Grade 6 Math Circles March 10/11, 2015 Prime Time Solutions
|
|
|
- Oswald Webb
- 9 years ago
- Views:
Transcription
1 Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Lights, Camera, Primes! Grade 6 Math Circles March 10/11, 2015 Prime Time Solutions Today, we re going to talk about a special type of number. Whether this is your first or tenth time hearing about this type of number, there s always something new to learn. Welcome to Prime [Number] Time! Warm-Up Try to answer the following 7 questions in 3 minutes. 1. Identify the following numbers as either composite, prime, or neither: (a) 1 neither (b) 2 prime (c) 82 composite (d) 47 prime (e) 73 prime (f) 37 prime (g) 77 composite 2. Find the prime factorization of the following numbers: (a) (b) (c) (d)
2 3. Find the GCD of the following pairs of numbers: (a) 75 and (b) 75 and 66 3 (c) 45 and Find the LCM of the following pairs of numbers: (a) 16 and (b) 7 and (c) 7 and (d) 24 and Is divisible by 3? No, since the sum of the digits is not divisible by Is divisible by 4? Yes, since the last two digits form a number divisible by Is divisible 6? Yes, since it is divisible by 2 and 3. Fundamental Knowledge A factor of a number is a whole number that divides evenly into the other number. So, when you divide by a factor the remainder is zero. Factors come in pairs. When you divide a number by one of its factors, the answer or quotient is the paired factor. A prime number is a number whose only factors are 1 and itself. A composite number is a number with factors other than 1 and itself. All numbers are either prime or composite, except for the number 1, which is neither. 1. What are all the factors of 24? 1, 2, 3, 4, 6, 8, 12, What are all the factors of 150? 1, 2, 3, 5, 6, 10, 15, 25, 30, 50, 75, Classify the following as prime or composite. (a) 37 prime (b) 52 composite (c) 63 composite 2
3 Finding Primes One (tedious) method of finding primes is called the Sieve of Eratosthenes: 1. Cross off 1 since it is not prime. 2. Find the first prime number (2) and circle it. 3. Go through the rest of the chart and cross off all of the multiples of two. 4. Go back to the beginning of the chart and find the first number that is not crossed off. Circle it, it is prime. Then go through the rest of the chart, crossing off the multiples of this number. 5. Repeat step 4, until every number in the chart is either circled or crossed off. 6. The numbers that are circled are the prime numbers. Use this method to find all the prime numbers from 1 to 100. There should be 25 of them. 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97 3
4 Prime Factorization One way of describing numbers is by breaking them down into a product of their prime factors. This is called prime factorization. Every positive number can be prime factored. By definition the prime factorization of a prime number is the number itself, and the prime factorization of 1 is 1. Prime factorizations are unique. Every number has only one prime factorization, and no two numbers share the same prime factorization. Example: Find the prime factorization of 650. Solution: We create a factor tree Thus we find that the prime factorization of 650 is Find the prime factorization of 1500 and = =
5 Greatest Common Divisor The greatest common divisor or GCD of two or more numbers is the largest number that is a factor of each of the numbers. This can also be called the greatest common factor. We re going to examine two different ways of finding the GCD: Method 1 Find all the factors of each of the numbers and then identify the largest one that is a common factor of all the numbers. This is the GCD. Method 2 Begin by finding the prime factorization of each of the numbers. Look at the prime factors of all the numbers and multiply the ones they have in common. This is the GCD. Example: Find the GCD of 27 and 18. Solution: Using Method 1: 18: 1, 2, 3, 6, 9, 18 27: 1, 3, 9, 27 the GCD is 9. OR Using Method 2: 18 = = the GCD is 3 3 = 9. Find the GCD of the following groups of numbers and and and 208 and
6 Lowest Common Multiple A multiple of a number is the product of the number and another whole number. Factors and multiples are closely related. For example, 9 is a factor of 90, so 90 is a multiple of 9. The least common multiple or LCM of two or more numbers is the smallest number that is a multiple of each of the numbers. We re going to examine two different ways of finding the LCM: Method 1 List the multiples of each number until you find the lowest one that is a common multiple of all the numbers. This is the LCM. Method 2 Begin by finding the prime factorization of each of the numbers. Then multiply each factor the greatest number of times it occurs in any of the numbers. If the same factor occurs more than once in all the numbers, you multiply the factor the greatest number of times it occurs. Example: Find the LCM of 27 and 18. Solution: Using Method 1: 18: 18, 36, 54 27: 27, 54 the LCM is 54. OR Using Method 2: 18 = = the LCM is = 54. Find the LCM of the following groups of numbers and and and 75 and
7 Divisibility When you re checking if a number is prime, you normally check to see if it s divisible by smaller numbers. You could answer questions about divisibility using long division, but mathematicians are lazy and long division would take too much time. Instead, we have discovered some neat tricks to speed up the process. Some of the simplest and most common can be found in the table below. Divisible by: Test: 2 The last digit in the number is even 3 The sum of all the digits is divisible by 3 4 The last two digits are divisible by 4 5 The number ends in 0 or 5 6 The number is divisible by 2 and 3 8 The last three digits are divisible by 8 Note: Can t use this rule for numbers less than The sum of the digits is divisible by 9 10 The number ends in 0 11 The alternating sum of the digits is divisible by 11 Notes: Start with subtraction. 0 is divisible by The number is divisible by 3 and 4 1. Is divisible by 8? Yes, since the last three digits (888) are divisible by Is divisible by 9? No, since the sum of the digits (32) is not divisible by Is 6756 divisible by 12? Yes, since it is divisible by 3 and 4. 7
8 Theorems Unique Factorization Theorem/Fundamental Theorem of Arithmetic Any integer greater than 1 is either a prime number or can be written as a unique product of prime numbers (ignoring the order). Infinite Primes Theorem There are infinitely many primes. Proof: Suppose that p 1 = 2 < p 2 = 3 <... < p n are all of the primes. Let P = (p 1 p 2... p n )+1. Let p be a prime dividing P. Then p can not be any of p 1, p 2,..., p n, because if were, the remainder would be 1. So this prime p is still another prime, and p 1, p 2,..., p n would not be all of the primes. Wrap-Up Today, you looked at prime numbers and their properties and uses. There are many more theorems based on the prime numbers. They are a fascinating part of mathematics, and a lot of research is still being done on this set of numbers. Problem Set Complete the following 15 problems. You may use a calculator. 1. Find the factors of the following numbers (use the divisibility tests when applicable) (a) 96 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96 (b) , 2, 4, 1069, 2138, 4276 (c) 89 1, 89 (d) 121 1, 11, Find the prime factorization of the following numbers: (a) (b) (c) (d)
9 3. Mr. Batman wants to split his class of 24 students into equal groups for a group project. List all of the possibilities of groups that Mr. Batman can divide his class into so that no students are left without a group. The possibilities are: 1 group of 24 students, 2 groups of 12 students, 3 groups of 8 students, 4 groups of 6 students, 6 groups of 4 students, 8 groups of 3 students, 12 groups of 2 students, and 24 groups of 1 student. 4. Find the GCD of the following numbers: (a) 231, (b) 752, (c) 1024, (d) 378, (e) 375, (f) 54320, 5240, Find the LCM of the following numbers: (a) 21, (b) 92, (c) 96, (d) 126, (e) 560, 40, The volume of a box is 1925cm 3. What are the different possible dimensions of the box? (Note: the volume of a rectangular box is length width height.) The different possible dimensions are: 1cm 1cm 1925cm 1cm 35cm 55cm 1cm 5cm 385cm 5cm 5cm 55cm 1cm 7cm 275cm 5cm 7cm 55cm 1cm 11cm 175cm 5cm 11cm 35cm 1cm 25cm 77cm 7cm 11cm 25cm 9
10 7. Using the divisibility tests, determine which numbers (2 to 11) are factors of the following: (a) (b) , 4, 5, 10 (c) , 3, 4, 6, 8, 9 (d) , 4, 8 8. What is the smallest number that you must multiply 48 by so that the product is divisible by 45? The eight digit number is divisible by 11. What is the digit? What is the smallest prime number greater than 200? The four digit number 43 is divisible by 3, 4 and 5. What are the last two digits? 20 or The product of three different positive integers is 144. What is the maximum possible sum of these three integers? 75 (72, 2, 1) 13. Two campers have flashlights that blink every few seconds. The first camper s flashlight blinks every 4 seconds and the second s blinks every 6 seconds. If they turn on their flashlights at the same time, how many times will they flash simultaneously in one minute? 5 times 14. James is buying burgers and buns. Burgers come in packs of 24, but buns come in packs of 16. What is the least number of packs of each that James will have to buy in order to have no burgers or buns left over? 2 burgers and 3 buns 15. Two numbers are co-prime if they do not have any prime factors in common. List all possible numbers that are co-primes with the following numbers that are less than 50: (a) 390 7, 11, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49 (b) , 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 (c) , 4, 7, 8, 14, 16, 17, 19, 23, 29, 31, 32, 34, 37, 38, 41, 43, 47, 49 10
Grade 7/8 Math Circles Fall 2012 Factors and Primes
1 University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Grade 7/8 Math Circles Fall 2012 Factors and Primes Factors Definition: A factor of a number is a whole
Grade 7 & 8 Math Circles October 19, 2011 Prime Numbers
1 University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Grade 7 & 8 Math Circles October 19, 2011 Prime Numbers Factors Definition: A factor of a number is a whole
Today s Topics. Primes & Greatest Common Divisors
Today s Topics Primes & Greatest Common Divisors Prime representations Important theorems about primality Greatest Common Divisors Least Common Multiples Euclid s algorithm Once and for all, what are prime
Tests for Divisibility, Theorems for Divisibility, the Prime Factor Test
1 Tests for Divisibility, Theorems for Divisibility, the Prime Factor Test Definition: Prime numbers are numbers with only two factors, one and itself. For example: 2, 3, and 5. Definition: Composite numbers
15 Prime and Composite Numbers
15 Prime and Composite Numbers Divides, Divisors, Factors, Multiples In section 13, we considered the division algorithm: If a and b are whole numbers with b 0 then there exist unique numbers q and r such
FACTORS, PRIME NUMBERS, H.C.F. AND L.C.M.
Mathematics Revision Guides Factors, Prime Numbers, H.C.F. and L.C.M. Page 1 of 16 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier FACTORS, PRIME NUMBERS, H.C.F. AND L.C.M. Version:
Factoring Whole Numbers
2.2 Factoring Whole Numbers 2.2 OBJECTIVES 1. Find the factors of a whole number 2. Find the prime factorization for any number 3. Find the greatest common factor (GCF) of two numbers 4. Find the GCF for
8 Primes and Modular Arithmetic
8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.
An Introduction to Number Theory Prime Numbers and Their Applications.
East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations 8-2006 An Introduction to Number Theory Prime Numbers and Their Applications. Crystal
Session 6 Number Theory
Key Terms in This Session Session 6 Number Theory Previously Introduced counting numbers factor factor tree prime number New in This Session composite number greatest common factor least common multiple
The Euclidean Algorithm
The Euclidean Algorithm A METHOD FOR FINDING THE GREATEST COMMON DIVISOR FOR TWO LARGE NUMBERS To be successful using this method you have got to know how to divide. If this is something that you have
Working with whole numbers
1 CHAPTER 1 Working with whole numbers In this chapter you will revise earlier work on: addition and subtraction without a calculator multiplication and division without a calculator using positive and
Prime Factorization 0.1. Overcoming Math Anxiety
0.1 Prime Factorization 0.1 OBJECTIVES 1. Find the factors of a natural number 2. Determine whether a number is prime, composite, or neither 3. Find the prime factorization for a number 4. Find the GCF
Lesson 4. Factors and Multiples. Objectives
Student Name: Date: Contact Person Name: Phone Number: Lesson 4 Factors and Multiples Objectives Understand what factors and multiples are Write a number as a product of its prime factors Find the greatest
Chapter 11 Number Theory
Chapter 11 Number Theory Number theory is one of the oldest branches of mathematics. For many years people who studied number theory delighted in its pure nature because there were few practical applications
FACTORS AND MULTIPLES Answer Key
I. Find prime factors by factor tree method FACTORS AND MULTIPLES Answer Key a. 768 2 384 2 192 2 96 2 48 2 24 2 12 2 6 2 3 768 = 2*2*2*2*2*2*2*2 *3 b. 1608 3 536 2 268 2 134 2 67 1608 = 3*2*2*2*67 c.
Unit 1 Number Sense. In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions.
Unit 1 Number Sense In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions. BLM Three Types of Percent Problems (p L-34) is a summary BLM for the material
Day One: Least Common Multiple
Grade Level/Course: 5 th /6 th Grade Math Lesson/Unit Plan Name: Using Prime Factors to find LCM and GCF. Rationale/Lesson Abstract: The objective of this two- part lesson is to give students a clear understanding
Greatest Common Factor and Least Common Multiple
Greatest Common Factor and Least Common Multiple Intro In order to understand the concepts of Greatest Common Factor (GCF) and Least Common Multiple (LCM), we need to define two key terms: Multiple: Multiples
Prime Factorization, Greatest Common Factor (GCF), and Least Common Multiple (LCM)
Prime Factorization, Greatest Common Factor (GCF), and Least Common Multiple (LCM) Definition of a Prime Number A prime number is a whole number greater than 1 AND can only be divided evenly by 1 and itself.
CISC - Curriculum & Instruction Steering Committee. California County Superintendents Educational Services Association
CISC - Curriculum & Instruction Steering Committee California County Superintendents Educational Services Association Primary Content Module IV The Winning EQUATION NUMBER SENSE: Factors of Whole Numbers
CONTENTS. Please note:
CONTENTS Introduction...iv. Number Systems... 2. Algebraic Expressions.... Factorising...24 4. Solving Linear Equations...8. Solving Quadratic Equations...0 6. Simultaneous Equations.... Long Division
Lowest Common Multiple and Highest Common Factor
Lowest Common Multiple and Highest Common Factor Multiple: The multiples of a number are its times table If you want to find out if a number is a multiple of another number you just need to divide the
5544 = 2 2772 = 2 2 1386 = 2 2 2 693. Now we have to find a divisor of 693. We can try 3, and 693 = 3 231,and we keep dividing by 3 to get: 1
MATH 13150: Freshman Seminar Unit 8 1. Prime numbers 1.1. Primes. A number bigger than 1 is called prime if its only divisors are 1 and itself. For example, 3 is prime because the only numbers dividing
Number Theory. Proof. Suppose otherwise. Then there would be a finite number n of primes, which we may
Number Theory Divisibility and Primes Definition. If a and b are integers and there is some integer c such that a = b c, then we say that b divides a or is a factor or divisor of a and write b a. Definition
Math Workshop October 2010 Fractions and Repeating Decimals
Math Workshop October 2010 Fractions and Repeating Decimals This evening we will investigate the patterns that arise when converting fractions to decimals. As an example of what we will be looking at,
A Prime Investigation with 7, 11, and 13
. Objective To investigate the divisibility of 7, 11, and 13, and discover the divisibility characteristics of certain six-digit numbers A c t i v i t y 3 Materials TI-73 calculator A Prime Investigation
Previously, you learned the names of the parts of a multiplication problem. 1. a. 6 2 = 12 6 and 2 are the. b. 12 is the
Tallahassee Community College 13 PRIME NUMBERS AND FACTORING (Use your math book with this lab) I. Divisors and Factors of a Number Previously, you learned the names of the parts of a multiplication problem.
Kevin James. MTHSC 412 Section 2.4 Prime Factors and Greatest Comm
MTHSC 412 Section 2.4 Prime Factors and Greatest Common Divisor Greatest Common Divisor Definition Suppose that a, b Z. Then we say that d Z is a greatest common divisor (gcd) of a and b if the following
Multiplying and Dividing Fractions
Multiplying and Dividing Fractions 1 Overview Fractions and Mixed Numbers Factors and Prime Factorization Simplest Form of a Fraction Multiplying Fractions and Mixed Numbers Dividing Fractions and Mixed
Homework until Test #2
MATH31: Number Theory Homework until Test # Philipp BRAUN Section 3.1 page 43, 1. It has been conjectured that there are infinitely many primes of the form n. Exhibit five such primes. Solution. Five such
Planning Guide. Grade 6 Factors and Multiples. Number Specific Outcome 3
Mathematics Planning Guide Grade 6 Factors and Multiples Number Specific Outcome 3 This Planning Guide can be accessed online at: http://www.learnalberta.ca/content/mepg6/html/pg6_factorsmultiples/index.html
Prime and Composite Numbers
Prime and Composite Numbers Student Probe Is 27 a prime number or a composite number? Is 17 a prime number or a composite number? Answer: 27 is a composite number, because it has factors other than 1 and
FACTORING OUT COMMON FACTORS
278 (6 2) Chapter 6 Factoring 6.1 FACTORING OUT COMMON FACTORS In this section Prime Factorization of Integers Greatest Common Factor Finding the Greatest Common Factor for Monomials Factoring Out the
s = 1 + 2 +... + 49 + 50 s = 50 + 49 +... + 2 + 1 2s = 51 + 51 +... + 51 + 51 50 51. 2
1. Use Euler s trick to find the sum 1 + 2 + 3 + 4 + + 49 + 50. s = 1 + 2 +... + 49 + 50 s = 50 + 49 +... + 2 + 1 2s = 51 + 51 +... + 51 + 51 Thus, 2s = 50 51. Therefore, s = 50 51. 2 2. Consider the sequence
Cubes and Cube Roots
CUBES AND CUBE ROOTS 109 Cubes and Cube Roots CHAPTER 7 7.1 Introduction This is a story about one of India s great mathematical geniuses, S. Ramanujan. Once another famous mathematician Prof. G.H. Hardy
Primes. Name Period Number Theory
Primes Name Period A Prime Number is a whole number whose only factors are 1 and itself. To find all of the prime numbers between 1 and 100, complete the following exercise: 1. Cross out 1 by Shading in
Grade 7/8 Math Circles Sequences and Series
Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 7/8 Math Circles Sequences and Series November 30, 2012 What are sequences? A sequence is an ordered
Grade 7/8 Math Circles February 3/4, 2015 Arithmetic Aerobics
Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Mental Math is Good For You! Grade 7/8 Math Circles February 3/4, 2015 Arithmetic Aerobics You ve probably
How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.
The verbal answers to all of the following questions should be memorized before completion of pre-algebra. Answers that are not memorized will hinder your ability to succeed in algebra 1. Number Basics
47 Numerator Denominator
JH WEEKLIES ISSUE #22 2012-2013 Mathematics Fractions Mathematicians often have to deal with numbers that are not whole numbers (1, 2, 3 etc.). The preferred way to represent these partial numbers (rational
Grade 6 Math Circles. Binary and Beyond
Faculty of Mathematics Waterloo, Ontario N2L 3G1 The Decimal System Grade 6 Math Circles October 15/16, 2013 Binary and Beyond The cool reality is that we learn to count in only one of many possible number
Stupid Divisibility Tricks
Stupid Divisibility Tricks 101 Ways to Stupefy Your Friends Appeared in Math Horizons November, 2006 Marc Renault Shippensburg University Mathematics Department 1871 Old Main Road Shippensburg, PA 17013
Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.
Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole
CHAPTER 5. Number Theory. 1. Integers and Division. Discussion
CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a
Clifton High School Mathematics Summer Workbook Algebra 1
1 Clifton High School Mathematics Summer Workbook Algebra 1 Completion of this summer work is required on the first day of the school year. Date Received: Date Completed: Student Signature: Parent Signature:
Paramedic Program Pre-Admission Mathematics Test Study Guide
Paramedic Program Pre-Admission Mathematics Test Study Guide 05/13 1 Table of Contents Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 Page 9 Page 10 Page 11 Page 12 Page 13 Page 14 Page 15 Page
17 Greatest Common Factors and Least Common Multiples
17 Greatest Common Factors and Least Common Multiples Consider the following concrete problem: An architect is designing an elegant display room for art museum. One wall is to be covered with large square
ACTIVITY: Identifying Common Multiples
1.6 Least Common Multiple of two numbers? How can you find the least common multiple 1 ACTIVITY: Identifying Common Work with a partner. Using the first several multiples of each number, copy and complete
CS 103X: Discrete Structures Homework Assignment 3 Solutions
CS 103X: Discrete Structures Homework Assignment 3 s Exercise 1 (20 points). On well-ordering and induction: (a) Prove the induction principle from the well-ordering principle. (b) Prove the well-ordering
Sect 3.2 - Least Common Multiple
Let's start with an example: Sect 3.2 - Least Common Multiple Ex. 1 Suppose a family has two different pies. If they have 2 3 of one type of pie and 3 of another pie, is it possible to combine the pies
DATE PERIOD. Estimate the product of a decimal and a whole number by rounding the Estimation
A Multiplying Decimals by Whole Numbers (pages 135 138) When you multiply a decimal by a whole number, you can estimate to find where to put the decimal point in the product. You can also place the decimal
Congruent Number Problem
University of Waterloo October 28th, 2015 Number Theory Number theory, can be described as the mathematics of discovering and explaining patterns in numbers. There is nothing in the world which pleases
Math 0306 Final Exam Review
Math 006 Final Exam Review Problem Section Answers Whole Numbers 1. According to the 1990 census, the population of Nebraska is 1,8,8, the population of Nevada is 1,01,8, the population of New Hampshire
The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.
The Prime Numbers Before starting our study of primes, we record the following important lemma. Recall that integers a, b are said to be relatively prime if gcd(a, b) = 1. Lemma (Euclid s Lemma). If gcd(a,
3 cups ¾ ½ ¼ 2 cups ¾ ½ ¼. 1 cup ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼
cups cups cup Fractions are a form of division. When I ask what is / I am asking How big will each part be if I break into equal parts? The answer is. This a fraction. A fraction is part of a whole. The
Math 319 Problem Set #3 Solution 21 February 2002
Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod
Adding and Subtracting Fractions. 1. The denominator of a fraction names the fraction. It tells you how many equal parts something is divided into.
Tallahassee Community College Adding and Subtracting Fractions Important Ideas:. The denominator of a fraction names the fraction. It tells you how many equal parts something is divided into.. The numerator
SQUARE-SQUARE ROOT AND CUBE-CUBE ROOT
UNIT 3 SQUAREQUARE AND CUBEUBE (A) Main Concepts and Results A natural number is called a perfect square if it is the square of some natural number. i.e., if m = n 2, then m is a perfect square where m
Lesson 3.1 Factors and Multiples of Whole Numbers Exercises (pages 140 141)
Lesson 3.1 Factors and Multiples of Whole Numbers Exercises (pages 140 141) A 3. Multiply each number by 1, 2, 3, 4, 5, and 6. a) 6 1 = 6 6 2 = 12 6 3 = 18 6 4 = 24 6 5 = 30 6 6 = 36 So, the first 6 multiples
Course Syllabus. MATH 1350-Mathematics for Teachers I. Revision Date: 8/15/2016
Course Syllabus MATH 1350-Mathematics for Teachers I Revision Date: 8/15/2016 Catalog Description: This course is intended to build or reinforce a foundation in fundamental mathematics concepts and skills.
The GMAT Guru. Prime Factorization: Theory and Practice
. Prime Factorization: Theory and Practice The following is an ecerpt from The GMAT Guru Guide, available eclusively to clients of The GMAT Guru. If you would like more information about GMAT Guru services,
PREPARATION FOR MATH TESTING at CityLab Academy
PREPARATION FOR MATH TESTING at CityLab Academy compiled by Gloria Vachino, M.S. Refresh your math skills with a MATH REVIEW and find out if you are ready for the math entrance test by taking a PRE-TEST
MATH 13150: Freshman Seminar Unit 10
MATH 13150: Freshman Seminar Unit 10 1. Relatively prime numbers and Euler s function In this chapter, we are going to discuss when two numbers are relatively prime, and learn how to count the numbers
Possible Stage Two Mathematics Test Topics
Possible Stage Two Mathematics Test Topics The Stage Two Mathematics Test questions are designed to be answerable by a good problem-solver with a strong mathematics background. It is based mainly on material
Playing with Numbers
PLAYING WITH NUMBERS 249 Playing with Numbers CHAPTER 16 16.1 Introduction You have studied various types of numbers such as natural numbers, whole numbers, integers and rational numbers. You have also
Clock Arithmetic and Modular Systems Clock Arithmetic The introduction to Chapter 4 described a mathematical system
CHAPTER Number Theory FIGURE FIGURE FIGURE Plus hours Plus hours Plus hours + = + = + = FIGURE. Clock Arithmetic and Modular Systems Clock Arithmetic The introduction to Chapter described a mathematical
POLYNOMIAL FUNCTIONS
POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a
26 Integers: Multiplication, Division, and Order
26 Integers: Multiplication, Division, and Order Integer multiplication and division are extensions of whole number multiplication and division. In multiplying and dividing integers, the one new issue
Grade 5 Mathematics Curriculum Guideline Scott Foresman - Addison Wesley 2008. Chapter 1: Place, Value, Adding, and Subtracting
Grade 5 Math Pacing Guide Page 1 of 9 Grade 5 Mathematics Curriculum Guideline Scott Foresman - Addison Wesley 2008 Test Preparation Timeline Recommendation: September - November Chapters 1-5 December
SPECIAL PRODUCTS AND FACTORS
CHAPTER 442 11 CHAPTER TABLE OF CONTENTS 11-1 Factors and Factoring 11-2 Common Monomial Factors 11-3 The Square of a Monomial 11-4 Multiplying the Sum and the Difference of Two Terms 11-5 Factoring the
1. When the least common multiple of 8 and 20 is multiplied by the greatest common factor of 8 and 20, what is the result?
Black Equivalent Fractions and LCM 1. When the least common multiple of 8 and 20 is multiplied by the greatest common factor of 8 and 20, what is the result? 2. The sum of three consecutive integers is
FRACTIONS MODULE Part I
FRACTIONS MODULE Part I I. Basics of Fractions II. Rewriting Fractions in the Lowest Terms III. Change an Improper Fraction into a Mixed Number IV. Change a Mixed Number into an Improper Fraction BMR.Fractions
Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.
Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. Solve word problems that call for addition of three whole numbers
JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson
JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials
6.2 Permutations continued
6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of
DigitalCommons@University of Nebraska - Lincoln
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-1-007 Pythagorean Triples Diane Swartzlander University
Vocabulary Cards and Word Walls Revised: June 29, 2011
Vocabulary Cards and Word Walls Revised: June 29, 2011 Important Notes for Teachers: The vocabulary cards in this file match the Common Core, the math curriculum adopted by the Utah State Board of Education,
Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test
Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important
Section 4.2: The Division Algorithm and Greatest Common Divisors
Section 4.2: The Division Algorithm and Greatest Common Divisors The Division Algorithm The Division Algorithm is merely long division restated as an equation. For example, the division 29 r. 20 32 948
Factors and Products
CHAPTER 3 Factors and Products What You ll Learn use different strategies to find factors and multiples of whole numbers identify prime factors and write the prime factorization of a number find square
Quick Reference ebook
This file is distributed FREE OF CHARGE by the publisher Quick Reference Handbooks and the author. Quick Reference ebook Click on Contents or Index in the left panel to locate a topic. The math facts listed
BASIC MATHEMATICS. WORKBOOK Volume 2
BASIC MATHEMATICS WORKBOOK Volume 2 2006 Veronique Lankar A r ef resher o n t he i mp o rt a nt s ki l l s y o u l l ne e d b efo r e y o u ca n s t a rt Alg e b ra. This can be use d a s a s elf-teaching
Not for resale. 4.1 Divisibility of Natural Numbers 4.2 Tests for Divisibility 4.3 Greatest Common Divisors and Least Common Multiples
CHAPTER 4 Number Theory 4.1 Divisibility of Natural Numbers 4.2 Tests for Divisibility 4.3 Greatest Common Divisors and Least Common Multiples 4.4 Codes and Credit Card Numbers: Connections to Number Theory
Common Multiples. List the multiples of 3. The multiples of 3 are 3 1, 3 2, 3 3, 3 4,...
.2 Common Multiples.2 OBJECTIVES 1. Find the least common multiple (LCM) of two numbers 2. Find the least common multiple (LCM) of a group of numbers. Compare the size of two fractions In this chapter,
Welcome to Basic Math Skills!
Basic Math Skills Welcome to Basic Math Skills! Most students find the math sections to be the most difficult. Basic Math Skills was designed to give you a refresher on the basics of math. There are lots
Math Circle Beginners Group October 18, 2015
Math Circle Beginners Group October 18, 2015 Warm-up problem 1. Let n be a (positive) integer. Prove that if n 2 is odd, then n is also odd. (Hint: Use a proof by contradiction.) Suppose that n 2 is odd
Math Common Core Sampler Test
Math Common Core Sampler Test This sample test reviews the top 20 questions we have seen on the 37 assessment directly written for the Common Core Curriculum. This test will be updated as we see new questions
Primes in Sequences. Lee 1. By: Jae Young Lee. Project for MA 341 (Number Theory) Boston University Summer Term I 2009 Instructor: Kalin Kostadinov
Lee 1 Primes in Sequences By: Jae Young Lee Project for MA 341 (Number Theory) Boston University Summer Term I 2009 Instructor: Kalin Kostadinov Lee 2 Jae Young Lee MA341 Number Theory PRIMES IN SEQUENCES
north seattle community college
INTRODUCTION TO FRACTIONS If we divide a whole number into equal parts we get a fraction: For example, this circle is divided into quarters. Three quarters, or, of the circle is shaded. DEFINITIONS: The
Computation Strategies for Basic Number Facts +, -, x,
Computation Strategies for Basic Number Facts +, -, x, Addition Subtraction Multiplication Division Proficiency with basic facts aids estimation and computation of multi-digit numbers. The enclosed strategies
5.1 FACTORING OUT COMMON FACTORS
C H A P T E R 5 Factoring he sport of skydiving was born in the 1930s soon after the military began using parachutes as a means of deploying troops. T Today, skydiving is a popular sport around the world.
LESSON 4 Missing Numbers in Multiplication Missing Numbers in Division LESSON 5 Order of Operations, Part 1 LESSON 6 Fractional Parts LESSON 7 Lines,
Saxon Math 7/6 Class Description: Saxon mathematics is based on the principle of developing math skills incrementally and reviewing past skills daily. It also incorporates regular and cumulative assessments.
Solution to Exercise 2.2. Both m and n are divisible by d, som = dk and n = dk. Thus m ± n = dk ± dk = d(k ± k ),som + n and m n are divisible by d.
[Chap. ] Pythagorean Triples 6 (b) The table suggests that in every primitive Pythagorean triple, exactly one of a, b,orc is a multiple of 5. To verify this, we use the Pythagorean Triples Theorem to write
Fraction Competency Packet
Fraction Competency Packet Developed by: Nancy Tufo Revised 00: Sharyn Sweeney Student Support Center North Shore Community College To use this booklet, review the glossary, study the examples, then work
SYSTEMS OF PYTHAGOREAN TRIPLES. Acknowledgements. I would like to thank Professor Laura Schueller for advising and guiding me
SYSTEMS OF PYTHAGOREAN TRIPLES CHRISTOPHER TOBIN-CAMPBELL Abstract. This paper explores systems of Pythagorean triples. It describes the generating formulas for primitive Pythagorean triples, determines
Factors Galore C: Prime Factorization
Concept Number sense Activity 4 Factors Galore C: Prime Factorization Students will use the TI-73 calculator s ability to simplify fractions to find the prime factorization of a number. Skills Simplifying
MATH 22. THE FUNDAMENTAL THEOREM of ARITHMETIC. Lecture R: 10/30/2003
MATH 22 Lecture R: 10/30/2003 THE FUNDAMENTAL THEOREM of ARITHMETIC You must remember this, A kiss is still a kiss, A sigh is just a sigh; The fundamental things apply, As time goes by. Herman Hupfeld
8 Divisibility and prime numbers
8 Divisibility and prime numbers 8.1 Divisibility In this short section we extend the concept of a multiple from the natural numbers to the integers. We also summarize several other terms that express
Handout #1: Mathematical Reasoning
Math 101 Rumbos Spring 2010 1 Handout #1: Mathematical Reasoning 1 Propositional Logic A proposition is a mathematical statement that it is either true or false; that is, a statement whose certainty or
