Discrete mechanics, optimal control and formation flying spacecraft

Size: px
Start display at page:

Download "Discrete mechanics, optimal control and formation flying spacecraft"

Transcription

1 Discrete mechanics, optimal control and formation flying spacecraft Oliver Junge Center for Mathematics Munich University of Technology joint work with Jerrold E. Marsden and Sina Ober-Blöbaum partially supported by the CRC 376 Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.1

2 Outline mechanical optimal control problem direct discretization of the variational principle ( DMOC ) applications: low-thrust orbital transfer, hovercraft, spacecraft formation flying Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.2

3 Introduction Optimal control problem mechanical system, configuration space Q, to be moved from (q 0, q 0 ) to (q 1, q 1 ), force f, s.t. J(q, f ) = 1 0 C(q(t), q(t), f (t)) dt min Dynamics: Lagrange-d Alembert principle δ 1 L(q(t), q(t)) dt f (t) δq(t) dt = 0 for all δq with δq(0) = δq(1) = 0, Lagrangian L : TQ R. Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.3

4 Introduction Equality constrained optimization problem Minimize subject to (q, f ) J(q, f ) L(q, f ) = 0. Standard approach: derive differential equations, discretize (multiple shooting, collocation), solve the resulting (nonlinear) optimization problem. Here: discretize the Lagrange-d Alembert principle directly. Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.4

5 Discretization techniques: comparison cost function + EL cost function + Ld Ap variation discretization discrete cost function + discretized ode Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.5

6 Discretization techniques: comparison cost function + Ld Ap cost function + EL variation discretization discrete cost function + discretized ode discretization discrete cost function + discrete Ld Ap variation discrete cost function + DEL Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.6

7 Discretization techniques: comparison cost function + Ld Ap cost function + EL variation discretization discrete cost function + discretized ode finite differences, multiple shooting, collocation,... discretization discrete cost function + discrete Ld Ap variation discrete cost function + DEL Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.7

8 Discretization techniques: comparison cost function + Ld Ap cost function + EL variation discretization discrete cost function + discretized ode finite differences, multiple shooting, collocation,... discretization discrete cost function + discrete Ld Ap variation discrete cost function + DEL DMOC Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.8

9 Discrete paths Figure: J.E. Marsden, Lectures on Mechanics Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.9

10 Discrete paths Figure: J.E. Marsden, Lectures on Mechanics Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.10

11 Discretization of the variational principle Replace the state space TQ by Q Q, a path q : [0, 1] Q by a discrete path q d : {0, h,..., Nh = 1} Q, the force f : [0, 1] T Q by a discrete force f d : {0, h, 2h,..., Nh = 1} T Q. Discrete Lagrangian L d : Q Q R, virtual work L d (q k, q k+1 ) (k+1)h kh f k δq k + f + k δq k+1 L(q(t), q(t)) dt, (k+1)h f k, f + k T Q: left and right discrete forces. kh f (t) δq(t) dt, Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.11

12 Discretizing the variational principle Discrete Lagrange-d Alembert principle Find discrete path {q 0, q 1,..., q N } s.t. for all variations {δq 0,..., δq N } with δq 0 = δq N = 0 N 1 L d (q k, q k+1 ) + N 1 δ k=0 k=0 f k δq k + f + k δq k+1 = 0. Forced discrete Euler-Lagrange equations Discrete principle quivalent to D 2 L d (q k 1, q k ) + D 1 L d (q k, q k+1 ) + f + k 1 + f k = 0. k = 1,..., N 1. Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.12

13 Boundary Conditions We need to incorporate the boundary conditions q(0) = q 0, q(0) = q 0 q(1) = q 1, q(1) = q 1 into the discrete description. Legendre transform FL : TQ T Q FL : (q, q) (q, p) = (q, D 2 L(q, q)), Discrete Legendre transform for forced systems F f + L d : (q k 1, q k ) (q k, p k ), p k = D 2 L d (q k 1, q k ) + f + k 1. Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.13

14 The Discrete Constrained Optimization Problem Minimize N 1 J d (q d, f d ) = C d (q k, q k+1, f k, f k+1 ), k=0 subject to q 0 = q 0, q N = q 1 and D 2 L(q 0, q 0 ) + D 1 L d (q 0, q 1 ) + f 0 = 0, D 2 L d (q k 1, q k ) + D 1 L d (q k, q k+1 ) + f + k 1 + f k = 0, D 2 L(q N, q N ) + D 2 L d (q N 1, q N ) + f + N 1 = 0, k = 1,..., N 1. Solution by, e.g., sequential quadratic programming. Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.14

15 Implementation: quadrature q(t) q k+1 q(t) q( t k+t k+1 ) = q k+q k q k Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.15

16 Implementation: quadrature Discrete Lagrangian tk+1 tk+1 t k t k tk+1 ( ( tk + t k+1 L q t k 2 ( qk + q k+1 = hl 2 L(q, q) dt L( q(t), q(t)) dt =: L d (q k, q k+1 ) ), q, q k+1 q k 2 ( )) tk + t k+1 ) 2 dt Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.16

17 Implementation: quadrature Discrete forces (k+1)h kh f δq dt h f k+1 + f k 2 δq k+1 + δq k 2 = h 4 (f k+1 + f k ) δq k + h } {{ } 4 (f k+1 + f k ) } {{ } =:f =:f + k k δq k+1 Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.17

18 Example: Low thrust orbital transfer Satellite with mass m, to be transferred from one circular orbit to one in the same plane with a larger radius. Number of revolutions around the Earth is fixed. In 2d-polar coordinates q = (r, ϕ) L(q, q) = 1 2 m(ṙ 2 + r 2 ϕ 2 ) + γ Mm, r M: mass of the earth. Force u in the direction of motion of the satellite. Goal minimize the control effort J(q, u) = T 0 u(t) 2 dt. Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.18

19 Comparison to traditional scheme rotation Euler Variational objective function value number of nodes Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.19

20 Comparison to traditional scheme rotation Midpointrule Variational 0.14 objective function value number of nodes Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.20

21 Comparison to the true solution 8 7 Euler Variational 6 deviation of final state number of nodes Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.21

22 Comparison to the true solution Midpointrule Variational 0.3 deviation of final state number of nodes Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.22

23 Example: Reconfiguration of a group of hovercraft Hovercraft y θ f 2 f 1 r Configuration manifold: Q = R 2 S 1 Underactuated system, but configuration controllable. Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.23 x

24 Reconfiguration of a group of Hovercraft Lagrangian L(q, q) = 1 2 (mẋ 2 + mẏ 2 + J θ 2 ), q = (x, y, θ), m the mass of the hovercraft, J moment of inertia. Forced discrete Euler-Lagrange equations ( ) 1 M ( q h k 1 + 2q k q k+1 ) + h fk 1 +f k + f k+f k+1 = 0, (1) k = 1,..., N. Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.24

25 Goal Minimize the control effort while attaining a desired final formation: (a) a fixed final orientation ϕ i of each hovercraft, (b) equal distances r between the final positions, (c) the center M = (M x, M y ) of the formation is prescribed, (d) fixed final velocities. Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.25

26 Results Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.26

27 Application: Spacecraft Formation Flying ESA: Darwin NASA: Terrestrial Planet Finder SFB 376 Massive Parallelism, Project C10: Efficient Control of Formation Flying Spacecraft Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.27

28 The Model A group of n identical spacecraft, single spacecraft: rigid body with six degrees of freedom (position and orientation), control via force-torque pair (F, τ) acting on its center of mass. dynamics (as required for Darwin/TPF): circular restricted three body problem Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.28

29 The Lagrangian Potential energy: 1 µ V (x) = x (1 µ, 0, 0) µ x ( µ, 0, 0), µ = m 1 /(m 1 + m 2 ) normalized mass. kinetic energy: K trans (x, ẋ) = 1 2 (( x 1 ωx 2 ) 2 + ( x 2 + ωx 1 ) 2 + ẋ3 2 ) + K rot (Ω) = 1 2 ΩT JΩ, Ω: angular velocity, J: inertia tensor. Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.29

30 The Control Problem Goal: compute control laws (F (i) (t), τ (i) (t)), i = 1,..., n, such that within a prescribed time interval, the group moves from a given initial state into a prescribed target manifold, minimizing a given cost functional (related to the fuel consumption). Target manifold: 1. all spacecraft are located in a plane with prescribed normal, 2. the spacecraft are located at the vertices of a regular polygon with a prescribed center on a Halo orbit, 3. each spacecraft is rotated according to a prescribed rotation, 4. all spacecraft have the same prescribed linear velocity and zero angular velocity. Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.30

31 Collision avoidance Artificial potential L = K trans + K rot V n V a ( q (i) q (j) ). i,j=1 i j Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.31

32 Halo orbits x L 2 z 2 4 E y x Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.32

33 Result Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.33

34 Hierarchical decomposition same model for every vehicle n identical subsystems, coupling through constraint on final state Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.34

35 Hierarchical optimal control problem min ϕ 1,...,ϕ n n J i (ϕ i ) s.t. g(ϕ) = 0, i=1 (g describes final state) with J(ϕ i ) = optimal solution of 2-point bvp with ϕ i parametrizing the final state Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.35

36 Parallelization solve inner problems in parallel synchronization (communication) for iteration step in solving the outer problem implementation: PUB ( Paderborn University BSP-Library ) library to support development of parallel algorithms based on the Bulk-Synchronous-Parallel-Model. Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.36

37 Result Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.37

38 Conclusion new approach to the discretization of mechanical optimal control problems direct discretization of the underlying variational principle faithful energy behaviour by construction Outlook convergence backward error analysis hierarchical decomposition in time: discontinuous ( weak ) solutions, Pontryagin-d Alembert principle generalization to spatially distributed systems (PDEs) Oliver Junge Discrete mechanics, optimal control and formation flying spacecraft p.38

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

APPLIED MATHEMATICS ADVANCED LEVEL

APPLIED MATHEMATICS ADVANCED LEVEL APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications

More information

11. Rotation Translational Motion: Rotational Motion:

11. Rotation Translational Motion: Rotational Motion: 11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of

More information

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

More information

Lecture L30-3D Rigid Body Dynamics: Tops and Gyroscopes

Lecture L30-3D Rigid Body Dynamics: Tops and Gyroscopes J. Peraire, S. Widnall 16.07 Dynamics Fall 2008 Version 2.0 Lecture L30-3D Rigid Body Dynamics: Tops and Gyroscopes 3D Rigid Body Dynamics: Euler Equations in Euler Angles In lecture 29, we introduced

More information

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014 Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,

More information

Optimization of Supply Chain Networks

Optimization of Supply Chain Networks Optimization of Supply Chain Networks M. Herty TU Kaiserslautern September 2006 (2006) 1 / 41 Contents 1 Supply Chain Modeling 2 Networks 3 Optimization Continuous optimal control problem Discrete optimal

More information

Center of Gravity. We touched on this briefly in chapter 7! x 2

Center of Gravity. We touched on this briefly in chapter 7! x 2 Center of Gravity We touched on this briefly in chapter 7! x 1 x 2 cm m 1 m 2 This was for what is known as discrete objects. Discrete refers to the fact that the two objects separated and individual.

More information

3. Derive the partition function for the ideal monoatomic gas. Use Boltzmann statistics, and a quantum mechanical model for the gas.

3. Derive the partition function for the ideal monoatomic gas. Use Boltzmann statistics, and a quantum mechanical model for the gas. Tentamen i Statistisk Fysik I den tjugosjunde februari 2009, under tiden 9.00-15.00. Lärare: Ingemar Bengtsson. Hjälpmedel: Penna, suddgummi och linjal. Bedömning: 3 poäng/uppgift. Betyg: 0-3 = F, 4-6

More information

3600 s 1 h. 24 h 1 day. 1 day

3600 s 1 h. 24 h 1 day. 1 day Week 7 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

Lecture L29-3D Rigid Body Dynamics

Lecture L29-3D Rigid Body Dynamics J. Peraire, S. Widnall 16.07 Dynamics Fall 2009 Version 2.0 Lecture L29-3D Rigid Body Dynamics 3D Rigid Body Dynamics: Euler Angles The difficulty of describing the positions of the body-fixed axis of

More information

KINEMATICS OF PARTICLES RELATIVE MOTION WITH RESPECT TO TRANSLATING AXES

KINEMATICS OF PARTICLES RELATIVE MOTION WITH RESPECT TO TRANSLATING AXES KINEMTICS OF PRTICLES RELTIVE MOTION WITH RESPECT TO TRNSLTING XES In the previous articles, we have described particle motion using coordinates with respect to fixed reference axes. The displacements,

More information

PHY121 #8 Midterm I 3.06.2013

PHY121 #8 Midterm I 3.06.2013 PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

More information

Gravity Field and Dynamics of the Earth

Gravity Field and Dynamics of the Earth Milan Bursa Karel Pec Gravity Field and Dynamics of the Earth With 89 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo HongKong Barcelona Budapest Preface v Introduction 1 1 Fundamentals

More information

Physics 1A Lecture 10C

Physics 1A Lecture 10C Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. --Oprah Winfrey Static Equilibrium

More information

Chapter 2. Mission Analysis. 2.1 Mission Geometry

Chapter 2. Mission Analysis. 2.1 Mission Geometry Chapter 2 Mission Analysis As noted in Chapter 1, orbital and attitude dynamics must be considered as coupled. That is to say, the orbital motion of a spacecraft affects the attitude motion, and the attitude

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

Numerical Methods for Differential Equations

Numerical Methods for Differential Equations Numerical Methods for Differential Equations Course objectives and preliminaries Gustaf Söderlind and Carmen Arévalo Numerical Analysis, Lund University Textbooks: A First Course in the Numerical Analysis

More information

Onboard electronics of UAVs

Onboard electronics of UAVs AARMS Vol. 5, No. 2 (2006) 237 243 TECHNOLOGY Onboard electronics of UAVs ANTAL TURÓCZI, IMRE MAKKAY Department of Electronic Warfare, Miklós Zrínyi National Defence University, Budapest, Hungary Recent

More information

Torque Analyses of a Sliding Ladder

Torque Analyses of a Sliding Ladder Torque Analyses of a Sliding Ladder 1 Problem Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (May 6, 2007) The problem of a ladder that slides without friction while

More information

8.012 Physics I: Classical Mechanics Fall 2008

8.012 Physics I: Classical Mechanics Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 28] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

More information

Dynamics. Basilio Bona. DAUIN-Politecnico di Torino. Basilio Bona (DAUIN-Politecnico di Torino) Dynamics 2009 1 / 30

Dynamics. Basilio Bona. DAUIN-Politecnico di Torino. Basilio Bona (DAUIN-Politecnico di Torino) Dynamics 2009 1 / 30 Dynamics Basilio Bona DAUIN-Politecnico di Torino 2009 Basilio Bona (DAUIN-Politecnico di Torino) Dynamics 2009 1 / 30 Dynamics - Introduction In order to determine the dynamics of a manipulator, it is

More information

Computer Graphics. Geometric Modeling. Page 1. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion. An Example.

Computer Graphics. Geometric Modeling. Page 1. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion. An Example. An Example 2 3 4 Outline Objective: Develop methods and algorithms to mathematically model shape of real world objects Categories: Wire-Frame Representation Object is represented as as a set of points

More information

An Introduction to Applied Mathematics: An Iterative Process

An Introduction to Applied Mathematics: An Iterative Process An Introduction to Applied Mathematics: An Iterative Process Applied mathematics seeks to make predictions about some topic such as weather prediction, future value of an investment, the speed of a falling

More information

Orbits of the Lennard-Jones Potential

Orbits of the Lennard-Jones Potential Orbits of the Lennard-Jones Potential Prashanth S. Venkataram July 28, 2012 1 Introduction The Lennard-Jones potential describes weak interactions between neutral atoms and molecules. Unlike the potentials

More information

Let s first see how precession works in quantitative detail. The system is illustrated below: ...

Let s first see how precession works in quantitative detail. The system is illustrated below: ... lecture 20 Topics: Precession of tops Nutation Vectors in the body frame The free symmetric top in the body frame Euler s equations The free symmetric top ala Euler s The tennis racket theorem As you know,

More information

Penn State University Physics 211 ORBITAL MECHANICS 1

Penn State University Physics 211 ORBITAL MECHANICS 1 ORBITAL MECHANICS 1 PURPOSE The purpose of this laboratory project is to calculate, verify and then simulate various satellite orbit scenarios for an artificial satellite orbiting the earth. First, there

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

Parameter Estimation for Bingham Models

Parameter Estimation for Bingham Models Dr. Volker Schulz, Dmitriy Logashenko Parameter Estimation for Bingham Models supported by BMBF Parameter Estimation for Bingham Models Industrial application of ceramic pastes Material laws for Bingham

More information

The Technical Archer. Austin Wargo

The Technical Archer. Austin Wargo The Technical Archer Austin Wargo May 14, 2010 Abstract A mathematical model of the interactions between a long bow and an arrow. The model uses the Euler-Lagrange formula, and is based off conservation

More information

Rigid body dynamics using Euler s equations, Runge-Kutta and quaternions.

Rigid body dynamics using Euler s equations, Runge-Kutta and quaternions. Rigid body dynamics using Euler s equations, Runge-Kutta and quaternions. Indrek Mandre http://www.mare.ee/indrek/ February 26, 2008 1 Motivation I became interested in the angular dynamics

More information

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 20 Conservation Equations in Fluid Flow Part VIII Good morning. I welcome you all

More information

AP Physics: Rotational Dynamics 2

AP Physics: Rotational Dynamics 2 Name: Assignment Due Date: March 30, 2012 AP Physics: Rotational Dynamics 2 Problem A solid cylinder with mass M, radius R, and rotational inertia 1 2 MR2 rolls without slipping down the inclined plane

More information

DYNAMICS OF A TETRAHEDRAL CONSTELLATION OF SATELLITES-GYROSTATS

DYNAMICS OF A TETRAHEDRAL CONSTELLATION OF SATELLITES-GYROSTATS 7 th EUROMECH Solid Mechanics Conference J. Ambrosio et.al. (eds.) Lisbon, Portugal, 7 11 September 2009 DYNAMICS OF A TETRAHEDRAL CONSTELLATION OF SATELLITES-GYROSTATS Alexander A. Burov 1, Anna D. Guerman

More information

OpenFOAM Optimization Tools

OpenFOAM Optimization Tools OpenFOAM Optimization Tools Henrik Rusche and Aleks Jemcov [email protected] and [email protected] Wikki, Germany and United Kingdom OpenFOAM Optimization Tools p. 1 Agenda Objective Review optimisation

More information

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

More information

Numerical methods for American options

Numerical methods for American options Lecture 9 Numerical methods for American options Lecture Notes by Andrzej Palczewski Computational Finance p. 1 American options The holder of an American option has the right to exercise it at any moment

More information

N 1. (q k+1 q k ) 2 + α 3. k=0

N 1. (q k+1 q k ) 2 + α 3. k=0 Teoretisk Fysik Hand-in problem B, SI1142, Spring 2010 In 1955 Fermi, Pasta and Ulam 1 numerically studied a simple model for a one dimensional chain of non-linear oscillators to see how the energy distribution

More information

AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS

AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS Revised Edition James Epperson Mathematical Reviews BICENTENNIAL 0, 1 8 0 7 z ewiley wu 2007 r71 BICENTENNIAL WILEY-INTERSCIENCE A John Wiley & Sons, Inc.,

More information

Kyu-Jung Kim Mechanical Engineering Department, California State Polytechnic University, Pomona, U.S.A.

Kyu-Jung Kim Mechanical Engineering Department, California State Polytechnic University, Pomona, U.S.A. MECHANICS: STATICS AND DYNAMICS Kyu-Jung Kim Mechanical Engineering Department, California State Polytechnic University, Pomona, U.S.A. Keywords: mechanics, statics, dynamics, equilibrium, kinematics,

More information

Precise Modelling of a Gantry Crane System Including Friction, 3D Angular Swing and Hoisting Cable Flexibility

Precise Modelling of a Gantry Crane System Including Friction, 3D Angular Swing and Hoisting Cable Flexibility Precise Modelling of a Gantry Crane System Including Friction, 3D Angular Swing and Hoisting Cable Flexibility Renuka V. S. & Abraham T Mathew Electrical Engineering Department, NIT Calicut E-mail : [email protected],

More information

Dynamics and Control of an Elastic Dumbbell Spacecraft in a Central Gravitational Field

Dynamics and Control of an Elastic Dumbbell Spacecraft in a Central Gravitational Field Dynamics Control of an Elastic Dumbbell Spacecraft in a Central Gravitational Field Amit K. Sanyal, Jinglai Shen, N. Harris McClamroch 1 Department of Aerospace Engineering University of Michigan Ann Arbor,

More information

Presentation of problem T1 (9 points): The Maribo Meteorite

Presentation of problem T1 (9 points): The Maribo Meteorite Presentation of problem T1 (9 points): The Maribo Meteorite Definitions Meteoroid. A small particle (typically smaller than 1 m) from a comet or an asteroid. Meteorite: A meteoroid that impacts the ground

More information

DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION

DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION 1 DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION Daniel S. Orton email: [email protected] Abstract: There are many longstanding

More information

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc. Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems

More information

Lab 7: Rotational Motion

Lab 7: Rotational Motion Lab 7: Rotational Motion Equipment: DataStudio, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME-9472), string with loop at one end and small white bead at the other end (125

More information

Nonlinear Iterative Partial Least Squares Method

Nonlinear Iterative Partial Least Squares Method Numerical Methods for Determining Principal Component Analysis Abstract Factors Béchu, S., Richard-Plouet, M., Fernandez, V., Walton, J., and Fairley, N. (2016) Developments in numerical treatments for

More information

Orbital Mechanics. Angular Momentum

Orbital Mechanics. Angular Momentum Orbital Mechanics The objects that orbit earth have only a few forces acting on them, the largest being the gravitational pull from the earth. The trajectories that satellites or rockets follow are largely

More information

Influence of Crash Box on Automotive Crashworthiness

Influence of Crash Box on Automotive Crashworthiness Influence of Crash Box on Automotive Crashworthiness MIHAIL DANIEL IOZSA, DAN ALEXANDRU MICU, GHEORGHE FRĂȚILĂ, FLORIN- CRISTIAN ANTONACHE University POLITEHNICA of Bucharest 313 Splaiul Independentei

More information

Gravitomagnetism and complex orbit dynamics of spinning compact objects around a massive black hole

Gravitomagnetism and complex orbit dynamics of spinning compact objects around a massive black hole Gravitomagnetism and complex orbit dynamics of spinning compact objects around a massive black hole Kinwah Wu Mullard Space Science Laboratory University College London United Kingdom [email protected]

More information

Seminar 4: CHARGED PARTICLE IN ELECTROMAGNETIC FIELD. q j

Seminar 4: CHARGED PARTICLE IN ELECTROMAGNETIC FIELD. q j Seminar 4: CHARGED PARTICLE IN ELECTROMAGNETIC FIELD Introduction Let take Lagrange s equations in the form that follows from D Alembert s principle, ) d T T = Q j, 1) dt q j q j suppose that the generalized

More information

(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7)

(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7) Chapter 4. Lagrangian Dynamics (Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7 4.1 Important Notes on Notation In this chapter, unless otherwise stated, the following

More information

Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis

Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis 21.1 Introduction... 1 21.2 Translational Equation of Motion... 1 21.3 Translational and Rotational Equations of Motion... 1

More information

Lecture L22-2D Rigid Body Dynamics: Work and Energy

Lecture L22-2D Rigid Body Dynamics: Work and Energy J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for

More information

Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide)

Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) 2012 WARD S Science v.11/12 OVERVIEW Students will measure

More information

Lecture 2 Linear functions and examples

Lecture 2 Linear functions and examples EE263 Autumn 2007-08 Stephen Boyd Lecture 2 Linear functions and examples linear equations and functions engineering examples interpretations 2 1 Linear equations consider system of linear equations y

More information

SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS

SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS This work covers elements of the syllabus for the Engineering Council exams C105 Mechanical and Structural Engineering

More information

Lecture 13. Gravity in the Solar System

Lecture 13. Gravity in the Solar System Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws

More information

Worldwide, space agencies are increasingly exploiting multi-body dynamical structures for their most

Worldwide, space agencies are increasingly exploiting multi-body dynamical structures for their most Coupled Orbit-Attitude Dynamics in the Three-Body Problem: a Family of Orbit-Attitude Periodic Solutions Davide Guzzetti and Kathleen C. Howell Purdue University, Armstrong Hall of Engineering, 71 W. Stadium

More information

Unit - 6 Vibrations of Two Degree of Freedom Systems

Unit - 6 Vibrations of Two Degree of Freedom Systems Unit - 6 Vibrations of Two Degree of Freedom Systems Dr. T. Jagadish. Professor for Post Graduation, Department of Mechanical Engineering, Bangalore Institute of Technology, Bangalore Introduction A two

More information

Sample Questions for the AP Physics 1 Exam

Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each

More information

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 10

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 10 Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T. Heath Chapter 10 Boundary Value Problems for Ordinary Differential Equations Copyright c 2001. Reproduction

More information

Analysis of Multi-Spacecraft Magnetic Field Data

Analysis of Multi-Spacecraft Magnetic Field Data COSPAR Capacity Building Beijing, 5 May 2004 Joachim Vogt Analysis of Multi-Spacecraft Magnetic Field Data 1 Introduction, single-spacecraft vs. multi-spacecraft 2 Single-spacecraft data, minimum variance

More information

G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M

G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M CONTENTS Foreword... 2 Forces... 3 Circular Orbits... 8 Energy... 10 Angular Momentum... 13 FOREWORD

More information

Dynamics of Iain M. Banks Orbitals. Richard Kennaway. 12 October 2005

Dynamics of Iain M. Banks Orbitals. Richard Kennaway. 12 October 2005 Dynamics of Iain M. Banks Orbitals Richard Kennaway 12 October 2005 Note This is a draft in progress, and as such may contain errors. Please do not cite this without permission. 1 The problem An Orbital

More information

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

More information

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and

More information

Numerical Methods For Image Restoration

Numerical Methods For Image Restoration Numerical Methods For Image Restoration CIRAM Alessandro Lanza University of Bologna, Italy Faculty of Engineering CIRAM Outline 1. Image Restoration as an inverse problem 2. Image degradation models:

More information

Motion Control of 3 Degree-of-Freedom Direct-Drive Robot. Rutchanee Gullayanon

Motion Control of 3 Degree-of-Freedom Direct-Drive Robot. Rutchanee Gullayanon Motion Control of 3 Degree-of-Freedom Direct-Drive Robot A Thesis Presented to The Academic Faculty by Rutchanee Gullayanon In Partial Fulfillment of the Requirements for the Degree Master of Engineering

More information

Equivalent Spring Stiffness

Equivalent Spring Stiffness Module 7 : Free Undamped Vibration of Single Degree of Freedom Systems; Determination of Natural Frequency ; Equivalent Inertia and Stiffness; Energy Method; Phase Plane Representation. Lecture 13 : Equivalent

More information

Module 1 : Conduction. Lecture 5 : 1D conduction example problems. 2D conduction

Module 1 : Conduction. Lecture 5 : 1D conduction example problems. 2D conduction Module 1 : Conduction Lecture 5 : 1D conduction example problems. 2D conduction Objectives In this class: An example of optimization for insulation thickness is solved. The 1D conduction is considered

More information

FUNDAMENTAL FINITE ELEMENT ANALYSIS AND APPLICATIONS

FUNDAMENTAL FINITE ELEMENT ANALYSIS AND APPLICATIONS FUNDAMENTAL FINITE ELEMENT ANALYSIS AND APPLICATIONS With Mathematica and MATLAB Computations M. ASGHAR BHATTI WILEY JOHN WILEY & SONS, INC. CONTENTS OF THE BOOK WEB SITE PREFACE xi xiii 1 FINITE ELEMENT

More information

Macroeconomic Effects of Financial Shocks Online Appendix

Macroeconomic Effects of Financial Shocks Online Appendix Macroeconomic Effects of Financial Shocks Online Appendix By Urban Jermann and Vincenzo Quadrini Data sources Financial data is from the Flow of Funds Accounts of the Federal Reserve Board. We report the

More information

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.4-9.6, 10.1-10.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of

More information

PHYSICS 111 HOMEWORK SOLUTION #9. April 5, 2013

PHYSICS 111 HOMEWORK SOLUTION #9. April 5, 2013 PHYSICS 111 HOMEWORK SOLUTION #9 April 5, 2013 0.1 A potter s wheel moves uniformly from rest to an angular speed of 0.16 rev/s in 33 s. Find its angular acceleration in radians per second per second.

More information

Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1.

Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1. IB PHYSICS: Gravitational Forces Review 1. This question is about gravitation and ocean tides. (b) State Newton s law of universal gravitation. Use the following information to deduce that the gravitational

More information

Finite Difference Approach to Option Pricing

Finite Difference Approach to Option Pricing Finite Difference Approach to Option Pricing February 998 CS5 Lab Note. Ordinary differential equation An ordinary differential equation, or ODE, is an equation of the form du = fut ( (), t) (.) dt where

More information

EXPERIMENT: MOMENT OF INERTIA

EXPERIMENT: MOMENT OF INERTIA OBJECTIVES EXPERIMENT: MOMENT OF INERTIA to familiarize yourself with the concept of moment of inertia, I, which plays the same role in the description of the rotation of a rigid body as mass plays in

More information

MODULE VII LARGE BODY WAVE DIFFRACTION

MODULE VII LARGE BODY WAVE DIFFRACTION MODULE VII LARGE BODY WAVE DIFFRACTION 1.0 INTRODUCTION In the wave-structure interaction problems, it is classical to divide into two major classification: slender body interaction and large body interaction.

More information

CS 294-73 Software Engineering for Scientific Computing. http://www.cs.berkeley.edu/~colella/cs294fall2013. Lecture 16: Particle Methods; Homework #4

CS 294-73 Software Engineering for Scientific Computing. http://www.cs.berkeley.edu/~colella/cs294fall2013. Lecture 16: Particle Methods; Homework #4 CS 294-73 Software Engineering for Scientific Computing http://www.cs.berkeley.edu/~colella/cs294fall2013 Lecture 16: Particle Methods; Homework #4 Discretizing Time-Dependent Problems From here on in,

More information

Solar System Fundamentals. What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System

Solar System Fundamentals. What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System Solar System Fundamentals What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System Properties of Planets What is a planet? Defined finally in August 2006!

More information

State of Stress at Point

State of Stress at Point State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,

More information

Lecture L6 - Intrinsic Coordinates

Lecture L6 - Intrinsic Coordinates S. Widnall, J. Peraire 16.07 Dynamics Fall 2009 Version 2.0 Lecture L6 - Intrinsic Coordinates In lecture L4, we introduced the position, velocity and acceleration vectors and referred them to a fixed

More information

PS 320 Classical Mechanics Embry-Riddle University Spring 2010

PS 320 Classical Mechanics Embry-Riddle University Spring 2010 PS 320 Classical Mechanics Embry-Riddle University Spring 2010 Instructor: M. Anthony Reynolds email: [email protected] web: http://faculty.erau.edu/reynolds/ps320 (or Blackboard) phone: (386) 226-7752

More information

A Bond Graph Approach for Modelling Systems of Rigid Bodies in Spatial Motion

A Bond Graph Approach for Modelling Systems of Rigid Bodies in Spatial Motion A Bond Graph Approach for Modelling Systems of Rigid Bodies in Spatial Motion Børge Rokseth Marine Technology Submission date: June 214 Supervisor: Eilif Pedersen, IMT Co-supervisor: Asgeir Sørensen, IMT

More information

AP Physics C. Oscillations/SHM Review Packet

AP Physics C. Oscillations/SHM Review Packet AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

More information

Section 4: The Basics of Satellite Orbits

Section 4: The Basics of Satellite Orbits Section 4: The Basics of Satellite Orbits MOTION IN SPACE VS. MOTION IN THE ATMOSPHERE The motion of objects in the atmosphere differs in three important ways from the motion of objects in space. First,

More information

Simple Harmonic Motion

Simple Harmonic Motion Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights

More information

ACTUATOR DESIGN FOR ARC WELDING ROBOT

ACTUATOR DESIGN FOR ARC WELDING ROBOT ACTUATOR DESIGN FOR ARC WELDING ROBOT 1 Anurag Verma, 2 M. M. Gor* 1 G.H Patel College of Engineering & Technology, V.V.Nagar-388120, Gujarat, India 2 Parul Institute of Engineering & Technology, Limda-391760,

More information

How To Understand The Dynamics Of A Multibody System

How To Understand The Dynamics Of A Multibody System 4 Dynamic Analysis. Mass Matrices and External Forces The formulation of the inertia and external forces appearing at any of the elements of a multibody system, in terms of the dependent coordinates that

More information

Derive 5: The Easiest... Just Got Better!

Derive 5: The Easiest... Just Got Better! Liverpool John Moores University, 1-15 July 000 Derive 5: The Easiest... Just Got Better! Michel Beaudin École de Technologie Supérieure, Canada Email; [email protected] 1. Introduction Engineering

More information

Isaac Newton s (1642-1727) Laws of Motion

Isaac Newton s (1642-1727) Laws of Motion Big Picture 1 2.003J/1.053J Dynamics and Control I, Spring 2007 Professor Thomas Peacock 2/7/2007 Lecture 1 Newton s Laws, Cartesian and Polar Coordinates, Dynamics of a Single Particle Big Picture First

More information