Polarization Dependence in X-ray Spectroscopy and Scattering. S P Collins et al Diamond Light Source UK
|
|
|
- Rosamond Stone
- 9 years ago
- Views:
Transcription
1 Polarization Dependence in X-ray Spectroscopy and Scattering S P Collins et al Diamond Light Source UK
2 Overview of talk 1. Experimental techniques at Diamond: why we care about x-ray polarization 2. How polarized x-rays are generated 3. Future directions
3 X-ray interactions with matter: Key techniques Absorption/transmission Elastic scattering Inelastic scattering (resonant, non-resonant) Photoelectron spectroscopy
4 Max von Laue 1914 Nobel Laureate in Physics for his discovery of the diffraction of X-rays by crystals. Laue predicted that if x-rays were a form of short-wavelength electromagnetic radiation then they should produce diffraction effects as they pass through crystals This idea was put to the test by Friedrich The field of X-ray diffraction and crystallography was born
5 X-ray Diffraction and Crystallography ( and why we need synchrotrons)
6 Polarization by scattering x ( ε ε ˆ ˆ ) 1 E E ( ε ε ˆ ˆ ) 1 y ( ε ε ˆ ˆ ) 0 2 ( εˆ εˆ ) cos2 z ( ε ε ˆ ˆ ) 1
7 Polarization of Synchrotron Radiation Intense beams of linearly polarized x-rays
8 X-ray Diffraction & Scattering: Why do we care about polarization? Because the scattering depends strongly on linear polarization; scattering can become very weak in the horizontal plane; data must be corrected for polarization. But the polarization dependence tells us nothing about the sample, it just reminds us that light is a transverse wave. Bragg scattering can be used as a polarization analyser.
9 Absorption/transmission Is polarization important in absorption?
10 Polarizing glasses are very cool Linear dichroism and birefringence gives information about internal polarization of materials. Does it work with x-rays?
11 Relative transmittance b=-45 o a=90 o a= b=+45 o m(cm -1 ) HN Polarizer angle a (degrees) Energy (kev)
12 X-ray Absorption: Why do we care about polarization? Because absorption from anisotropic systems depends on linear polarization. This effect can give rise to x-ray dichroism and birefringence at particular photon energies One could construct polarizing devices or study, for example, orientations of chemical bonds. And going beyond the electric dipole approximation one can observe more exotic high-order atomic multipoles such as hexadecapoles in cubic systems
13 Fluorescence Strontium titanate SrTiO 3 A B C C A B
14 Sir William Henry Bragg ( ) Sir William Lawrence Bragg ( ) So what was left for the Bragg s to do? The father and son team carried out their own experiments and, in analogy with optical diffraction, worked out a formula for the wavelength of the diffracted wave: the famous Bragg s Law 1915 Nobel prize for physics "for their services in the analysis of crystal structure by means of X- rays".
15
16
17
18
19
20
21
22
23
24
25
26
27 Resonant forbidden scattering: Why do we care about polarization? Because the polarization breaks the symmetry that normally causes an exact cancellation of the scattering at these positions The residual scattering is extremely interesting as it provides direct information about very weak processes that are normally hidden, e.g. exotic electronic polarization effects, magnetism
28 Magnetic forces on electron: Magnetic scattering Electromagnetic wave E Electron S H There are several other magnetic terms, each having different polarization dependence. They are all very weak. Forces: electric magnetic (Zeeman) f f = -ee = -2 ( S H) mb Ratio of Zeeman force to electric force: I I f f Z e mag charge 1 2 ~ 10 2 m c 6 e ~ 10 2 or less!
29 FeBO 3 : A weak ferromagnet studied by x-ray diffraction (Diamond I16)
30 Magnetic x-ray scattering: Why do we care about polarization? Because the magnetic x-ray scattering has a very different polarization dependence from change scattering This enables it to be identified as magnetic It also allows us uniquely to obtain information about the distribution of spin and orbital magnetic moments in the material N S S N N S
31 A circular dichroism measurement Magnet poles I=I e -( m m) t o Ferromagnetic sample Circularly polarized beam Magnetizing field I=I o
32 X-ray absorption and orbital polarization
33 Beamline I06 - Nanoscience A polarised soft x-ray beamline for microscopy and spectroscopy PEEM images recorded using X-Ray Magnetic Circular Dichroism (left) and X- ray Magnetic Linear Dichroism (right) showing ferromagnetic and antiferromagnetic domains, respectively, in Co thin films grown on NiO.
34 Magnetic Circular Dichroism: Why do we care about polarization? Because the angular momentum of the photon circular polarization couples directly to the angular momentum of electronic states to give a huge sensitivity to magnetism. Synchrotron radiation is now one of the major tools for studying magnetic materials This process also forms the basis of novel microscopy techniques allowing magnetic domains and dynamics to be studied 10 nm resolution There are similar effects in resonant scattering.
35
36 Diamond Beamline I16
37 Tellurium results from I16: 001 and 002 forbidden reflections
38 Studies of Chiral Systems: Why do we care about polarization? Because circular polarization breaks the mirrors symmetry of the photon beam, allowing studies of chiral samples These are of fundamental importance to chemistry and biology (nature is chiral) These effects play an important role in contemporary condensed matter physics, i.e. the magnetoelectric effect, chiral magnetic structures
39 X-ray birefringence imaging - Dynamical Diffraction Transmission image through diamond - horizontal polarization Vertical polarization
40 Polarization of Synchrotron Radiation Intense beams of linearly polarized x-rays Quarter-wave phase plate
41 The Future: Production of linear and circular beams: already very efficient, especially linear polarization Reversible circular polarizers to pick out very small changes that couple to photon helicity: still challenging. The state-of-the-art is sensitivity at 10-5 level but this if very difficult is more typical; 10-7 would certainly provide new techniques such as x- ray natural circular dichroism in chiral liquids. Polarization analysers and polarization sensitive detector: very challenging. The efficiency and complexity of current devices is perhaps the main limiting factor is synchrotron techniques such as magnetic scattering.
X-Rays and Magnetism From Fundamentals to Nanoscale Dynamics
X-Rays and Magnetism From Fundamentals to Nanoscale Dynamics Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-rays have come a long way 1895 1993 10 cm 10 µm 100 nm Collaborators: SSRL Stanford:
Time out states and transitions
Time out states and transitions Spectroscopy transitions between energy states of a molecule excited by absorption or emission of a photon hn = DE = E i - E f Energy levels due to interactions between
Automatic and Objective Measurement of Residual Stress and Cord in Glass
Automatic and Objective Measurement of Residual Stress and Cord in Glass GlassTrend - ICG TC15/21 Seminar SENSORS AND PROCESS CONTROL 13-14 October 2015, Eindhoven Henning Katte, ilis gmbh copyright ilis
PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS
PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.
Acousto-optic modulator
1 of 3 Acousto-optic modulator F An acousto-optic modulator (AOM), also called a Bragg cell, uses the acousto-optic effect to diffract and shift the frequency of light using sound waves (usually at radio-frequency).
Physics 441/2: Transmission Electron Microscope
Physics 441/2: Transmission Electron Microscope Introduction In this experiment we will explore the use of transmission electron microscopy (TEM) to take us into the world of ultrasmall structures. This
Reflection Electron Microscopy and Spectroscopy for Surface Analysis
Reflection Electron Microscopy and Spectroscopy for Surface Analysis by Zhong Lin Wang 1 Introduction In 1986, E. Ruska was awarded the Nobel Physics Prize for his pioneering work of building the world's
How To Understand Light And Color
PRACTICE EXAM IV P202 SPRING 2004 1. In two separate double slit experiments, an interference pattern is observed on a screen. In the first experiment, violet light (λ = 754 nm) is used and a second-order
Near-field scanning optical microscopy (SNOM)
Adviser: dr. Maja Remškar Institut Jožef Stefan January 2010 1 2 3 4 5 6 Fluorescence Raman and surface enhanced Raman 7 Conventional optical microscopy-limited resolution Two broad classes of techniques
Crystal Optics of Visible Light
Crystal Optics of Visible Light This can be a very helpful aspect of minerals in understanding the petrographic history of a rock. The manner by which light is transferred through a mineral is a means
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Background theory. 1. Electromagnetic waves and their properties. 2. Polarisation of light: a) unpolarised
6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm?
Test IV Name 1) In a single slit diffraction experiment, the width of the slit is 3.1 10-5 m and the distance from the slit to the screen is 2.2 m. If the beam of light of wavelength 600 nm passes through
Raman spectroscopy Lecture
Raman spectroscopy Lecture Licentiate course in measurement science and technology Spring 2008 10.04.2008 Antti Kivioja Contents - Introduction - What is Raman spectroscopy? - The theory of Raman spectroscopy
Introduction to Powder X-Ray Diffraction History Basic Principles
Introduction to Powder X-Ray Diffraction History Basic Principles Folie.1 History: Wilhelm Conrad Röntgen Wilhelm Conrad Röntgen discovered 1895 the X-rays. 1901 he was honoured by the Noble prize for
X-Ray Diffraction HOW IT WORKS WHAT IT CAN AND WHAT IT CANNOT TELL US. Hanno zur Loye
X-Ray Diffraction HOW IT WORKS WHAT IT CAN AND WHAT IT CANNOT TELL US Hanno zur Loye X-rays are electromagnetic radiation of wavelength about 1 Å (10-10 m), which is about the same size as an atom. The
EDS system. CRF Oxford Instruments INCA CRF EDAX Genesis EVEX- NanoAnalysis Table top system
EDS system Most common X-Ray measurement system in the SEM lab. Major elements (10 wt% or greater) identified in ~10 secs. Minor elements identifiable in ~100 secs. Rapid qualitative and accurate quantitative
Arrangement of Electrons in Atoms
CHAPTER 4 PRE-TEST Arrangement of Electrons in Atoms In the space provided, write the letter of the term that best completes each sentence or best answers each question. 1. Which of the following orbital
Electron Microscopy SEM and TEM
Electron Microscopy SEM and TEM Content 1. Introduction: Motivation for electron microscopy 2. Interaction with matter 3. SEM: Scanning Electron Microscopy 3.1 Functional Principle 3.2 Examples 3.3 EDX
- thus, the total number of atoms per second that absorb a photon is
Stimulated Emission of Radiation - stimulated emission is referring to the emission of radiation (a photon) from one quantum system at its transition frequency induced by the presence of other photons
Wir schaffen Wissen heute für morgen
Diffractive optics for photon beam diagnostics at hard XFELs Wir schaffen Wissen heute für morgen PSI: SLAC: ESRF: SOLEIL: APS: SACLA: EuroXFEL C. David, S. Rutishauser, P. Karvinen, Y. Kayser, U. Flechsig,
Raman Spectroscopy. 1. Introduction. 2. More on Raman Scattering. " scattered. " incident
February 15, 2006 Advanced Physics Laboratory Raman Spectroscopy 1. Introduction When light is scattered from a molecule or crystal, most photons are elastically scattered. The scattered photons have the
PHYA2. General Certificate of Education Advanced Subsidiary Examination June 2010. Mechanics, Materials and Waves
Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Physics A Unit 2 For this paper you must have: a ruler a calculator a Data and Formulae Booklet.
Chapter 18: The Structure of the Atom
Chapter 18: The Structure of the Atom 1. For most elements, an atom has A. no neutrons in the nucleus. B. more protons than electrons. C. less neutrons than electrons. D. just as many electrons as protons.
The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD
TN-100 The Fundamentals of Infrared Spectroscopy The Principles of Infrared Spectroscopy Joe Van Gompel, PhD Spectroscopy is the study of the interaction of electromagnetic radiation with matter. The electromagnetic
Damping Wigglers in PETRA III
Damping Wigglers in PETRA III WIGGLE2005, Frascati 21-22.2.2005 Winni Decking, DESY-MPY Introduction Damping Wiggler Parameters Nonlinear Dynamics with DW Operational Aspects Summary DESY and its Accelerators
X-ray Diffraction (XRD)
X-ray Diffraction (XRD) 1.0 What is X-ray Diffraction 2.0 Basics of Crystallography 3.0 Production of X-rays 4.0 Applications of XRD 5.0 Instrumental Sources of Error 6.0 Conclusions Bragg s Law n l =2dsinq
The Role of Electric Polarization in Nonlinear optics
The Role of Electric Polarization in Nonlinear optics Sumith Doluweera Department of Physics University of Cincinnati Cincinnati, Ohio 45221 Abstract Nonlinear optics became a very active field of research
Electron density is complex!
Electron density is complex! Göttingen, November 13 th 2008 George M. Sheldrick, Göttingen University http://shelx.uni-ac.gwdg.de/shelx/ Friedel s Law F h,k,l = F h, k, l and φ h,k,l = φ h, k, l Friedel
PHYSICS PAPER 1 (THEORY)
PHYSICS PAPER 1 (THEORY) (Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time.) ---------------------------------------------------------------------------------------------------------------------
Preface Light Microscopy X-ray Diffraction Methods
Preface xi 1 Light Microscopy 1 1.1 Optical Principles 1 1.1.1 Image Formation 1 1.1.2 Resolution 3 1.1.3 Depth of Field 5 1.1.4 Aberrations 6 1.2 Instrumentation 8 1.2.1 Illumination System 9 1.2.2 Objective
It has long been a goal to achieve higher spatial resolution in optical imaging and
Nano-optical Imaging using Scattering Scanning Near-field Optical Microscopy Fehmi Yasin, Advisor: Dr. Markus Raschke, Post-doc: Dr. Gregory Andreev, Graduate Student: Benjamin Pollard Department of Physics,
TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points
TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points 1. Check your examination for completeness prior to starting.
Infrared Spectroscopy: Theory
u Chapter 15 Infrared Spectroscopy: Theory An important tool of the organic chemist is Infrared Spectroscopy, or IR. IR spectra are acquired on a special instrument, called an IR spectrometer. IR is used
Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry
Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Jon H. Hardesty, PhD and Bassam Attili, PhD Collin College Department of Chemistry Introduction: In the last lab
Section 6 Raman Scattering (lecture 10)
Section 6 Scattering (lecture 10) Previously: Quantum theory of atoms / molecules Quantum Mechanics Valence Atomic and Molecular Spectroscopy Scattering The scattering process Elastic (Rayleigh) and inelastic
Electron Orbits. Binding Energy. centrifugal force: electrostatic force: stability criterion: kinetic energy of the electron on its orbit:
Electron Orbits In an atom model in which negatively charged electrons move around a small positively charged nucleus stable orbits are possible. Consider the simple example of an atom with a nucleus of
Study of the anomalous magnetic behavior of nanostructures by X-ray magnetic circular dichroism
Study of the anomalous magnetic behavior of nanostructures by X-ray magnetic circular dichroism Rogerio Magalhães-Paniago #,*, #Departamento de Física, UFMG, Belo Horizonte, Brazil * Laboratório Nacional
Atomic Structure Ron Robertson
Atomic Structure Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\atomicstructuretrans.doc I. What is Light? Debate in 1600's: Since waves or particles can transfer energy, what is
Nanoelectronics 09. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture
Nanoelectronics 09 Atsufumi Hirohata Department of Electronics 12:00 Wednesday, 4/February/2015 (P/L 006) Quick Review over the Last Lecture ( Field effect transistor (FET) ): ( Drain ) current increases
where h = 6.62 10-34 J s
Electromagnetic Spectrum: Refer to Figure 12.1 Molecular Spectroscopy: Absorption of electromagnetic radiation: The absorptions and emissions of electromagnetic radiation are related molecular-level phenomena
Nanoscience Course Descriptions
Nanoscience Course Descriptions NANO*1000 Introduction to Nanoscience This course introduces students to the emerging field of nanoscience. Its representation in popular culture and journalism will be
Phase determination methods in macromolecular X- ray Crystallography
Phase determination methods in macromolecular X- ray Crystallography Importance of protein structure determination: Proteins are the life machinery and are very essential for the various functions in the
SPECTROSCOPY. Light interacting with matter as an analytical tool
SPECTROSCOPY Light interacting with matter as an analytical tool Electronic Excitation by UV/Vis Spectroscopy : X-ray: core electron excitation UV: valance electronic excitation IR: molecular vibrations
Powder diffraction and synchrotron radiation
Powder diffraction and synchrotron radiation Gilberto Artioli Dip. Geoscienze UNIPD CIRCe Center for Cement Materials single xl diffraction powder diffraction Ideal powder Powder averaging Textured sample
From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?
From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly
Upcoming APS Summer Schools
Upcoming APS Summer Schools 9th U.S. National School on Neutron & X-Ray Scattering August 12 25, 2007 Argonne Division of Educational Programs 3rd APS XAFS Summer School July 23 27, 2007 APS XAFS Scientific
A More Efficient Way to De-shelve 137 Ba +
A More Efficient Way to De-shelve 137 Ba + Abstract: Andrea Katz Trinity University UW REU 2010 In order to increase the efficiency and reliability of de-shelving barium ions, an infrared laser beam was
Force on Moving Charges in a Magnetic Field
[ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after
X-ray Diffraction and EBSD
X-ray Diffraction and EBSD Jonathan Cowen Swagelok Center for the Surface Analysis of Materials Case School of Engineering Case Western Reserve University October 27, 2014 Outline X-ray Diffraction (XRD)
Magnetic Dipoles. Magnetic Field of Current Loop. B r. PHY2061 Enriched Physics 2 Lecture Notes
Disclaimer: These lecture notes are not meant to replace the course textbook. The content may be incomplete. Some topics may be unclear. These notes are only meant to be a study aid and a supplement to
Determination of Molecular Structure by MOLECULAR SPECTROSCOPY
Determination of Molecular Structure by MOLEULAR SPETROSOPY hemistry 3 B.Z. Shakhashiri Fall 29 Much of what we know about molecular structure has been learned by observing and analyzing how electromagnetic
Two bar magnets are brought near each other as shown. The magnets... A) attract B) repel C) exert no net force on each other.
Magnetic Fields and Forces Learning goals: Students will be able to Predict the direction of the magnet field for different locations around a bar magnet and an electromagnet. Relate magnetic field strength
Diffraction Course Series 2015
Diffraction Course Series 2015 Mark Wainwright Analytical Centre Kensington Campus, Chemical Sciences Building F10, Room G37 The Mark Wainwright Analytical Centre is offering a new series of courses covering
Jorge E. Fernández Laboratory of Montecuccolino (DIENCA), Alma Mater Studiorum University of Bologna, via dei Colli, 16, 40136 Bologna, Italy
Information technology (IT) for teaching X- and gamma-ray transport: the computer codes MUPLOT and SHAPE, and the web site dedicated to photon transport Jorge E. Fernández Laboratory of Montecuccolino
3.5.4.2 One example: Michelson interferometer
3.5.4.2 One example: Michelson interferometer mirror 1 mirror 2 light source 1 2 3 beam splitter 4 object (n object ) interference pattern we either observe fringes of same thickness (parallel light) or
INFRARED SPECTROSCOPY (IR)
INFRARED SPECTROSCOPY (IR) Theory and Interpretation of IR spectra ASSIGNED READINGS Introduction to technique 25 (p. 833-834 in lab textbook) Uses of the Infrared Spectrum (p. 847-853) Look over pages
Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida ([email protected])
Introduction Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida ([email protected]) The scattering of light may be thought of as the redirection
Proton Nuclear Magnetic Resonance Spectroscopy
Proton Nuclear Magnetic Resonance Spectroscopy Introduction: The NMR Spectrum serves as a great resource in determining the structure of an organic compound by revealing the hydrogen and carbon skeleton.
Experiment #5: Qualitative Absorption Spectroscopy
Experiment #5: Qualitative Absorption Spectroscopy One of the most important areas in the field of analytical chemistry is that of spectroscopy. In general terms, spectroscopy deals with the interactions
PHYSIOLOGY AND MAINTENANCE Vol. II - On The Determination of Enzyme Structure, Function, and Mechanism - Glumoff T.
ON THE DETERMINATION OF ENZYME STRUCTURE, FUNCTION, AND MECHANISM University of Oulu, Finland Keywords: enzymes, protein structure, X-ray crystallography, bioinformatics Contents 1. Introduction 2. Structure
Symmetric Stretch: allows molecule to move through space
BACKGROUND INFORMATION Infrared Spectroscopy Before introducing the subject of IR spectroscopy, we must first review some aspects of the electromagnetic spectrum. The electromagnetic spectrum is composed
Amino Acids. Amino acids are the building blocks of proteins. All AA s have the same basic structure: Side Chain. Alpha Carbon. Carboxyl. Group.
Protein Structure Amino Acids Amino acids are the building blocks of proteins. All AA s have the same basic structure: Side Chain Alpha Carbon Amino Group Carboxyl Group Amino Acid Properties There are
Waves Sound and Light
Waves Sound and Light r2 c:\files\courses\1710\spr12\wavetrans.doc Ron Robertson The Nature of Waves Waves are a type of energy transmission that results from a periodic disturbance (vibration). They are
Fraunhofer Diffraction
Physics 334 Spring 1 Purpose Fraunhofer Diffraction The experiment will test the theory of Fraunhofer diffraction at a single slit by comparing a careful measurement of the angular dependence of intensity
2. Spin Chemistry and the Vector Model
2. Spin Chemistry and the Vector Model The story of magnetic resonance spectroscopy and intersystem crossing is essentially a choreography of the twisting motion which causes reorientation or rephasing
Lecture 20: Scanning Confocal Microscopy (SCM) Rationale for SCM. Principles and major components of SCM. Advantages and major applications of SCM.
Lecture 20: Scanning Confocal Microscopy (SCM) Rationale for SCM. Principles and major components of SCM. Advantages and major applications of SCM. Some limitations (disadvantages) of NSOM A trade-off
X Ray Flourescence (XRF)
X Ray Flourescence (XRF) Aspiring Geologist XRF Technique XRF is a rapid, relatively non destructive process that produces chemical analysis of rocks, minerals, sediments, fluids, and soils It s purpose
Introduction to X-Ray Powder Diffraction Data Analysis
Introduction to X-Ray Powder Diffraction Data Analysis Center for Materials Science and Engineering at MIT http://prism.mit.edu/xray An X-ray diffraction pattern is a plot of the intensity of X-rays scattered
Technician Licensing Class
Technician Licensing Class Antennas Presented by Amateur Radio Technician Class Element 2 Course Presentation ELEMENT 2 SUB-ELEMENTS (Groupings) About Ham Radio Call Signs Control Mind the Rules Tech Frequencies
Force on a square loop of current in a uniform B-field.
Force on a square loop of current in a uniform B-field. F top = 0 θ = 0; sinθ = 0; so F B = 0 F bottom = 0 F left = I a B (out of page) F right = I a B (into page) Assume loop is on a frictionless axis
Organic Chemistry Tenth Edition
Organic Chemistry Tenth Edition T. W. Graham Solomons Craig B. Fryhle Welcome to CHM 22 Organic Chemisty II Chapters 2 (IR), 9, 3-20. Chapter 2 and Chapter 9 Spectroscopy (interaction of molecule with
Status of the FERMI@Elettra Free Electron Laser
Status of the FERMI@Elettra Free Electron Laser E. Allaria on behalf of the FERMI team Work partially supported by the Italian Ministry of University and Research under grants FIRB-RBAP045JF2 and FIRB-RBAP06AWK3
A Guide to Acousto-Optic Modulators
A Guide to Acousto-Optic Modulators D. J. McCarron December 7, 2007 1 Introduction Acousto-optic modulators (AOMs) are useful devices which allow the frequency, intensity and direction of a laser beam
Interaction of Atoms and Electromagnetic Waves
Interaction of Atoms and Electromagnetic Waves Outline - Review: Polarization and Dipoles - Lorentz Oscillator Model of an Atom - Dielectric constant and Refractive index 1 True or False? 1. The dipole
Introduction to Optics
Second Edition Introduction to Optics FRANK L. PEDROTTI, S.J. Marquette University Milwaukee, Wisconsin Vatican Radio, Rome LENO S. PEDROTTI Center for Occupational Research and Development Waco, Texas
X-ray thin-film measurement techniques
Technical articles X-ray thin-film measurement techniques II. Out-of-plane diffraction measurements Toru Mitsunaga* 1. Introduction A thin-film sample is two-dimensionally formed on the surface of a substrate,
PCV Project: Excitons in Molecular Spectroscopy
PCV Project: Excitons in Molecular Spectroscopy Introduction The concept of excitons was first introduced by Frenkel (1) in 1931 as a general excitation delocalization mechanism to account for the ability
Nuclear Magnetic Resonance (NMR) Spectroscopy cont... Recommended Reading:
Applied Spectroscopy Nuclear Magnetic Resonance (NMR) Spectroscopy cont... Recommended Reading: Banwell and McCash Chapter 7 Skoog, Holler Nieman Chapter 19 Atkins, Chapter 18 Relaxation processes We need
E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE
E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE References for Nuclear Magnetic Resonance 1. Slichter, Principles of Magnetic Resonance, Harper and Row, 1963. chapter
Chapter 7: Basics of X-ray Diffraction
Providing Solutions To Your Diffraction Needs. Chapter 7: Basics of X-ray Diffraction Scintag has prepared this section for use by customers and authorized personnel. The information contained herein is
Using light scattering method to find The surface tension of water
Experiment (8) Using light scattering method to find The surface tension of water The aim of work: The goals of this experiment are to confirm the relationship between angular frequency and wave vector
Introduction to Nuclear Magnetic Resonance Spectroscopy
Introduction to Nuclear Magnetic Resonance Spectroscopy Dr. Dean L. Olson, NMR Lab Director School of Chemical Sciences University of Illinois Called figures, equations, and tables are from Principles
Refraction of Light at a Plane Surface. Object: To study the refraction of light from water into air, at a plane surface.
Refraction of Light at a Plane Surface Object: To study the refraction of light from water into air, at a plane surface. Apparatus: Refraction tank, 6.3 V power supply. Theory: The travel of light waves
CREOL, College of Optics & Photonics, University of Central Florida
OSE6650 - Optical Properties of Nanostructured Materials Optical Properties of Nanostructured Materials Fall 2013 Class 3 slide 1 Challenge: excite and detect the near field Thus far: Nanostructured materials
Copyright 1999 2010 by Mark Brandt, Ph.D. 12
Introduction to Absorbance Spectroscopy A single beam spectrophotometer is comprised of a light source, a monochromator, a sample holder, and a detector. An ideal instrument has a light source that emits
After a wave passes through a medium, how does the position of that medium compare to its original position?
Light Waves Test Question Bank Standard/Advanced Name: Question 1 (1 point) The electromagnetic waves with the highest frequencies are called A. radio waves. B. gamma rays. C. X-rays. D. visible light.
Crystal Structure Determination I
Crystal Structure Determination I Dr. Falak Sher Pakistan Institute of Engineering and Applied Sciences National Workshop on Crystal Structure Determination using Powder XRD, organized by the Khwarzimic
Preview of Period 3: Electromagnetic Waves Radiant Energy II
Preview of Period 3: Electromagnetic Waves Radiant Energy II 3.1 Radiant Energy from the Sun How is light reflected and transmitted? What is polarized light? 3.2 Energy Transfer with Radiant Energy How
Microscopy: Principles and Advances
Microscopy: Principles and Advances Chandrashekhar V. Kulkarni University of Central Lancashire, Preston, United kingdom May, 2014 University of Ljubljana Academic Background 2005-2008: PhD-Chemical Biology
Optical Storage Technology. Optical Disc Storage
Optical Storage Technology Optical Disc Storage Introduction Since the early 1940s, magnetic recording has been the mainstay of electronic information storage worldwide. Magnetic tape has been used extensively
Spin-flip excitation spectroscopy with STM excitation of allowed transition adds an inelastic contribution (group of Andreas Heinrich, IBM Almaden)
Magnetism at the atomic scale by Scanning Probe Techniques Kirsten von Bergmann Institute of Applied Physics Magnetism with SPM Spin-polarized scanning tunneling microscopy SP-STM density of states of
Chapter 27 Magnetic Field and Magnetic Forces
Chapter 27 Magnetic Field and Magnetic Forces - Magnetism - Magnetic Field - Magnetic Field Lines and Magnetic Flux - Motion of Charged Particles in a Magnetic Field - Applications of Motion of Charged
13C NMR Spectroscopy
13 C NMR Spectroscopy Introduction Nuclear magnetic resonance spectroscopy (NMR) is the most powerful tool available for structural determination. A nucleus with an odd number of protons, an odd number
STRUCTURAL STUDIES OF MULTIFERROIC THIN FILMS
STRUCTURAL STUDIES OF MULTIFERROIC THIN FILMS Lisa Krayer (UCSD) Mentor: Daniel Pajerowski (NIST) Collaborating with: (University of Florida) Professor Amlan Biswas Daniel Grant NCNR
Basic principles and mechanisms of NSOM; Different scanning modes and systems of NSOM; General applications and advantages of NSOM.
Lecture 16: Near-field Scanning Optical Microscopy (NSOM) Background of NSOM; Basic principles and mechanisms of NSOM; Basic components of a NSOM; Different scanning modes and systems of NSOM; General
Sample Exercise 6.1 Concepts of Wavelength and Frequency
Sample Exercise 6.1 Concepts of Wavelength and Frequency Two electromagnetic waves are represented in the margin. (a) Which wave has the higher frequency? (b) If one wave represents visible light and the
5. Scanning Near-Field Optical Microscopy 5.1. Resolution of conventional optical microscopy
5. Scanning Near-Field Optical Microscopy 5.1. Resolution of conventional optical microscopy Resolution of optical microscope is limited by diffraction. Light going through an aperture makes diffraction
Theory of electrons and positrons
P AUL A. M. DIRAC Theory of electrons and positrons Nobel Lecture, December 12, 1933 Matter has been found by experimental physicists to be made up of small particles of various kinds, the particles of
Insertion Devices Lecture 4 Permanent Magnet Undulators. Jim Clarke ASTeC Daresbury Laboratory
Insertion Devices Lecture 4 Permanent Magnet Undulators Jim Clarke ASTeC Daresbury Laboratory Introduction to Lecture 4 So far we have discussed at length what the properties of SR are, when it is generated,
