3. Derive the partition function for the ideal monoatomic gas. Use Boltzmann statistics, and a quantum mechanical model for the gas.
|
|
|
- Annis Hunter
- 9 years ago
- Views:
Transcription
1 Tentamen i Statistisk Fysik I den tjugosjunde februari 2009, under tiden Lärare: Ingemar Bengtsson. Hjälpmedel: Penna, suddgummi och linjal. Bedömning: 3 poäng/uppgift. Betyg: 0-3 = F, 4-6 = Fx, 6-9 = E, = D, = C, = B, = A. 1. The energy of a photon gas is U = av T 4. Calculate its entropy and its free energy F. 2. In a P T -diagram for water the slope of the phase boundary between solid and liquid is negative. Explain, using the Clausius-Clapeyron relation, why this is important for life on earth. 3. Derive the partition function for the ideal monoatomic gas. Use Boltzmann statistics, and a quantum mechanical model for the gas. 4. Starting from the formula P (n) = e (ɛn µn)/kt (1) Z for an ideal quantum gas, derive the expected number of particles in the one-particle state with energy ɛ, for fermions, and for bosons. 5. Modelling a quantum gas as N free particles in a box, derive an expression for its density of states g(ɛ). 6. In the mean field approximation, with n nearest neighbours, the expectation values of the spins are determined by s = tanh n s kt. (2) Show that, close to the critical temperature T c, and determine the critical exponent β. s (T c T ) β, (3) 1
2 Tentamen i Analytisk Mekanik den tjugoandra augusti 2008, under tiden Lärare: Ingemar Bengtsson. Hjälpmedel: Penna, suddgummi och linjal. Bedömning: 3 poäng/uppgift. Betyg: 0-3 = F, 4-6 = Fx, 6-9 = E, = D, = C, = B, = A. 1. Consider a particle not subject to forces, and change its velocity through the transformation δx i = v i t. Write down the Lagrangian and use Noether s theorem to deduce the correspondings constant of motion. Afterwards verify by explicit differentiation that it is indeed a (vectorial) constant of the motion, even though it depends explicitly on t. 2. Prove Kepler s third law, that the square of the period of a planet is proportional to its distance from the sun. The easy way to do this is to use the scaling properties of the Lagrangian L = m 2 (ṙ2 + r 2 θ2 + r 2 sin 2 θ φ 2 ) k r. (4) 3. In a rotating coordinate system mẍ i = F i 2mɛ ijk Ω j ẋ k + m(ω 2 δ ij Ω i Ω j )x j. (5) Set up the equations for a Foucault pendulum (making many swings a day, so some terms can be ignored), and solve them. 4. State and prove a relation between the tensor of inertia relative to the center of mass, and relative to a point translated from the center of mass by the vector a i. 5. Euler s equations for a freely spinning rigid top are I 1 Ω1 + (I 3 I 2 )Ω 2 Ω 3 = 0 I 2 Ω2 + (I 1 I 3 )Ω 3 Ω 1 = 0 I 3 Ω3 + (I 2 I 1 )Ω 1 Ω 2 = 0, where Ω i is the angular velocity around the ith principal axis. The Earth is flattened at the Poles, with ellipticity 2 (6)
3 I 1 I 3 I (7) Based on Euler s equations, what period do you expect for its (small) Chandler wobble? 6. Consider the Hamiltonian and the Poisson brackets H = 1 2m p ip i (8) {x i, x j } = 0 {x i, p j } = δ ij {p i, p j } = eɛ ijk B k (x). (9) Write down Hamilton s equations in Poisson bracket form, and verify that they are the equations for a particle in an external magnetic field B i (x). Also check that these brackets really are Poisson brackets, in the sense that they are anti-symmetric and obey the Jacobi identity. To do the last part, you may find it helpful to write the magnetic field in terms of a vector potential, ɛ ijk B k = i A j j A i. (10) 3
4 Tentamen i Analytisk Mekanik den sjätte juni 2008, under tiden Lärare: Ingemar Bengtsson. Hjälpmedel: Penna, suddgummi och linjal. Bedömning: 3 poäng/uppgift. Betyg: 0-3 = F, 4-6 = Fx, 6-9 = E, = D, = C, = B, = A. 1. Draw the phase space flow for the Hamiltonian H = 1 2 p2 + x(x 1)(x 2)(x 3). (11) Your picture should show show all fixed points clearly (but you do not have to locate them to two decimal places!). Into how many regions do the separatrices divide phase space? 2. Given an action S = dt L(q, q). Suppose there exists a transformation δq = δq(q, q) such that for some function Λ = Λ(q, q). motion, and derive its form. δs = t2 t 1 dt dλ dt (12) Prove that there exists a constant of the 3. Compute the inertia tensor for a cube of constant mass density, with respect to a corner, and with respect to its center. 4. Euler s equations for a freely spinning top are I 1 Ω1 + (I 3 I 2 )Ω 2 Ω 3 = 0 I 2 Ω2 + (I 1 I 3 )Ω 3 Ω 1 = 0 I 3 Ω3 + (I 2 I 1 )Ω 1 Ω 2 = 0. (13) where Ω i is the angular velocity around the ith principal axis. Prove that the top can rotate around its principal axes, and find the conditions for these solutions to be stable. Solve the equations exactly for I 2 = I A Lagrangian for the central force two body problem is 4
5 L = m 2 (ṙ2 + r 2 φ2 ) V (r). (14) Show how to reduce the equations of motion to two integrals that are doable (in principle) as soon as the function V (r) is specified. Specialize to V (r) = kr α, and deduce under what conditions on the exponent α circular orbits are stable. 6. A Lagrangian is L = 1 2 (1 v r ) v2 + ṙ v, (15) where v and r are configuration space coordinates. What are the canonical momenta? What is the Hamiltonian? 5
6 Tentamen i Analytisk Mekanik den tjugoandra augusti 2008, under tiden Lärare: Ingemar Bengtsson. Hjälpmedel: Penna, suddgummi och linjal. Bedömning: 3 poäng/uppgift. Betyg: 0-3 = F, 4-6 = Fx, 6-9 = E, = D, = C, = B, = A. 1. Starting from the energy U = U(S.V ), use Legendre transformations to derive Helmholtz free energy F, Gibbs free energy G, and the enthalphy H. If you are a physicists studying boiling water, which potential do you choose, and why? If you are a chemist mixing some ingredients in a test tube, which potential do you choose, and why? 2. Maxwell s velocity distribution D(v) for an ideal gas is proportional to (the probability that a molecule has the velocity vector v) times (the number of vectors v that correspond to the velocity v). Use this to derive the correct formula! 3. A harmonic oscillator has E = nhν. Compute its partition function and the expected number of quanta n as a function of temperature. Use this to deduce Planck s expression for the energy density of a photon gas confined to a box. 4. Consider a collection of two state atoms in interaction with black body radiation of energy density u. There are N 1 atoms in the ground state and N 2 atoms in the excited state. Let A = (probability of spontaneous decay per unit time), ub = (probability of absorption per unit time), and ub = (probability of stimulated emission per unit time). Write down an equation for the rate of change of N 2 with time. Assuming equilibrium, and assuming that the ratio N 2 /N 1 is as given by Boltzmann, what do you conclude about u? 5. Given N non-interacting electrons in a box, compute the Fermi energy ɛ F and the total energy at zero temperature. Give two qualitative arguments to suggest that conduction electrons in a metal can be treated as non-interacting. 6
7 6. Write down the one dimensional Ising model for N spins, compute the partition function, and from there compute the free energy per spin in the limit of large N. 7
8 Tentamen i Statistisk Fysik I den tjugonionde februari 2008, under tiden Lärare: Ingemar Bengtsson. Hjälpmedel: Penna, suddgummi och linjal. Bedömning: 3 poäng/uppgift. Betyg: 0-2 = F, 3-5 = Fx, 6-8 = E, 9-11 = D, = C, = B, = A. 1. The Clausius-Clapeyron equation relates the slope of the phase boundary in a P -T -diagram to the latent heat of the phase transition. Derive it! 2. A thermodynamical system is described by the entropy function S = κu 3/4 V 1/4, where κ is some constant. Derive the correct units for κ, and the specific heat C V of the system. What is this? What physical constants do you expect to give κ up to a numerical factor? 3. Derive the partition function for the ideal gas. You may use a classical or a quantum mechanical model for the gas, as you please. 4. Take three non-interacting indistinguishable particles, each of which can be in four different one-particle states. What is the total number of states if the particles are fermions? If they are bosons? 5. Consider a two dimensional ideal electron gas. Derive an expression for its density of states g(ɛ). 6. Use a mean field approximation to solve the three dimensional Ising model, for three different choices of lattice. What is the critical temperature? 7. Using the solution to the previous problem, derive the critical exponent β that relates the rate at which the magnetization approaches zero to the rate at which the temperature approaches the Curie temperature. 8
Physics 176 Topics to Review For the Final Exam
Physics 176 Topics to Review For the Final Exam Professor Henry Greenside May, 011 Thermodynamic Concepts and Facts 1. Practical criteria for identifying when a macroscopic system is in thermodynamic equilibrium:
Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
1 Variational calculation of a 1D bound state
TEORETISK FYSIK, KTH TENTAMEN I KVANTMEKANIK FÖRDJUPNINGSKURS EXAMINATION IN ADVANCED QUANTUM MECHAN- ICS Kvantmekanik fördjupningskurs SI38 för F4 Thursday December, 7, 8. 13. Write on each page: Name,
Review of Statistical Mechanics
Review of Statistical Mechanics 3. Microcanonical, Canonical, Grand Canonical Ensembles In statistical mechanics, we deal with a situation in which even the quantum state of the system is unknown. The
Chapter 22 The Hamiltonian and Lagrangian densities. from my book: Understanding Relativistic Quantum Field Theory. Hans de Vries
Chapter 22 The Hamiltonian and Lagrangian densities from my book: Understanding Relativistic Quantum Field Theory Hans de Vries January 2, 2009 2 Chapter Contents 22 The Hamiltonian and Lagrangian densities
) and mass of each particle is m. We make an extremely small
Umeå Universitet, Fysik Vitaly Bychkov Prov i fysik, Thermodynamics, --6, kl 9.-5. Hjälpmedel: Students may use any book including the textbook Thermal physics. Present your solutions in details: it will
PHYS 1624 University Physics I. PHYS 2644 University Physics II
PHYS 1624 Physics I An introduction to mechanics, heat, and wave motion. This is a calculus- based course for Scientists and Engineers. 4 hours (3 lecture/3 lab) Prerequisites: Credit for MATH 2413 (Calculus
Let s first see how precession works in quantitative detail. The system is illustrated below: ...
lecture 20 Topics: Precession of tops Nutation Vectors in the body frame The free symmetric top in the body frame Euler s equations The free symmetric top ala Euler s The tennis racket theorem As you know,
Assessment Plan for Learning Outcomes for BA/BS in Physics
Department of Physics and Astronomy Goals and Learning Outcomes 1. Students know basic physics principles [BS, BA, MS] 1.1 Students can demonstrate an understanding of Newton s laws 1.2 Students can demonstrate
Lecture L22-2D Rigid Body Dynamics: Work and Energy
J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for
CLASSICAL CONCEPT REVIEW 8
CLASSICAL CONCEPT REVIEW 8 Kinetic Theory Information concerning the initial motions of each of the atoms of macroscopic systems is not accessible, nor do we have the computational capability even with
State Newton's second law of motion for a particle, defining carefully each term used.
5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding
Dimensional Analysis
Dimensional Analysis Mathematical Modelling Week 2 Kurt Bryan How does the escape velocity from a planet s surface depend on the planet s mass and radius? This sounds like a physics problem, but you can
The rate of change of velocity with respect to time. The average rate of change of distance/displacement with respect to time.
H2 PHYSICS DEFINITIONS LIST Scalar Vector Term Displacement, s Speed Velocity, v Acceleration, a Average speed/velocity Instantaneous Velocity Newton s First Law Newton s Second Law Newton s Third Law
MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCES IN PHYSICS (MS PHYS) (LIST OF COURSES BY SEMESTER, THESIS OPTION)
MASTER OF SCIENCE IN PHYSICS Admission Requirements 1. Possession of a BS degree from a reputable institution or, for non-physics majors, a GPA of 2.5 or better in at least 15 units in the following advanced
APPLIED MATHEMATICS ADVANCED LEVEL
APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications
Statistical Physics, Part 2 by E. M. Lifshitz and L. P. Pitaevskii (volume 9 of Landau and Lifshitz, Course of Theoretical Physics).
Fermi liquids The electric properties of most metals can be well understood from treating the electrons as non-interacting. This free electron model describes the electrons in the outermost shell of the
Rate Equations and Detailed Balance
Rate Equations and Detailed Balance Initial question: Last time we mentioned astrophysical masers. Why can they exist spontaneously? Could there be astrophysical lasers, i.e., ones that emit in the optical?
5.61 Physical Chemistry 25 Helium Atom page 1 HELIUM ATOM
5.6 Physical Chemistry 5 Helium Atom page HELIUM ATOM Now that we have treated the Hydrogen like atoms in some detail, we now proceed to discuss the next simplest system: the Helium atom. In this situation,
Discrete mechanics, optimal control and formation flying spacecraft
Discrete mechanics, optimal control and formation flying spacecraft Oliver Junge Center for Mathematics Munich University of Technology joint work with Jerrold E. Marsden and Sina Ober-Blöbaum partially
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Exam in: FYS 310 Classical Mechanics and Electrodynamics Day of exam: Tuesday June 4, 013 Exam hours: 4 hours, beginning at 14:30 This examination
Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13.
Chapter 5. Gravitation Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 13. 5.1 Newton s Law of Gravitation We have already studied the effects of gravity through the
Thermodynamics AP Physics B. Multiple Choice Questions
Thermodynamics AP Physics B Name Multiple Choice Questions 1. What is the name of the following statement: When two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium
- thus, the total number of atoms per second that absorb a photon is
Stimulated Emission of Radiation - stimulated emission is referring to the emission of radiation (a photon) from one quantum system at its transition frequency induced by the presence of other photons
www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x
Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity
Lecture L5 - Other Coordinate Systems
S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L5 - Other Coordinate Systems In this lecture, we will look at some other common systems of coordinates. We will present polar coordinates
Fundamentals of Statistical Physics Leo P. Kadanoff University of Chicago, USA
Fundamentals of Statistical Physics Leo P. Kadanoff University of Chicago, USA text: Statistical Physics, Statics, Dynamics, Renormalization Leo Kadanoff I also referred often to Wikipedia and found it
Numerical analysis of Bose Einstein condensation in a three-dimensional harmonic oscillator potential
Numerical analysis of Bose Einstein condensation in a three-dimensional harmonic oscillator potential Martin Ligare Department of Physics, Bucknell University, Lewisburg, Pennsylvania 17837 Received 24
Free Electron Fermi Gas (Kittel Ch. 6)
Free Electron Fermi Gas (Kittel Ch. 6) Role of Electrons in Solids Electrons are responsible for binding of crystals -- they are the glue that hold the nuclei together Types of binding (see next slide)
Math 1302, Week 3 Polar coordinates and orbital motion
Math 130, Week 3 Polar coordinates and orbital motion 1 Motion under a central force We start by considering the motion of the earth E around the (fixed) sun (figure 1). The key point here is that the
Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation
Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of
Lecture L30-3D Rigid Body Dynamics: Tops and Gyroscopes
J. Peraire, S. Widnall 16.07 Dynamics Fall 2008 Version 2.0 Lecture L30-3D Rigid Body Dynamics: Tops and Gyroscopes 3D Rigid Body Dynamics: Euler Equations in Euler Angles In lecture 29, we introduced
Columbia University Department of Physics QUALIFYING EXAMINATION
Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of
ANALYTICAL METHODS FOR ENGINEERS
UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations
Classical Angular Momentum. The Physics of Rotational Motion.
3. Angular Momentum States. We now employ the vector model to enumerate the possible number of spin angular momentum states for several commonly encountered situations in photochemistry. We shall give
Orbits of the Lennard-Jones Potential
Orbits of the Lennard-Jones Potential Prashanth S. Venkataram July 28, 2012 1 Introduction The Lennard-Jones potential describes weak interactions between neutral atoms and molecules. Unlike the potentials
1 Lecture 3: Operators in Quantum Mechanics
1 Lecture 3: Operators in Quantum Mechanics 1.1 Basic notions of operator algebra. In the previous lectures we have met operators: ˆx and ˆp = i h they are called fundamental operators. Many operators
When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.
Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs
Oscillations. Vern Lindberg. June 10, 2010
Oscillations Vern Lindberg June 10, 2010 You have discussed oscillations in Vibs and Waves: we will therefore touch lightly on Chapter 3, mainly trying to refresh your memory and extend the concepts. 1
DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS
DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS Quantum Mechanics or wave mechanics is the best mathematical theory used today to describe and predict the behaviour of particles and waves.
Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004
Statistical Mechanics, Kinetic Theory Ideal Gas 8.01t Nov 22, 2004 Statistical Mechanics and Thermodynamics Thermodynamics Old & Fundamental Understanding of Heat (I.e. Steam) Engines Part of Physics Einstein
EQUATION OF STATE. e (E µ)/kt ± 1 h 3 dp,
EQUATION OF STATE Consider elementary cell in a phase space with a volume x y z p x p y p z = h 3, (st.1) where h = 6.63 1 7 erg s is the Planck constant, x y z is volume in ordinary space measured in
Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics
13 ELECTRONS IN ATOMS Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options
This paper is also taken for the relevant Examination for the Associateship. For Second Year Physics Students Wednesday, 4th June 2008: 14:00 to 16:00
Imperial College London BSc/MSci EXAMINATION June 2008 This paper is also taken for the relevant Examination for the Associateship SUN, STARS, PLANETS For Second Year Physics Students Wednesday, 4th June
226 Chapter 15: OSCILLATIONS
Chapter 15: OSCILLATIONS 1. In simple harmonic motion, the restoring force must be proportional to the: A. amplitude B. frequency C. velocity D. displacement E. displacement squared 2. An oscillatory motion
Lecture L3 - Vectors, Matrices and Coordinate Transformations
S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between
Lecture 3: Models of Solutions
Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP4, Thermodynamics and Phase Diagrams, H. K. D. H. Bhadeshia Lecture 3: Models of Solutions List of Symbols Symbol G M
Main properties of atoms and nucleus
Main properties of atoms and nucleus. Atom Structure.... Structure of Nuclei... 3. Definition of Isotopes... 4. Energy Characteristics of Nuclei... 5. Laws of Radioactive Nuclei Transformation... 3. Atom
Curriculum Overview IB Physics SL YEAR 1 JUNIOR TERM I (2011)
Curriculum Overview IB Physics SL YEAR 1 JUNIOR TERM I (2011) Resources: Gregg Kerr, Nancy Kerr, (2004) Physics International Baccalaureate, IBID Press, Victoria, Australia. Tim Kirk and Neil Hodgson Physics
Determination of Acceleration due to Gravity
Experiment 2 24 Kuwait University Physics 105 Physics Department Determination of Acceleration due to Gravity Introduction In this experiment the acceleration due to gravity (g) is determined using two
Radiation Transfer in Environmental Science
Radiation Transfer in Environmental Science with emphasis on aquatic and vegetation canopy media Autumn 2008 Prof. Emmanuel Boss, Dr. Eyal Rotenberg Introduction Radiation in Environmental sciences Most
1. Degenerate Pressure
. Degenerate Pressure We next consider a Fermion gas in quite a different context: the interior of a white dwarf star. Like other stars, white dwarfs have fully ionized plasma interiors. The positively
The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.
260 17-1 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this
11. Rotation Translational Motion: Rotational Motion:
11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational
Physics Notes Class 11 CHAPTER 2 UNITS AND MEASUREMENTS
1 P a g e Physics Notes Class 11 CHAPTER 2 UNITS AND MEASUREMENTS The comparison of any physical quantity with its standard unit is called measurement. Physical Quantities All the quantities in terms of
Review of the isotope effect in the hydrogen spectrum
Review of the isotope effect in the hydrogen spectrum 1 Balmer and Rydberg Formulas By the middle of the 19th century it was well established that atoms emitted light at discrete wavelengths. This is in
The Quantum Harmonic Oscillator Stephen Webb
The Quantum Harmonic Oscillator Stephen Webb The Importance of the Harmonic Oscillator The quantum harmonic oscillator holds a unique importance in quantum mechanics, as it is both one of the few problems
Examples of Uniform EM Plane Waves
Examples of Uniform EM Plane Waves Outline Reminder of Wave Equation Reminder of Relation Between E & H Energy Transported by EM Waves (Poynting Vector) Examples of Energy Transport by EM Waves 1 Coupling
CHAPTER 14 THE CLAUSIUS-CLAPEYRON EQUATION
CHAPTER 4 THE CAUIU-CAPEYRON EQUATION Before starting this chapter, it would probably be a good idea to re-read ections 9. and 9.3 of Chapter 9. The Clausius-Clapeyron equation relates the latent heat
State Newton's second law of motion for a particle, defining carefully each term used.
5 Question 1. [Marks 28] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding
Basic Concepts in Nuclear Physics
Basic Concepts in Nuclear Physics Paolo Finelli Corso di Teoria delle Forze Nucleari 2011 Literature/Bibliography Some useful texts are available at the Library: Wong, Nuclear Physics Krane, Introductory
Wednesday 16 January 2013 Afternoon
Wednesday 16 January 2013 Afternoon A2 GCE PHYSICS B (ADVANCING PHYSICS) G494/01 Rise and Fall of the Clockwork Universe *G411660113* Candidates answer on the Question Paper. OCR supplied materials: Data,
The derivation of the balance equations
Chapter 3 The derivation of the balance equations In this chapter we present the derivation of the balance equations for an arbitrary physical quantity which starts from the Liouville equation. We follow,
The properties of an ideal Fermi gas are strongly determined by the Pauli principle. We shall consider the limit: µ >> k B T βµ >> 1,
Chapter 3 Ideal Fermi gas The properties of an ideal Fermi gas are strongly determined by the Pauli principle. We shall consider the limit: µ >> k B T βµ >>, which defines the degenerate Fermi gas. In
Simple Harmonic Motion
Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights
Thermodynamics: Lecture 8, Kinetic Theory
Thermodynamics: Lecture 8, Kinetic Theory Chris Glosser April 15, 1 1 OUTLINE I. Assumptions of Kinetic Theory (A) Molecular Flux (B) Pressure and the Ideal Gas Law II. The Maxwell-Boltzmann Distributuion
2. Spin Chemistry and the Vector Model
2. Spin Chemistry and the Vector Model The story of magnetic resonance spectroscopy and intersystem crossing is essentially a choreography of the twisting motion which causes reorientation or rephasing
Answer Key for California State Standards: Algebra I
Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.
Contents. Goldstone Bosons in 3He-A Soft Modes Dynamics and Lie Algebra of Group G:
... Vlll Contents 3. Textures and Supercurrents in Superfluid Phases of 3He 3.1. Textures, Gradient Energy and Rigidity 3.2. Why Superfuids are Superfluid 3.3. Superfluidity and Response to a Transverse
Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids)
Energy Transport Focus on heat transfer Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Conduction Conduction heat transfer occurs only when there is physical contact
Euclidean quantum gravity revisited
Institute for Gravitation and the Cosmos, Pennsylvania State University 15 June 2009 Eastern Gravity Meeting, Rochester Institute of Technology Based on: First-order action and Euclidean quantum gravity,
Force on Moving Charges in a Magnetic Field
[ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after
6-2. A quantum system has the following energy level diagram. Notice that the temperature is indicated
Chapter 6 Concept Tests 6-1. In a gas of hydrogen atoms at room temperature, what is the ratio of atoms in the 1 st excited energy state (n=2) to atoms in the ground state(n=1). (Actually H forms H 2 molecules,
2. Orbits. FER-Zagreb, Satellite communication systems 2011/12
2. Orbits Topics Orbit types Kepler and Newton laws Coverage area Influence of Earth 1 Orbit types According to inclination angle Equatorial Polar Inclinational orbit According to shape Circular orbit
N 1. (q k+1 q k ) 2 + α 3. k=0
Teoretisk Fysik Hand-in problem B, SI1142, Spring 2010 In 1955 Fermi, Pasta and Ulam 1 numerically studied a simple model for a one dimensional chain of non-linear oscillators to see how the energy distribution
Define the notations you are using properly. Present your arguments in details. Good luck!
Umeå Universitet, Fysik Vitaly Bychkov Prov i fysik, Thermodynamics, 0-0-4, kl 9.00-5.00 jälpmedel: Students may use any book(s) including the textbook Thermal physics. Minor notes in the books are also
Group Theory and Chemistry
Group Theory and Chemistry Outline: Raman and infra-red spectroscopy Symmetry operations Point Groups and Schoenflies symbols Function space and matrix representation Reducible and irreducible representation
Orbital Mechanics. Angular Momentum
Orbital Mechanics The objects that orbit earth have only a few forces acting on them, the largest being the gravitational pull from the earth. The trajectories that satellites or rockets follow are largely
Chapter 6. Work and Energy
Chapter 6 Work and Energy The concept of forces acting on a mass (one object) is intimately related to the concept of ENERGY production or storage. A mass accelerated to a non-zero speed carries energy
arxiv:1111.4354v2 [physics.acc-ph] 27 Oct 2014
Theory of Electromagnetic Fields Andrzej Wolski University of Liverpool, and the Cockcroft Institute, UK arxiv:1111.4354v2 [physics.acc-ph] 27 Oct 2014 Abstract We discuss the theory of electromagnetic
AP* Atomic Structure & Periodicity Free Response Questions KEY page 1
AP* Atomic Structure & Periodicity ree Response Questions KEY page 1 1980 a) points 1s s p 6 3s 3p 6 4s 3d 10 4p 3 b) points for the two electrons in the 4s: 4, 0, 0, +1/ and 4, 0, 0, - 1/ for the three
E/M Experiment: Electrons in a Magnetic Field.
E/M Experiment: Electrons in a Magnetic Field. PRE-LAB You will be doing this experiment before we cover the relevant material in class. But there are only two fundamental concepts that you need to understand.
Physics 41 HW Set 1 Chapter 15
Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,
European Benchmark for Physics Bachelor Degree
European Benchmark for Physics Bachelor Degree 1. Summary This is a proposal to produce a common European Benchmark framework for Bachelor degrees in Physics. The purpose is to help implement the common
Lecture 13. Gravity in the Solar System
Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws
Current Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light
Current Staff Course Unit/ Length August August September September October Unit Objectives/ Big Ideas Basic Outline/ Structure PS4- Types of Waves Because light can travel through space, it cannot be
3600 s 1 h. 24 h 1 day. 1 day
Week 7 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton
Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law
Center of Gravity. We touched on this briefly in chapter 7! x 2
Center of Gravity We touched on this briefly in chapter 7! x 1 x 2 cm m 1 m 2 This was for what is known as discrete objects. Discrete refers to the fact that the two objects separated and individual.
Seminar 4: CHARGED PARTICLE IN ELECTROMAGNETIC FIELD. q j
Seminar 4: CHARGED PARTICLE IN ELECTROMAGNETIC FIELD Introduction Let take Lagrange s equations in the form that follows from D Alembert s principle, ) d T T = Q j, 1) dt q j q j suppose that the generalized
Electron Orbits. Binding Energy. centrifugal force: electrostatic force: stability criterion: kinetic energy of the electron on its orbit:
Electron Orbits In an atom model in which negatively charged electrons move around a small positively charged nucleus stable orbits are possible. Consider the simple example of an atom with a nucleus of
Atomic Structure Ron Robertson
Atomic Structure Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\atomicstructuretrans.doc I. What is Light? Debate in 1600's: Since waves or particles can transfer energy, what is
Introduction to Nuclear Physics
Introduction to Nuclear Physics 1. Atomic Structure and the Periodic Table According to the Bohr-Rutherford model of the atom, also called the solar system model, the atom consists of a central nucleus
Nuclear Physics. Nuclear Physics comprises the study of:
Nuclear Physics Nuclear Physics comprises the study of: The general properties of nuclei The particles contained in the nucleus The interaction between these particles Radioactivity and nuclear reactions
1 The basic equations of fluid dynamics
1 The basic equations of fluid dynamics The main task in fluid dynamics is to find the velocity field describing the flow in a given domain. To do this, one uses the basic equations of fluid flow, which
2.2 Magic with complex exponentials
2.2. MAGIC WITH COMPLEX EXPONENTIALS 97 2.2 Magic with complex exponentials We don t really know what aspects of complex variables you learned about in high school, so the goal here is to start more or
Elasticity Theory Basics
G22.3033-002: Topics in Computer Graphics: Lecture #7 Geometric Modeling New York University Elasticity Theory Basics Lecture #7: 20 October 2003 Lecturer: Denis Zorin Scribe: Adrian Secord, Yotam Gingold
Basic Nuclear Concepts
Section 7: In this section, we present a basic description of atomic nuclei, the stored energy contained within them, their occurrence and stability Basic Nuclear Concepts EARLY DISCOVERIES [see also Section
