# Recall the process used for adding decimal numbers. 1. Place the numbers to be added in vertical format, aligning the decimal points.

Size: px
Start display at page:

Download "Recall the process used for adding decimal numbers. 1. Place the numbers to be added in vertical format, aligning the decimal points."

Transcription

4 4A. DECIMAL ARITHMETIC 5 Multiplying Decimals When multiplying decimal numbers, use the following method. Multiplying Decimal Numbers. To multiply two decimal numbers, perform the following steps: 1. Ignore the decimal points in the factors and multiply the two factors as if they were whole numbers. 2. Count the number of digits to the right of the decimal point in each factor. Sum these two numbers. 3. Place the decimal point in the product so that the number of digits to the right of the decimal point equals the sum found in step 2. EXAMPLE 6. Simplify: (8.235)(2.3). Multiply: (9.582)(8.6) Solution. Using the convenient vertical format, write The factor has three digits to the right of the decimal point; the factor 2.3 has one digit to the right of the decimal point. Therefore, there must be a total of four digits to the right of the decimal point in the product or answer. Answer: EXAMPLE 7. Simplify: (5.68)( 0.012). Multiply: (9.23)( 0.018) Solution. Ignore the signs to do the multiplication, then consider the signs in the final answer.

5 6 MODULE 4. DECIMALS The first factor has two digits to the right of the decimal point, the second factor has three. Therefore, there must be a total of five digits to the right of the decimal point in the product or answer. This necessitates prepending a zero in front of our product. Unlike signs give a negative product. Hence: (5.68)( 0.012) = Answer: Powers of Ten Consider: 10 1 = =10 10 = = = 1, = = 10, 000 Note the answer for 10 4, a one followed by four zeros! Do you see the pattern? Powers of Ten. In the expression 10 n,theexponentmatchesthenumberof zeros in the answer. Hence, 10 n will be a 1 followed by n zeros. Multiplying Decimal Numbers by Powers of Ten Let s multiply by 10 3, or equivalently, by 1,000. Ignore the decimal point and multiply the numbers as whole numbers The sum total of digits to the right of the decimal points in the factors is 6. Therefore, we place the decimal point in the product so that there are six digits to the right of the decimal point. However, the trailing zeros may be removed without changing the value of the product. That is, times 1000 is Note that the decimal

6 4A. DECIMAL ARITHMETIC 7 point in the product is three places further to the right than in the original factor. This observation leads to the following result. Multiplying a Decimal Number by a Power of Ten. Multiplying a decimal number by 10 n will move the decimal point n places to the right. EXAMPLE 8. Simplify: Simplify: Solution. Multiplying by 10 4 (or equivalently, by 10,000) moves the decimal 4 places to the right. Thus, , 000 = Answer: Dividing Decimals We begin by reviewing the division algorithm for dividing a decimal number by a whole number. Dividing a Decimal by a Whole Number. To divide a decimal number by a whole number, proceed as follows: 1. Set up the long division as you would the division of two whole numbers. 2. Perform the division as if the numbers were both whole numbers, adding zeros to the right of the decimal point in the dividend as necessary to complete the division. 3. Place the decimal point in the quotient immediately above the decimal point in the dividend. EXAMPLE 9. Divide: Divide: Solution. Use long division and arrange as if dividing whole numbers )

7 8 MODULE 4. DECIMALS We still have a nonzero remainder. Adding one zero does no good ) However, if we add tw zeros, the division completes with a zero remainder ) Answer: 1.85 Thus, divided by 25 is If you are dividing a decimal number by another decimal number, then there are additional steps that must be included in the division algorithm. Dividing by a Decimal Divisor. If the divisor contains a decimal, proceed as follows: 1. Move the decimal to the end of the divisor. 2. Move the decimal in the dividend an equal number of places. Divide: EXAMPLE 10. Divide: Solution. First, divide the magnitudes. Move the decimal in the divisor to the end of the divisor. Move the decimal in the dividend an equal number of places (three places) to the right. Note that this requires writing a trailing zero in the dividend )0.030 Our problem then becomes:

8 4A. DECIMAL ARITHMETIC 9 24)30 We can now follow the algorithm for dividing a decimal number by a whole number. Note that we have to add two trailing zeros in the dividend to complete the division with a zero remainder ) Finally, because the quotient of unlike signs is negative, 0.03 divided by is That is, = Answer: Dividing by Powers of Ten Dividing a Decimal by a Power of Ten. Dividing a decimal number by 10 n will move the decimal point n places to the left. EXAMPLE 11. Simplify: Simplify: Solution.Dividing by 10 4 (or equivalently, 10,000) moves the decimal point four places to the left. Thus, = Answer:

1 Decimals Adding and Subtracting Decimals are a group of digits, which express numbers or measurements in units, tens, and multiples of 10. The digits for units and multiples of 10 are followed by a decimal

### Useful Number Systems

Useful Number Systems Decimal Base = 10 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Binary Base = 2 Digit Set = {0, 1} Octal Base = 8 = 2 3 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7} Hexadecimal Base = 16 = 2

### Paramedic Program Pre-Admission Mathematics Test Study Guide

Paramedic Program Pre-Admission Mathematics Test Study Guide 05/13 1 Table of Contents Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 Page 9 Page 10 Page 11 Page 12 Page 13 Page 14 Page 15 Page

### Accuplacer Arithmetic Study Guide

Accuplacer Arithmetic Study Guide Section One: Terms Numerator: The number on top of a fraction which tells how many parts you have. Denominator: The number on the bottom of a fraction which tells how

### MATH-0910 Review Concepts (Haugen)

Unit 1 Whole Numbers and Fractions MATH-0910 Review Concepts (Haugen) Exam 1 Sections 1.5, 1.6, 1.7, 1.8, 2.1, 2.2, 2.3, 2.4, and 2.5 Dividing Whole Numbers Equivalent ways of expressing division: a b,

### PREPARATION FOR MATH TESTING at CityLab Academy

PREPARATION FOR MATH TESTING at CityLab Academy compiled by Gloria Vachino, M.S. Refresh your math skills with a MATH REVIEW and find out if you are ready for the math entrance test by taking a PRE-TEST

### COMPSCI 210. Binary Fractions. Agenda & Reading

COMPSCI 21 Binary Fractions Agenda & Reading Topics: Fractions Binary Octal Hexadecimal Binary -> Octal, Hex Octal -> Binary, Hex Decimal -> Octal, Hex Hex -> Binary, Octal Animation: BinFrac.htm Example

### Session 29 Scientific Notation and Laws of Exponents. If you have ever taken a Chemistry class, you may have encountered the following numbers:

Session 9 Scientific Notation and Laws of Exponents If you have ever taken a Chemistry class, you may have encountered the following numbers: There are approximately 60,4,79,00,000,000,000,000 molecules

### MULTIPLICATION AND DIVISION OF REAL NUMBERS In this section we will complete the study of the four basic operations with real numbers.

1.4 Multiplication and (1-25) 25 In this section Multiplication of Real Numbers Division by Zero helpful hint The product of two numbers with like signs is positive, but the product of three numbers with

### Lecture 8: Binary Multiplication & Division

Lecture 8: Binary Multiplication & Division Today s topics: Addition/Subtraction Multiplication Division Reminder: get started early on assignment 3 1 2 s Complement Signed Numbers two = 0 ten 0001 two

### YOU MUST BE ABLE TO DO THE FOLLOWING PROBLEMS WITHOUT A CALCULATOR!

DETAILED SOLUTIONS AND CONCEPTS - DECIMALS AND WHOLE NUMBERS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! YOU MUST

### Sequential Skills. Strands and Major Topics

Sequential Skills This set of charts lists, by strand, the skills that are assessed, taught, and practiced in the Skills Tutorial program. Each Strand ends with a Mastery Test. You can enter correlating

### Fractions to decimals

Worksheet.4 Fractions and Decimals Section Fractions to decimals The most common method of converting fractions to decimals is to use a calculator. A fraction represents a division so is another way of

### The Euclidean Algorithm

The Euclidean Algorithm A METHOD FOR FINDING THE GREATEST COMMON DIVISOR FOR TWO LARGE NUMBERS To be successful using this method you have got to know how to divide. If this is something that you have

### Polynomial and Synthetic Division. Long Division of Polynomials. Example 1. 6x 2 7x 2 x 2) 19x 2 16x 4 6x3 12x 2 7x 2 16x 7x 2 14x. 2x 4.

_.qd /7/5 9: AM Page 5 Section.. Polynomial and Synthetic Division 5 Polynomial and Synthetic Division What you should learn Use long division to divide polynomials by other polynomials. Use synthetic

### JobTestPrep's Numeracy Review Decimals & Percentages

JobTestPrep's Numeracy Review Decimals & Percentages 1 Table of contents What is decimal? 3 Converting fractions to decimals 4 Converting decimals to fractions 6 Percentages 6 Adding and subtracting decimals

### Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.

Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. Solve word problems that call for addition of three whole numbers

### ADDITION. Children should extend the carrying method to numbers with at least four digits.

Y5 AND Y6 ADDITION Children should extend the carrying method to numbers with at least four digits. 587 3587 + 475 + 675 1062 4262 1 1 1 1 1 Using similar methods, children will: add several numbers with

### FRACTIONS MODULE Part I

FRACTIONS MODULE Part I I. Basics of Fractions II. Rewriting Fractions in the Lowest Terms III. Change an Improper Fraction into a Mixed Number IV. Change a Mixed Number into an Improper Fraction BMR.Fractions

### Multiplying and Dividing Signed Numbers. Finding the Product of Two Signed Numbers. (a) (3)( 4) ( 4) ( 4) ( 4) 12 (b) (4)( 5) ( 5) ( 5) ( 5) ( 5) 20

SECTION.4 Multiplying and Dividing Signed Numbers.4 OBJECTIVES 1. Multiply signed numbers 2. Use the commutative property of multiplication 3. Use the associative property of multiplication 4. Divide signed

### COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012

Binary numbers The reason humans represent numbers using decimal (the ten digits from 0,1,... 9) is that we have ten fingers. There is no other reason than that. There is nothing special otherwise about

### Lecture 2. Binary and Hexadecimal Numbers

Lecture 2 Binary and Hexadecimal Numbers Purpose: Review binary and hexadecimal number representations Convert directly from one base to another base Review addition and subtraction in binary representations

### The gas can has a capacity of 4.17 gallons and weighs 3.4 pounds.

hundred million\$ ten------ million\$ million\$ 00,000,000 0,000,000,000,000 00,000 0,000,000 00 0 0 0 0 0 0 0 0 0 Session 26 Decimal Fractions Explain the meaning of the values stated in the following sentence.

### DIVISION OF DECIMALS. 1503 9. We then we multiply by the

Tallahassee Community College 0 DIVISION OF DECIMALS To divide 9, we write these fractions: reciprocal of the divisor 0 9. We then we multiply by the 0 67 67 = = 9 67 67 The decimal equivalent of is. 67.

### Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

### Solutions of Linear Equations in One Variable

2. Solutions of Linear Equations in One Variable 2. OBJECTIVES. Identify a linear equation 2. Combine like terms to solve an equation We begin this chapter by considering one of the most important tools

### CSI 333 Lecture 1 Number Systems

CSI 333 Lecture 1 Number Systems 1 1 / 23 Basics of Number Systems Ref: Appendix C of Deitel & Deitel. Weighted Positional Notation: 192 = 2 10 0 + 9 10 1 + 1 10 2 General: Digit sequence : d n 1 d n 2...

### Integer Operations. Overview. Grade 7 Mathematics, Quarter 1, Unit 1.1. Number of Instructional Days: 15 (1 day = 45 minutes) Essential Questions

Grade 7 Mathematics, Quarter 1, Unit 1.1 Integer Operations Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Describe situations in which opposites combine to make zero.

### 3.2 The Factor Theorem and The Remainder Theorem

3. The Factor Theorem and The Remainder Theorem 57 3. The Factor Theorem and The Remainder Theorem Suppose we wish to find the zeros of f(x) = x 3 + 4x 5x 4. Setting f(x) = 0 results in the polynomial

### Math Workshop October 2010 Fractions and Repeating Decimals

Math Workshop October 2010 Fractions and Repeating Decimals This evening we will investigate the patterns that arise when converting fractions to decimals. As an example of what we will be looking at,

### Computer Science 281 Binary and Hexadecimal Review

Computer Science 281 Binary and Hexadecimal Review 1 The Binary Number System Computers store everything, both instructions and data, by using many, many transistors, each of which can be in one of two

### Solution Guide Chapter 14 Mixing Fractions, Decimals, and Percents Together

Solution Guide Chapter 4 Mixing Fractions, Decimals, and Percents Together Doing the Math from p. 80 2. 0.72 9 =? 0.08 To change it to decimal, we can tip it over and divide: 9 0.72 To make 0.72 into a

### Divide: Paper & Pencil. Computer Architecture ALU Design : Division and Floating Point. Divide algorithm. DIVIDE HARDWARE Version 1

Divide: Paper & Pencil Computer Architecture ALU Design : Division and Floating Point 1001 Quotient Divisor 1000 1001010 Dividend 1000 10 101 1010 1000 10 (or Modulo result) See how big a number can be

### 2.6 Exponents and Order of Operations

2.6 Exponents and Order of Operations We begin this section with exponents applied to negative numbers. The idea of applying an exponent to a negative number is identical to that of a positive number (repeated

### Playing with Numbers

PLAYING WITH NUMBERS 249 Playing with Numbers CHAPTER 16 16.1 Introduction You have studied various types of numbers such as natural numbers, whole numbers, integers and rational numbers. You have also

### How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.

The verbal answers to all of the following questions should be memorized before completion of pre-algebra. Answers that are not memorized will hinder your ability to succeed in algebra 1. Number Basics

### Fractions and Linear Equations

Fractions and Linear Equations Fraction Operations While you can perform operations on fractions using the calculator, for this worksheet you must perform the operations by hand. You must show all steps

### Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

### Pre-Calculus II Factoring and Operations on Polynomials

Factoring... 1 Polynomials...1 Addition of Polynomials... 1 Subtraction of Polynomials...1 Multiplication of Polynomials... Multiplying a monomial by a monomial... Multiplying a monomial by a polynomial...

### Dr Brian Beaudrie pg. 1

Multiplication of Decimals Name: Multiplication of a decimal by a whole number can be represented by the repeated addition model. For example, 3 0.14 means add 0.14 three times, regroup, and simplify,

### Exponents, Radicals, and Scientific Notation

General Exponent Rules: Exponents, Radicals, and Scientific Notation x m x n = x m+n Example 1: x 5 x = x 5+ = x 7 (x m ) n = x mn Example : (x 5 ) = x 5 = x 10 (x m y n ) p = x mp y np Example : (x) =

### Factoring Whole Numbers

2.2 Factoring Whole Numbers 2.2 OBJECTIVES 1. Find the factors of a whole number 2. Find the prime factorization for any number 3. Find the greatest common factor (GCF) of two numbers 4. Find the GCF for

### The finite field with 2 elements The simplest finite field is

The finite field with 2 elements The simplest finite field is GF (2) = F 2 = {0, 1} = Z/2 It has addition and multiplication + and defined to be 0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 0 0 0 = 0 0 1 = 0

### NUMBER SYSTEMS. William Stallings

NUMBER SYSTEMS William Stallings The Decimal System... The Binary System...3 Converting between Binary and Decimal...3 Integers...4 Fractions...5 Hexadecimal Notation...6 This document available at WilliamStallings.com/StudentSupport.html

### Multiplying and Dividing Algebraic Fractions

. Multiplying and Dividing Algebraic Fractions. OBJECTIVES. Write the product of two algebraic fractions in simplest form. Write the quotient of two algebraic fractions in simplest form. Simplify a comple

### Section 4.1 Rules of Exponents

Section 4.1 Rules of Exponents THE MEANING OF THE EXPONENT The exponent is an abbreviation for repeated multiplication. The repeated number is called a factor. x n means n factors of x. The exponent tells

### Exponents. Learning Objectives 4-1

Eponents -1 to - Learning Objectives -1 The product rule for eponents The quotient rule for eponents The power rule for eponents Power rules for products and quotient We can simplify by combining the like

### Binary Division. Decimal Division. Hardware for Binary Division. Simple 16-bit Divider Circuit

Decimal Division Remember 4th grade long division? 43 // quotient 12 521 // divisor dividend -480 41-36 5 // remainder Shift divisor left (multiply by 10) until MSB lines up with dividend s Repeat until

### Number Conversions Dr. Sarita Agarwal (Acharya Narendra Dev College,University of Delhi)

Conversions Dr. Sarita Agarwal (Acharya Narendra Dev College,University of Delhi) INTRODUCTION System- A number system defines a set of values to represent quantity. We talk about the number of people

### DECIMAL COMPETENCY PACKET

DECIMAL COMPETENCY PACKET Developed by: Nancy Tufo Revised: Sharyn Sweeney 2004 Student Support Center North Shore Community College 2 In this booklet arithmetic operations involving decimal numbers are

### This is a square root. The number under the radical is 9. (An asterisk * means multiply.)

Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize

### The Crescent Primary School Calculation Policy

The Crescent Primary School Calculation Policy Examples of calculation methods for each year group and the progression between each method. January 2015 Our Calculation Policy This calculation policy has

### 5.1 Radical Notation and Rational Exponents

Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots

### Today. Binary addition Representing negative numbers. Andrew H. Fagg: Embedded Real- Time Systems: Binary Arithmetic

Today Binary addition Representing negative numbers 2 Binary Addition Consider the following binary numbers: 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 1 How do we add these numbers? 3 Binary Addition 0 0 1 0 0 1 1

### Written methods for addition of whole numbers

Stage 1: The empty number line Mathematics written methods at the Spinney Written methods for addition of whole numbers The mental methods that lead to column addition generally involve partitioning, e.g.

### 2.3 Solving Equations Containing Fractions and Decimals

2. Solving Equations Containing Fractions and Decimals Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Solve equations containing fractions

### Application. Outline. 3-1 Polynomial Functions 3-2 Finding Rational Zeros of. Polynomial. 3-3 Approximating Real Zeros of.

Polynomial and Rational Functions Outline 3-1 Polynomial Functions 3-2 Finding Rational Zeros of Polynomials 3-3 Approximating Real Zeros of Polynomials 3-4 Rational Functions Chapter 3 Group Activity:

### HFCC Math Lab Arithmetic - 4. Addition, Subtraction, Multiplication and Division of Mixed Numbers

HFCC Math Lab Arithmetic - Addition, Subtraction, Multiplication and Division of Mixed Numbers Part I: Addition and Subtraction of Mixed Numbers There are two ways of adding and subtracting mixed numbers.

### Warm-Up ( 454 3) 2 ( 454 + 2) 3

Warm-Up ) 27 4 ST/HSEE: 4 th Grade ST Review: 4 th Grade ST t school, there are 704 desks to place into classrooms. If the same number of desks is placed in each classroom, how many desks will be in each

### Polynomials. Dr. philippe B. laval Kennesaw State University. April 3, 2005

Polynomials Dr. philippe B. laval Kennesaw State University April 3, 2005 Abstract Handout on polynomials. The following topics are covered: Polynomial Functions End behavior Extrema Polynomial Division

### Chapter 11 Number Theory

Chapter 11 Number Theory Number theory is one of the oldest branches of mathematics. For many years people who studied number theory delighted in its pure nature because there were few practical applications

### LSN 2 Number Systems. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology

LSN 2 Number Systems Department of Engineering Technology LSN 2 Decimal Number System Decimal number system has 10 digits (0-9) Base 10 weighting system... 10 5 10 4 10 3 10 2 10 1 10 0. 10-1 10-2 10-3

### Determinants can be used to solve a linear system of equations using Cramer s Rule.

2.6.2 Cramer s Rule Determinants can be used to solve a linear system of equations using Cramer s Rule. Cramer s Rule for Two Equations in Two Variables Given the system This system has the unique solution

### POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

### 3 cups ¾ ½ ¼ 2 cups ¾ ½ ¼. 1 cup ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼

cups cups cup Fractions are a form of division. When I ask what is / I am asking How big will each part be if I break into equal parts? The answer is. This a fraction. A fraction is part of a whole. The

### We can express this in decimal notation (in contrast to the underline notation we have been using) as follows: 9081 + 900b + 90c = 9001 + 100c + 10b

In this session, we ll learn how to solve problems related to place value. This is one of the fundamental concepts in arithmetic, something every elementary and middle school mathematics teacher should

### Student Worksheet 1 TI-15 Explorer : Finding Patterns

Student Worksheet 1 W1 3 and the remainder is always 0 Use a trail and error approach and 3 to make the TI-15 present the following output displays. When you get it to work, write down the dividends (starting

### JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

### Addition Methods. Methods Jottings Expanded Compact Examples 8 + 7 = 15

Addition Methods Methods Jottings Expanded Compact Examples 8 + 7 = 15 48 + 36 = 84 or: Write the numbers in columns. Adding the tens first: 47 + 76 110 13 123 Adding the units first: 47 + 76 13 110 123

### 3.4 Multiplication and Division of Rational Numbers

3.4 Multiplication and Division of Rational Numbers We now turn our attention to multiplication and division with both fractions and decimals. Consider the multiplication problem: 8 12 2 One approach is

### NUMBER SYSTEMS. 1.1 Introduction

NUMBER SYSTEMS 1.1 Introduction There are several number systems which we normally use, such as decimal, binary, octal, hexadecimal, etc. Amongst them we are most familiar with the decimal number system.

### Chapter 8 Integers 8.1 Addition and Subtraction

Chapter 8 Integers 8.1 Addition and Subtraction Negative numbers Negative numbers are helpful in: Describing temperature below zero Elevation below sea level Losses in the stock market Overdrawn checking

### Goals. Unary Numbers. Decimal Numbers. 3,148 is. 1000 s 100 s 10 s 1 s. Number Bases 1/12/2009. COMP370 Intro to Computer Architecture 1

Number Bases //9 Goals Numbers Understand binary and hexadecimal numbers Be able to convert between number bases Understand binary fractions COMP37 Introduction to Computer Architecture Unary Numbers Decimal

### Section 4.2: The Division Algorithm and Greatest Common Divisors

Section 4.2: The Division Algorithm and Greatest Common Divisors The Division Algorithm The Division Algorithm is merely long division restated as an equation. For example, the division 29 r. 20 32 948

### Unit 1 Number Sense. In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions.

Unit 1 Number Sense In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions. BLM Three Types of Percent Problems (p L-34) is a summary BLM for the material

### Negative Integer Exponents

7.7 Negative Integer Exponents 7.7 OBJECTIVES. Define the zero exponent 2. Use the definition of a negative exponent to simplify an expression 3. Use the properties of exponents to simplify expressions

### Chapter 1: Order of Operations, Fractions & Percents

HOSP 1107 (Business Math) Learning Centre Chapter 1: Order of Operations, Fractions & Percents ORDER OF OPERATIONS When finding the value of an expression, the operations must be carried out in a certain

### Addition and Subtraction of Integers

Addition and Subtraction of Integers Integers are the negative numbers, zero, and positive numbers Addition of integers An integer can be represented or graphed on a number line by an arrow. An arrow pointing

### Welcome to Basic Math Skills!

Basic Math Skills Welcome to Basic Math Skills! Most students find the math sections to be the most difficult. Basic Math Skills was designed to give you a refresher on the basics of math. There are lots

### 17 Greatest Common Factors and Least Common Multiples

17 Greatest Common Factors and Least Common Multiples Consider the following concrete problem: An architect is designing an elegant display room for art museum. One wall is to be covered with large square

### FACTORS AND MULTIPLES Answer Key

I. Find prime factors by factor tree method FACTORS AND MULTIPLES Answer Key a. 768 2 384 2 192 2 96 2 48 2 24 2 12 2 6 2 3 768 = 2*2*2*2*2*2*2*2 *3 b. 1608 3 536 2 268 2 134 2 67 1608 = 3*2*2*2*67 c.

### DATE PERIOD. Estimate the product of a decimal and a whole number by rounding the Estimation

A Multiplying Decimals by Whole Numbers (pages 135 138) When you multiply a decimal by a whole number, you can estimate to find where to put the decimal point in the product. You can also place the decimal

### Oct: 50 8 = 6 (r = 2) 6 8 = 0 (r = 6) Writing the remainders in reverse order we get: (50) 10 = (62) 8

ECE Department Summer LECTURE #5: Number Systems EEL : Digital Logic and Computer Systems Based on lecture notes by Dr. Eric M. Schwartz Decimal Number System: -Our standard number system is base, also

### Decimal Notations for Fractions Number and Operations Fractions /4.NF

Decimal Notations for Fractions Number and Operations Fractions /4.NF Domain: Cluster: Standard: 4.NF Number and Operations Fractions Understand decimal notation for fractions, and compare decimal fractions.

### Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Section 9 Order of Operations

Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Please watch Section 9 of this DVD before working these problems. The DVD is located at: http://www.mathtutordvd.com/products/item66.cfm

### What Is Singapore Math?

What Is Singapore Math? You may be wondering what Singapore Math is all about, and with good reason. This is a totally new kind of math for you and your child. What you may not know is that Singapore has

### 1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes

Arithmetic of Algebraic Fractions 1.4 Introduction Just as one whole number divided by another is called a numerical fraction, so one algebraic expression divided by another is known as an algebraic fraction.

### 3.1. RATIONAL EXPRESSIONS

3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers

### Computation Strategies for Basic Number Facts +, -, x,

Computation Strategies for Basic Number Facts +, -, x, Addition Subtraction Multiplication Division Proficiency with basic facts aids estimation and computation of multi-digit numbers. The enclosed strategies

### 1.6 The Order of Operations

1.6 The Order of Operations Contents: Operations Grouping Symbols The Order of Operations Exponents and Negative Numbers Negative Square Roots Square Root of a Negative Number Order of Operations and Negative

### 0.8 Rational Expressions and Equations

96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions - that is, algebraic fractions - and equations which contain them. The reader is encouraged to

### Multiplying Integers. Lesson Plan

Lesson Plan Video: 12 minutes Lesson: 38 minutes Pre-viewing :00 Warm up: Write 5 + 5 + 5 + 5 = on the board. Ask students for the answer. Then write 5 x 4 = on the board. Ask the students for the answer.

### Welcome to Harcourt Mega Math: The Number Games

Welcome to Harcourt Mega Math: The Number Games Harcourt Mega Math In The Number Games, students take on a math challenge in a lively insect stadium. Introduced by our host Penny and a number of sporting

### Base Conversion written by Cathy Saxton

Base Conversion written by Cathy Saxton 1. Base 10 In base 10, the digits, from right to left, specify the 1 s, 10 s, 100 s, 1000 s, etc. These are powers of 10 (10 x ): 10 0 = 1, 10 1 = 10, 10 2 = 100,

### Math Review. Numbers. Place Value. Rounding Whole Numbers. Place value thousands hundreds tens ones

Math Review Knowing basic math concepts and knowing when to apply them are essential skills. You should know how to add, subtract, multiply, divide, calculate percentages, and manipulate fractions. This

### Solving Equations by the Multiplication Property

2.2 Solving Equations by the Multiplication Property 2.2 OBJECTIVES 1. Determine whether a given number is a solution for an equation 2. Use the multiplication property to solve equations. Find the mean