerstone of photonics systems and applications. In this module, you will learn about one
Map Patterns and Finding the Strike and Dip from a Mapped Outcrop of a Planar Surface
Map Patterns and Finding the Strike and Dip from a Mapped Outcrop of a Planar Surface Topographic maps represent the complex curves of earth s surface with contour lines that represent the intersection
Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect
Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with
ME 111: Engineering Drawing
ME 111: Engineering Drawing Lecture # 14 (10/10/2011) Development of Surfaces http://www.iitg.ernet.in/arindam.dey/me111.htm http://www.iitg.ernet.in/rkbc/me111.htm http://shilloi.iitg.ernet.in/~psr/ Indian
7.2. Focusing devices: Unit 7.2. context. Lenses and curved mirrors. Lenses. The language of optics
context 7.2 Unit 7.2 ocusing devices: Lenses and curved mirrors Light rays often need to be controlled and ed to produce s in optical instruments such as microscopes, cameras and binoculars, and to change
6. Vectors. 1 2009-2016 Scott Surgent ([email protected])
6. Vectors For purposes of applications in calculus and physics, a vector has both a direction and a magnitude (length), and is usually represented as an arrow. The start of the arrow is the vector s foot,
PHYSICS PAPER 1 (THEORY)
PHYSICS PAPER 1 (THEORY) (Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time.) ---------------------------------------------------------------------------------------------------------------------
WAVELENGTH OF LIGHT - DIFFRACTION GRATING
PURPOSE In this experiment we will use the diffraction grating and the spectrometer to measure wavelengths in the mercury spectrum. THEORY A diffraction grating is essentially a series of parallel equidistant
Light Energy OBJECTIVES
11 Light Energy Can you read a book in the dark? If you try to do so, then you will realize, how much we are dependent on light. Light is very important part of our daily life. We require light for a number
DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.
DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent
Name Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155
Chapter Test Bank 55 Test Form A Chapter Name Class Date Section. Find a unit vector in the direction of v if v is the vector from P,, 3 to Q,, 0. (a) 3i 3j 3k (b) i j k 3 i 3 j 3 k 3 i 3 j 3 k. Calculate
INCIDENCE-BETWEENNESS GEOMETRY
INCIDENCE-BETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full
Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass
Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, August 13, 2013 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications
Transmission Lines. Smith Chart
Smith Chart The Smith chart is one of the most useful graphical tools for high frequency circuit applications. The chart provides a clever way to visualize complex functions and it continues to endure
Light and its effects
Light and its effects Light and the speed of light Shadows Shadow films Pinhole camera (1) Pinhole camera (2) Reflection of light Image in a plane mirror An image in a plane mirror is: (i) the same size
Laws; of Refraction. bends away from the normal. more dense medium bends towards the normal. to another does not bend. It is not
Science 8 Laws; of Refraction 1. tight that moyes at an angle from a less dense medium to a more dense medium bends towards the normal. (The second medium slows the light down) Note: The angle of refraction,
Chapter 22: Electric Flux and Gauss s Law
22.1 ntroduction We have seen in chapter 21 that determining the electric field of a continuous charge distribution can become very complicated for some charge distributions. t would be desirable if we
Review for Test 3. Polarized light. Action of a Polarizer. Polarized light. Light Intensity after a Polarizer. Review for Test 3.
Review for Test 3 Polarized light No equation provided! Polarized light In linearly polarized light, the electric field vectors all lie in one single direction. Action of a Polarizer Transmission axis
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any
5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1
5 VECTOR GEOMETRY Chapter 5 Vector Geometry Objectives After studying this chapter you should be able to find and use the vector equation of a straight line; be able to find the equation of a plane in
Wednesday 15 January 2014 Morning Time: 2 hours
Write your name here Surname Other names Pearson Edexcel Certificate Pearson Edexcel International GCSE Mathematics A Paper 4H Centre Number Wednesday 15 January 2014 Morning Time: 2 hours Candidate Number
Science In Action 8 Unit C - Light and Optical Systems. 1.1 The Challenge of light
1.1 The Challenge of light 1. Pythagoras' thoughts about light were proven wrong because it was impossible to see A. the light beams B. dark objects C. in the dark D. shiny objects 2. Sir Isaac Newton
L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has
The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:
1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,
1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It
Shape Dictionary YR to Y6
Shape Dictionary YR to Y6 Guidance Notes The terms in this dictionary are taken from the booklet Mathematical Vocabulary produced by the National Numeracy Strategy. Children need to understand and use
ME 111: Engineering Drawing
ME 111: Engineering Drawing Lecture 4 08-08-2011 Engineering Curves and Theory of Projection Indian Institute of Technology Guwahati Guwahati 781039 Eccentrici ty = Distance of the point from the focus
MENSURATION. Definition
MENSURATION Definition 1. Mensuration : It is a branch of mathematics which deals with the lengths of lines, areas of surfaces and volumes of solids. 2. Plane Mensuration : It deals with the sides, perimeters
POINT OF INTERSECTION OF TWO STRAIGHT LINES
POINT OF INTERSECTION OF TWO STRAIGHT LINES THEOREM The point of intersection of the two non parallel lines bc bc ca ca a x + b y + c = 0, a x + b y + c = 0 is,. ab ab ab ab Proof: The lines are not parallel
MODERN APPLICATIONS OF PYTHAGORAS S THEOREM
UNIT SIX MODERN APPLICATIONS OF PYTHAGORAS S THEOREM Coordinate Systems 124 Distance Formula 127 Midpoint Formula 131 SUMMARY 134 Exercises 135 UNIT SIX: 124 COORDINATE GEOMETRY Geometry, as presented
THREE DIMENSIONAL GEOMETRY
Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,
