# Math Workshop October 2010 Fractions and Repeating Decimals

Size: px
Start display at page:

Transcription

1 Math Workshop October 2010 Fractions and Repeating Decimals This evening we will investigate the patterns that arise when converting fractions to decimals. As an example of what we will be looking at, 1. Write 3/7 as a repeating decimal by dividing 7 into How many digits are in the repetend (i.e. in the repeating block of digits)? Add the number formed by the first half of the repetend to the number formed by the second half. We start by reviewing sequences. Adding arithmetic and geometric sequences. There are two types of sequences that appear so often that we give them names. To get any term after the first in an arithmetic sequence, you add a fixed constant to the previous term; for example, 7, 10, 13, 16, 19, 22, where the difference between consecutive terms is d = 3. For a geometric sequence you multiply the previous term by a fixed constant; for example, 7, 21, 63, 189, 567. Here the ratio of consecutive terms (one term divided by the previous term) is r = 3. There are simple tricks for adding the terms of these sequences. To easily compute the arithmetic sum S = , write the sum forwards and backwards, then add vertically: S = S = S = = 6 29; Since 2S = 6 29, we deduce that S = 3 29 = 87, which can easily be verified by adding the given six numbers. And here is the trick for geometric sums. To compute a geometric sum such as S = , subtract S from 3S (where the number we multiply S by is the common ratio of any two consecutive terms, 3 = 21/7 = 63/21 = 189/63 =...): 3S = S = ( ) 2S = ; thus, 2S = 1694, whence S = 847, which again is easily checked directly. Here are four practice problems. Although there are formulas that give you the sum from the initial and final elements and the size of the jump, understanding the trick is much more important than mastering the formulas. 2. Compute the following four sums. a. Sum the odd numbers between 10 and b. Sum the powers of 4 from 4 to c. d (Suggestion. Use 10S instead of S/10.) (where the three dots mean that you should continue the sum to infinity).

2 Workshop, October 2010 page 2 Fractions and repeating decimals. Parts (c) and (d) of Exercise 2 suggest how geometric sums might be related to rational numbers, which is the main topic of today's workshop. We define a rational number to be any real number that can be written as a fraction; a fraction is any number that can be written in the form a, where a and b are integers and b 0. Here are some b examples: 2 / 5 ; 5 / 2 ;.8 = 8 / 10 ; 4 1 / 3 = 13 / 3 ; 18 = 18 / 1 ; 4 / 3 = 4 / 3 = 4 / 3 ; 0 = 0 / 1 ; = 1137 / 100. Every integer is a rational number since the integer n can be written as n / 1. It is obvious that 81 is rational because it equals 9 = 9 / 1. On the other hand, it is entirely unobvious that 2 is not rational: 2 cannot be written as a fraction, a discovery that came as quite a surprise to the ancient Greeks. The proof of the irrationality of 2 is not hard, but we will leave it for another time. Tonight we are interested in exploring another unobvious fact: the rationals are precisely those numbers that can be written as repeating decimals. A repeating decimal is a number written in decimal notation whose digits to the right of the decimal point eventually consist of endless repetitions of a block of numbers called the repetend. The number of digits in the smallest repeating block is called the period of the repeating decimal. For example, 1 / 3 = has period 1, and 2779 / 110 = has period 2. We use a bar over the repeating part of the decimal as shorthand; thus 1 / 3 is written as 0.3 (or just.3), while 2779 / 110 becomes ¼ = is also a repeating decimal, which we usually write as.25 (or 0.25). (Numbers where the repeating part is a zero are called "terminating decimals" by schoolteachers, but we have no need here for more terminology.) We can write any fraction as a repeating decimal by using long division. An example will make this clear. Let's write 345/22 as a decimal: ) We stopped when 18 repeated as the remainder we would just bring down the zero again, find that 22 goes into 180 eight times with a remainder of 4, bring down the zero and get 22 goes into 40 one time with a remainder of 18, and continue getting remainders of 18 and 4 forever. We conclude that 345 = = We knew that eventually the remainders would start to repeat because there are only 22 possible remainders when dividing by 22, namely the integers from 0 up to 21. It just happens that the period is 2 and not something longer. In fact it is easy to see that a/b will have period 2 if b = 2 m 5 n 11 and a is any integer that is not divisible by 11; furthermore, the sum of the digits of the repeating part will be 9.

3 Workshop, October 2010 page 3 3. Verify this for yourself without a calculator by showing that x = 7/440 has period 2, but save yourself time and effort by first multiplying x by 10 3 (because 440 = , so 3 is the highest power to which 2 or 5 has been raised), then divide top and bottom of 10 3 x by 40 to reduce the fraction to an integer over 11, do the division, then solve for x. In the other direction we recognize that is just 15.6 plus a geometric sequence = , where each term is 1/100 times the previous term: 4. Subtract x = from 100x, then solve for x. Reduce x to a fraction in lowest terms. (Remember that a fraction is the quotient of integers; you might have to multiply top and bottom by a power of 10 to get it in the proper form.) For a fraction a/b in lowest terms, the longest its period could possibly be is b 1 (because there are b 1 nonzero possible remainders). To simplify matters, we will restrict ourselves to the case where b is a prime number, and a < b. When the period of 1/b is b 1, we will call b a full-period prime. The smallest full-period prime is a. Write 1/7 as a repeating decimal. b. Use part (a) to guess what the decimal expansion of 2/7 must be in particular, you should note where the remainder of 2 shows up in your division of 7 into 1. Observe the evident patterns in Figure 1. Each fraction a/7 (in the box on the left) has the same cycle of digits in its decimal expansion, but with different starting points. Thus, to compute a/7, don't think of multiplying the decimal for 1/7 by a; rather, apply a cyclic permutation to the digits in the repeating block In this context it is natural to arrange the digits around a circle as shown in the figure. An arrow in the middle reminds us which way to order the digits, and each fraction a/7 is placed outside the circle beside the starting point for its decimal. Thus, looking at the circle diagram, we can read off the decimal expansion of 3/7 as follows. The first digit, 4, is inside the circle next to the label 3/7. Starting at that point, proceed around the circle reading off digits Did you notice that the diametrically opposed digits inside the circle add to 9? Or that the diametrically opposed fractions outside the circle add to 1? Are these just coincidences, or do these patterns show up for denominators other than 7? It turns out that these questions are easily answered for full-period primes, so we will focus on them.

4 Workshop, October 2010 page 4 It is not at all clear which primes have a full period. On the last page we include a list of the values of 1/b for integers b 50. The full-period primes on that list are 7, 17, 19, 23, 29, and 47. (There are many larger full-period primes 59, 61, 97, 109, but nobody knows whether or not the list is infinite) Here is one simple method for determining the period corresponding to a prime number: Theorem 1. For any prime number p larger than 5, the number of ones in the first element of the sequence 11, 111, 1111, that is divisible by p equals the period of 1/p. 6. Test the theorem for the primes 7, 11, and 13 (with periods 6, 2, and 6, respectively). You can easily prove it by applying the method used in problem 4 above to convert 1/p to its decimal form: If k is the period, then (10 k 1)/p will be an integer, call it n; that is, /p = n. Since p is a prime larger than 5, it cannot divide evenly into 9, so it must divide the factor 111 1, as claimed. Go through this proof using 7 and 11 to better understand the argument what does n equal when p = 7? p = 11? Consider the circle diagram for b = Your calculator won't help much in this exercise because the period of 1/17 is 16, but the figure has all the information you need. You should check (by long division) that the decimal expansion of 1/17 begins ; that the first remainder after the decimal point is 10 (that is 17 goes into 1.0 zero times with a remainder of 10); that 17 goes into 100 five times with a remainder of 15 (Look where the 5 and 15 appear on the circle in Figure 2.); that 17 goes into 150 eight times with remainder 14. Furthermore, check that 15/17 begins It should be clear to you that the decimal expansion of 15/17 would contain the same digits in the same order as 1/17, but it begins where the long division of 17 into 1 has a remainder of 15 (so that the first step is to divide 17 into 150). It should be clear from these examples that when b is a full-period prime, the b 1 distinct fractions a/b with 1 a b 1 have repetends that are cyclic permutations of a common sequence of digits d 1, d 2, d 3,, d b Explain why b must be prime when 1/b has period b 1. (Hint. If, to the contrary, b = pq had period b 1, what would you know about the period of p/b = 1/q?)

5 Workshop, October 2010 page 5 Theorem 2. Let p be a full-period prime. If the repetend of 1/p is the sequence of digits d 1, d 2, d 3,, d 2k, then d 1 + d k+1 = d 2 + d k+2 = d k + d 2k = We expect older students who are good at algebra to provide a justification for each claim of my argument below. Younger students should just verify each claim using both p = 7 (with period 6) and p = 19 (with period 18). a. If p is a full period prime, then its repetend has length p 1. b. We can denote the period by 2k (where k is a positive integer). c. p divides (10 2k 1)/9 = , but fails to divide any shorter string of 1s. In particular, p does not divide ( )( 10 k "1) 2k k d = 10 k +1 = ( 10 k +1) # k , so that p divides 10k + 1, whence k 10 k /p + 1/p is an integer. e. The decimal expansion of the sum 10 k /p + 1/p may be represented this way: d + 1 d 2 d k.d k +1 d k +2 d 2k d 1 d 2.d 1 d 2 d k d k +1 d k +2 f. Therefore, d i + d k+i = 9 for each i between 1 and k. You may have noticed that in the proof of Theorem 2 we made little use of the condition that p be a full period prime. In fact, we used only the fact that the period is even. An 1836 theorem of the French mathematician E. Midy states that the property of 1/p in Theorem 2 holds for the fraction a/p, where p is an arbitrary prime larger than 5 and a an integer that is not a multiple of p, as long as the period of p is even. Observe in the table on the last page that the prime numbers from 31 to 43 all have odd periods so that Midy's theorem does not apply to them. It does apply to the other primes on the list. When p is not a full period prime, the period of 1/p is a divisor of p 1, and for each a that is not a multiple of p, a/p has the same period as 1/p. 10. Check these claims out for a/11, where a < 11. Note that there will be five circle diagrams modeled after Figures 1 and 2, each with only one pair of opposite fractions. 11. Draw the circle diagrams for a/13, a < 13. Here the circle diagrams come with six fractions each; one circle can start with 1/13, the other with 2/13. Mod 10 arithmetic. Consider the long-division method you used with Exercise 11. At each step we bring down a zero, divide by 13, and subtract to obtain the new remainder. But "bring down a zero" really means multiply by 10. That is, if r is the remainder at a particular step in the division, the next remainder will be 10r (mod 13). So when expanding 1/13, starting with the first remainder, 10, the sequence of remainders is 10 (mod 13), (mod 13), (mod 13), (mod 13), (mod 13), (mod 13). (Please note how these numbers correspond to the fractions 10/13, 9/13, 12/13, 3/13, and 4/13 about the first circle you made in Exercise 11.) The sequence repeats when we reach a power of 10 that returns to the starting point: (mod 13); that is, 13 divides evenly into Since = ( )(10 3 1), and 13 does not divide (because if it did, we would have found the period of 1/13 to be shorter than 6), we

6 Workshop, October 2010 page 6 deduce that 13 must divide (Of course, it's easy to check that 1001 = ) This approach gives us a second way to recognize full-period primes: Theorem 3. 1/p has period p 1 if and only if every positive integer less than p is congruent to 10 j (mod p) for some j < p. Table of the decimal expansions of 1/x for x 50.

### Unit 1 Number Sense. In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions.

Unit 1 Number Sense In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions. BLM Three Types of Percent Problems (p L-34) is a summary BLM for the material

### Math Circle Beginners Group October 18, 2015

Math Circle Beginners Group October 18, 2015 Warm-up problem 1. Let n be a (positive) integer. Prove that if n 2 is odd, then n is also odd. (Hint: Use a proof by contradiction.) Suppose that n 2 is odd

### Session 7 Fractions and Decimals

Key Terms in This Session Session 7 Fractions and Decimals Previously Introduced prime number rational numbers New in This Session period repeating decimal terminating decimal Introduction In this session,

### 47 Numerator Denominator

JH WEEKLIES ISSUE #22 2012-2013 Mathematics Fractions Mathematicians often have to deal with numbers that are not whole numbers (1, 2, 3 etc.). The preferred way to represent these partial numbers (rational

### Math 319 Problem Set #3 Solution 21 February 2002

Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod

### Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

### Solving Rational Equations

Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,

### 1. The Fly In The Ointment

Arithmetic Revisited Lesson 5: Decimal Fractions or Place Value Extended Part 5: Dividing Decimal Fractions, Part 2. The Fly In The Ointment The meaning of, say, ƒ 2 doesn't depend on whether we represent

### Chapter 11 Number Theory

Chapter 11 Number Theory Number theory is one of the oldest branches of mathematics. For many years people who studied number theory delighted in its pure nature because there were few practical applications

### Stanford Math Circle: Sunday, May 9, 2010 Square-Triangular Numbers, Pell s Equation, and Continued Fractions

Stanford Math Circle: Sunday, May 9, 00 Square-Triangular Numbers, Pell s Equation, and Continued Fractions Recall that triangular numbers are numbers of the form T m = numbers that can be arranged in

### Grade 6 Math Circles March 10/11, 2015 Prime Time Solutions

Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Lights, Camera, Primes! Grade 6 Math Circles March 10/11, 2015 Prime Time Solutions Today, we re going

### Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.

Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole

### If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C?

Problem 3 If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Suggested Questions to ask students about Problem 3 The key to this question

### Integer Operations. Overview. Grade 7 Mathematics, Quarter 1, Unit 1.1. Number of Instructional Days: 15 (1 day = 45 minutes) Essential Questions

Grade 7 Mathematics, Quarter 1, Unit 1.1 Integer Operations Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Describe situations in which opposites combine to make zero.

CONTENTS Introduction...iv. Number Systems... 2. Algebraic Expressions.... Factorising...24 4. Solving Linear Equations...8. Solving Quadratic Equations...0 6. Simultaneous Equations.... Long Division

### 1.2. Successive Differences

1. An Application of Inductive Reasoning: Number Patterns In the previous section we introduced inductive reasoning, and we showed how it can be applied in predicting what comes next in a list of numbers

### Paramedic Program Pre-Admission Mathematics Test Study Guide

Paramedic Program Pre-Admission Mathematics Test Study Guide 05/13 1 Table of Contents Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 Page 9 Page 10 Page 11 Page 12 Page 13 Page 14 Page 15 Page

### Maths Workshop for Parents 2. Fractions and Algebra

Maths Workshop for Parents 2 Fractions and Algebra What is a fraction? A fraction is a part of a whole. There are two numbers to every fraction: 2 7 Numerator Denominator 2 7 This is a proper (or common)

### The Euclidean Algorithm

The Euclidean Algorithm A METHOD FOR FINDING THE GREATEST COMMON DIVISOR FOR TWO LARGE NUMBERS To be successful using this method you have got to know how to divide. If this is something that you have

### CHAPTER 5. Number Theory. 1. Integers and Division. Discussion

CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a

### Welcome to Basic Math Skills!

Basic Math Skills Welcome to Basic Math Skills! Most students find the math sections to be the most difficult. Basic Math Skills was designed to give you a refresher on the basics of math. There are lots

### Trigonometric Functions and Triangles

Trigonometric Functions and Triangles Dr. Philippe B. Laval Kennesaw STate University August 27, 2010 Abstract This handout defines the trigonometric function of angles and discusses the relationship between

### 5.1 Radical Notation and Rational Exponents

Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots

### MATH10040 Chapter 2: Prime and relatively prime numbers

MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive

### Answer Key for California State Standards: Algebra I

Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.

### A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions

A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions Marcel B. Finan Arkansas Tech University c All Rights Reserved First Draft February 8, 2006 1 Contents 25

### 15 Prime and Composite Numbers

15 Prime and Composite Numbers Divides, Divisors, Factors, Multiples In section 13, we considered the division algorithm: If a and b are whole numbers with b 0 then there exist unique numbers q and r such

### 1.6 The Order of Operations

1.6 The Order of Operations Contents: Operations Grouping Symbols The Order of Operations Exponents and Negative Numbers Negative Square Roots Square Root of a Negative Number Order of Operations and Negative

### Primes in Sequences. Lee 1. By: Jae Young Lee. Project for MA 341 (Number Theory) Boston University Summer Term I 2009 Instructor: Kalin Kostadinov

Lee 1 Primes in Sequences By: Jae Young Lee Project for MA 341 (Number Theory) Boston University Summer Term I 2009 Instructor: Kalin Kostadinov Lee 2 Jae Young Lee MA341 Number Theory PRIMES IN SEQUENCES

### JobTestPrep's Numeracy Review Decimals & Percentages

JobTestPrep's Numeracy Review Decimals & Percentages 1 Table of contents What is decimal? 3 Converting fractions to decimals 4 Converting decimals to fractions 6 Percentages 6 Adding and subtracting decimals

### MULTIPLICATION AND DIVISION OF REAL NUMBERS In this section we will complete the study of the four basic operations with real numbers.

1.4 Multiplication and (1-25) 25 In this section Multiplication of Real Numbers Division by Zero helpful hint The product of two numbers with like signs is positive, but the product of three numbers with

### POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

### 8 Primes and Modular Arithmetic

8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.

### Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

### IB Maths SL Sequence and Series Practice Problems Mr. W Name

IB Maths SL Sequence and Series Practice Problems Mr. W Name Remember to show all necessary reasoning! Separate paper is probably best. 3b 3d is optional! 1. In an arithmetic sequence, u 1 = and u 3 =

### MATH 13150: Freshman Seminar Unit 10

MATH 13150: Freshman Seminar Unit 10 1. Relatively prime numbers and Euler s function In this chapter, we are going to discuss when two numbers are relatively prime, and learn how to count the numbers

### 3 cups ¾ ½ ¼ 2 cups ¾ ½ ¼. 1 cup ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼

cups cups cup Fractions are a form of division. When I ask what is / I am asking How big will each part be if I break into equal parts? The answer is. This a fraction. A fraction is part of a whole. The

### How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.

The verbal answers to all of the following questions should be memorized before completion of pre-algebra. Answers that are not memorized will hinder your ability to succeed in algebra 1. Number Basics

### a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

### Zeros of a Polynomial Function

Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we

### MATHEMATICAL INDUCTION. Mathematical Induction. This is a powerful method to prove properties of positive integers.

MATHEMATICAL INDUCTION MIGUEL A LERMA (Last updated: February 8, 003) Mathematical Induction This is a powerful method to prove properties of positive integers Principle of Mathematical Induction Let P

### Primes. Name Period Number Theory

Primes Name Period A Prime Number is a whole number whose only factors are 1 and itself. To find all of the prime numbers between 1 and 100, complete the following exercise: 1. Cross out 1 by Shading in

### Accuplacer Arithmetic Study Guide

Accuplacer Arithmetic Study Guide Section One: Terms Numerator: The number on top of a fraction which tells how many parts you have. Denominator: The number on the bottom of a fraction which tells how

### 5544 = 2 2772 = 2 2 1386 = 2 2 2 693. Now we have to find a divisor of 693. We can try 3, and 693 = 3 231,and we keep dividing by 3 to get: 1

MATH 13150: Freshman Seminar Unit 8 1. Prime numbers 1.1. Primes. A number bigger than 1 is called prime if its only divisors are 1 and itself. For example, 3 is prime because the only numbers dividing

PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

### I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

### Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

### 6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives

6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise

### PREPARATION FOR MATH TESTING at CityLab Academy

PREPARATION FOR MATH TESTING at CityLab Academy compiled by Gloria Vachino, M.S. Refresh your math skills with a MATH REVIEW and find out if you are ready for the math entrance test by taking a PRE-TEST

### MATH-0910 Review Concepts (Haugen)

Unit 1 Whole Numbers and Fractions MATH-0910 Review Concepts (Haugen) Exam 1 Sections 1.5, 1.6, 1.7, 1.8, 2.1, 2.2, 2.3, 2.4, and 2.5 Dividing Whole Numbers Equivalent ways of expressing division: a b,

### Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

### Recall the process used for adding decimal numbers. 1. Place the numbers to be added in vertical format, aligning the decimal points.

2 MODULE 4. DECIMALS 4a Decimal Arithmetic Adding Decimals Recall the process used for adding decimal numbers. Adding Decimals. To add decimal numbers, proceed as follows: 1. Place the numbers to be added

### Lesson on Repeating and Terminating Decimals. Dana T. Johnson 6/03 College of William and Mary dtjohn@wm.edu

Lesson on Repeating and Terminating Decimals Dana T. Johnson 6/03 College of William and Mary dtjohn@wm.edu Background: This lesson would be embedded in a unit on the real number system. The set of real

### Stupid Divisibility Tricks

Stupid Divisibility Tricks 101 Ways to Stupefy Your Friends Appeared in Math Horizons November, 2006 Marc Renault Shippensburg University Mathematics Department 1871 Old Main Road Shippensburg, PA 17013

### Homework 2 Solutions

Homework Solutions 1. (a) Find the area of a regular heagon inscribed in a circle of radius 1. Then, find the area of a regular heagon circumscribed about a circle of radius 1. Use these calculations to

### Homework until Test #2

MATH31: Number Theory Homework until Test # Philipp BRAUN Section 3.1 page 43, 1. It has been conjectured that there are infinitely many primes of the form n. Exhibit five such primes. Solution. Five such

### Factoring Whole Numbers

2.2 Factoring Whole Numbers 2.2 OBJECTIVES 1. Find the factors of a whole number 2. Find the prime factorization for any number 3. Find the greatest common factor (GCF) of two numbers 4. Find the GCF for

### Multiplying and Dividing Algebraic Fractions

. Multiplying and Dividing Algebraic Fractions. OBJECTIVES. Write the product of two algebraic fractions in simplest form. Write the quotient of two algebraic fractions in simplest form. Simplify a comple

### Section 1.1 Real Numbers

. Natural numbers (N):. Integer numbers (Z): Section. Real Numbers Types of Real Numbers,, 3, 4,,... 0, ±, ±, ±3, ±4, ±,... REMARK: Any natural number is an integer number, but not any integer number is

### MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

### Quick Reference ebook

This file is distributed FREE OF CHARGE by the publisher Quick Reference Handbooks and the author. Quick Reference ebook Click on Contents or Index in the left panel to locate a topic. The math facts listed

### MATH 90 CHAPTER 1 Name:.

MATH 90 CHAPTER 1 Name:. 1.1 Introduction to Algebra Need To Know What are Algebraic Expressions? Translating Expressions Equations What is Algebra? They say the only thing that stays the same is change.

### Revised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m)

Chapter 23 Squares Modulo p Revised Version of Chapter 23 We learned long ago how to solve linear congruences ax c (mod m) (see Chapter 8). It s now time to take the plunge and move on to quadratic equations.

### SECTION 10-2 Mathematical Induction

73 0 Sequences and Series 6. Approximate e 0. using the first five terms of the series. Compare this approximation with your calculator evaluation of e 0.. 6. Approximate e 0.5 using the first five terms

### Common Core State Standards for Mathematics Accelerated 7th Grade

A Correlation of 2013 To the to the Introduction This document demonstrates how Mathematics Accelerated Grade 7, 2013, meets the. Correlation references are to the pages within the Student Edition. Meeting

### Just the Factors, Ma am

1 Introduction Just the Factors, Ma am The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive

### Unit 6 Number and Operations in Base Ten: Decimals

Unit 6 Number and Operations in Base Ten: Decimals Introduction Students will extend the place value system to decimals. They will apply their understanding of models for decimals and decimal notation,

### Decimals and other fractions

Chapter 2 Decimals and other fractions How to deal with the bits and pieces When drugs come from the manufacturer they are in doses to suit most adult patients. However, many of your patients will be very

### Simplifying Algebraic Fractions

5. Simplifying Algebraic Fractions 5. OBJECTIVES. Find the GCF for two monomials and simplify a fraction 2. Find the GCF for two polynomials and simplify a fraction Much of our work with algebraic fractions

### 9.2 Summation Notation

9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a

### Computer Science 281 Binary and Hexadecimal Review

Computer Science 281 Binary and Hexadecimal Review 1 The Binary Number System Computers store everything, both instructions and data, by using many, many transistors, each of which can be in one of two

### Student Outcomes. Lesson Notes. Classwork. Discussion (10 minutes)

NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 5 8 Student Outcomes Students know the definition of a number raised to a negative exponent. Students simplify and write equivalent expressions that contain

### Continued Fractions. Darren C. Collins

Continued Fractions Darren C Collins Abstract In this paper, we discuss continued fractions First, we discuss the definition and notation Second, we discuss the development of the subject throughout history

### CS 103X: Discrete Structures Homework Assignment 3 Solutions

CS 103X: Discrete Structures Homework Assignment 3 s Exercise 1 (20 points). On well-ordering and induction: (a) Prove the induction principle from the well-ordering principle. (b) Prove the well-ordering

### Numerator Denominator

Fractions A fraction is any part of a group, number or whole. Fractions are always written as Numerator Denominator A unitary fraction is one where the numerator is always 1 e.g 1 1 1 1 1...etc... 2 3

### 4/1/2017. PS. Sequences and Series FROM 9.2 AND 9.3 IN THE BOOK AS WELL AS FROM OTHER SOURCES. TODAY IS NATIONAL MANATEE APPRECIATION DAY

PS. Sequences and Series FROM 9.2 AND 9.3 IN THE BOOK AS WELL AS FROM OTHER SOURCES. TODAY IS NATIONAL MANATEE APPRECIATION DAY 1 Oh the things you should learn How to recognize and write arithmetic sequences

### The gas can has a capacity of 4.17 gallons and weighs 3.4 pounds.

hundred million\$ ten------ million\$ million\$ 00,000,000 0,000,000,000,000 00,000 0,000,000 00 0 0 0 0 0 0 0 0 0 Session 26 Decimal Fractions Explain the meaning of the values stated in the following sentence.

### Using Proportions to Solve Percent Problems I

RP7-1 Using Proportions to Solve Percent Problems I Pages 46 48 Standards: 7.RP.A. Goals: Students will write equivalent statements for proportions by keeping track of the part and the whole, and by solving

### Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2

CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 Proofs Intuitively, the concept of proof should already be familiar We all like to assert things, and few of us

### Multiplying Fractions

. Multiplying Fractions. OBJECTIVES 1. Multiply two fractions. Multiply two mixed numbers. Simplify before multiplying fractions 4. Estimate products by rounding Multiplication is the easiest of the four

### Properties of Real Numbers

16 Chapter P Prerequisites P.2 Properties of Real Numbers What you should learn: Identify and use the basic properties of real numbers Develop and use additional properties of real numbers Why you should

### Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.

Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. Solve word problems that call for addition of three whole numbers

### north seattle community college

INTRODUCTION TO FRACTIONS If we divide a whole number into equal parts we get a fraction: For example, this circle is divided into quarters. Three quarters, or, of the circle is shaded. DEFINITIONS: The

### Expression. Variable Equation Polynomial Monomial Add. Area. Volume Surface Space Length Width. Probability. Chance Random Likely Possibility Odds

Isosceles Triangle Congruent Leg Side Expression Equation Polynomial Monomial Radical Square Root Check Times Itself Function Relation One Domain Range Area Volume Surface Space Length Width Quantitative

### Session 6 Number Theory

Key Terms in This Session Session 6 Number Theory Previously Introduced counting numbers factor factor tree prime number New in This Session composite number greatest common factor least common multiple

Exponents and Radicals (a + b) 10 Exponents are a very important part of algebra. An exponent is just a convenient way of writing repeated multiplications of the same number. Radicals involve the use of

### Factoring Polynomials

Factoring Polynomials Sue Geller June 19, 2006 Factoring polynomials over the rational numbers, real numbers, and complex numbers has long been a standard topic of high school algebra. With the advent

### Lesson 4. Factors and Multiples. Objectives

Student Name: Date: Contact Person Name: Phone Number: Lesson 4 Factors and Multiples Objectives Understand what factors and multiples are Write a number as a product of its prime factors Find the greatest

### 26 Integers: Multiplication, Division, and Order

26 Integers: Multiplication, Division, and Order Integer multiplication and division are extensions of whole number multiplication and division. In multiplying and dividing integers, the one new issue

### Chapter 13: Fibonacci Numbers and the Golden Ratio

Chapter 13: Fibonacci Numbers and the Golden Ratio 13.1 Fibonacci Numbers THE FIBONACCI SEQUENCE 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, The sequence of numbers shown above is called the Fibonacci

### Lecture 3: Finding integer solutions to systems of linear equations

Lecture 3: Finding integer solutions to systems of linear equations Algorithmic Number Theory (Fall 2014) Rutgers University Swastik Kopparty Scribe: Abhishek Bhrushundi 1 Overview The goal of this lecture

### The Fundamental Theorem of Arithmetic

The Fundamental Theorem of Arithmetic 1 Introduction: Why this theorem? Why this proof? One of the purposes of this course 1 is to train you in the methods mathematicians use to prove mathematical statements,

### HFCC Math Lab Arithmetic - 4. Addition, Subtraction, Multiplication and Division of Mixed Numbers

HFCC Math Lab Arithmetic - Addition, Subtraction, Multiplication and Division of Mixed Numbers Part I: Addition and Subtraction of Mixed Numbers There are two ways of adding and subtracting mixed numbers.

### Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.

### Charlesworth School Year Group Maths Targets

Charlesworth School Year Group Maths Targets Year One Maths Target Sheet Key Statement KS1 Maths Targets (Expected) These skills must be secure to move beyond expected. I can compare, describe and solve

### Grade 7/8 Math Circles Fall 2012 Factors and Primes

1 University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Grade 7/8 Math Circles Fall 2012 Factors and Primes Factors Definition: A factor of a number is a whole