# Chapter 1: Order of Operations, Fractions & Percents

Size: px
Start display at page:

Transcription

1 HOSP 1107 (Business Math) Learning Centre Chapter 1: Order of Operations, Fractions & Percents ORDER OF OPERATIONS When finding the value of an expression, the operations must be carried out in a certain order. This order is known as the order of operations, and can be easily remembered using the acronym, BEDMAS. Note that division and multiplication are equal in the order performed but they must be done from left to right in the expression. The same is true for addition and subtraction. Examples: = [Multiplication first] = 15 [Addition] (3 + 3) 4 = 6 4 [Brackets first] = 24 [Multiplication] B E D M A S Brackets first, then Exponents, then Division and Multiplication, then Addition and Subtraction (17 4) = (13) [Brackets first] = [Exponents] = [Multiplication] = 167 [Add and subtract from left to right] Practice Problems Solve the following problems: 1. ( ) (3 + 4) [4 ( )] ( ) ( ) ( ) (3 3 2 ) [( ) 2 + 2] 4 7. (4 + 4) (4 4) (4 2 2 ) [2(16/4 + 3) + 2 5] Solutions Vancouver Community College Learning Centre. 1

2 FRACTIONS In a fraction, the numerator is the number above the dividing line and the denominator is the number below. The denominator tells us how many pieces one whole object has been divided into, and the numerator tells us how many of those pieces the fraction represents. (Think of a test mark: how many right, out of how many questions.) A proper fraction s numerator is smaller than the denominator. An improper fraction has a larger numerator than denominator. A mixed number contains both a whole number and a fraction. Fractions can only be added or subtracted when they have the same denominator. To change the denominator of any fraction, multiply both the numerator and the denominator by the same number. For multiplication or division, fractions do not need a common denominator. Example: =? Solution: These fractions cannot be added together until they have a common denominator. The lowest common denominator is 18 (2 9 = 18). The first fraction is multiplied by 2 2. ; Reducing a fraction to its lowest terms is done by dividing the numerator and denominator by a common number until there are no more common factors left to be divided out. Example: Reduce to its lowest terms. Solution: Both 18 and 27 have 3 as a common denominator; so divide 3 out. Both 6 and 9 also have 3 as a common denominator; divide 3 out again. 2 and 3 do not have any common factors so the fraction is in lowest terms. ; To convert between improper fractions and mixed numbers, use the following steps: (1) Improper fraction to a mixed number : a. Divide the numerator by the denominator to get a quotient (whole number) and a remainder. b. The remainder goes over the original denominator and the fraction is reduced if possible. Example: Express as a mixed number, and reduce if necessary. Solution: Divide 82 by 12: 12 can go in 6 whole times (12 6 = 72), with 10 left over. The remainder goes over the original denominator = 6 Remainder 10, so = = To do this on your calculator, divide to get a decimal. Subtract the whole number of the answer, and then multiply the remaining decimal by the divisor to find the numerator of the fraction = = = 10 (2) Mixed number to improper fraction: a. Multiply the denominator by the whole number and add the number. b. Put the answer from part a over the original denominator Vancouver Community College Learning Centre. 2

3 Example: Express as an improper fraction. Solution: = = To convert a fraction to a decimal, simply do the division. If the answer has a repeating decimal (doesn t terminate), make sure to indicate it by placing a dot or line above the repeating number. Example: Express 7 5 and 2 3 in decimal form. Solution: or 0. 6 To convert mixed numbers to decimal form divide the fraction part out and add to the whole number. Example: Solution: Convert 6 to decimal form Complex fractions contain one or more fractions in the numerator or denominator or both. As long as you follow order of operations properly, you can find the value of these expressions. \$ Example:. Solution: First, deal with the denominator using BEDMAS. Multiply 0.15 by 80 and divide by 365. Add 1 to the result. Store this value in your calculator (STO 1) and divide \$624 by the stored value (RCL 1). Always wait to round until the final answer. \$ \$ \$ Practice Problems 1. Reduce each of these fractions to lowest terms. a b c d e f g h Find the value of the following additions/subtractions. Reduce the answer to lowest terms. If the answer is an improper fraction, convert it to a mixed number. a. b. c. d. 3.Convert the following fractions into decimal form. Indicate repeating decimals where needed. a b c. 7 3 d. 1 6 e f Vancouver Community College Learning Centre. 3

4 4. Convert the following mixed numbers into decimal form. Indicate repeating decimals where needed. a b c d e f g Simplify each of the following (round to two decimal places). \$ a. b. c. d. \$. \$.. e Solutions 1. a. 1 6 b. 3 8 c d e f g h a = b c. 7 6 = d a b c d e f a b c. 5.4 d e f g a. \$ b c. \$ d. \$ e PERCENTS (% means out of 100, divided by 100) Basic percent rules: To convert a decimal to a percent, move the decimal 2 places to the RIGHT, or multiply by 100. To convert a percent to a decimal, move the decimal 2 places to the LEFT, or divide by 100. To convert a fraction to a percent, first convert the fraction into a decimal by dividing the denominator into the numerator. Then multiply by 100. To convert a percent to a fraction, divide by 100 and reduce. If the percent is a mixed number (whole number and fraction), convert to an improper fraction first, and then divide by 100. Example: Convert % to a fraction in lowest terms. Solution: Since this is a mixed number, first convert to an improper fraction. Then divide by 100 and reduce: % 3 3 % There are three common types of percent problems: 1. Determine a percent of a given number. For example, what is 17% of 82? Method A is to use proportions. We must correctly determine if 82 is the piece or the whole. Asking for a percent of a number tells us the number is the whole: 2014 Vancouver Community College Learning Centre. 4

5 Use cross-multiplication: Method B:create an equation from the words and solve for the unknown. Percents must always be converted to the fraction or decimal value in an equation. What is 17% of 82? x = x = Determine what percent one number is of another. For example, what percent of 48 is 16? Method A, use proportions: 16 x x 48 1 x 33 3 % Method B; translate to an equation and solve using algebra What percent of 48 is 16? 48 = 16 (We still need to convert to a percent ) % 33 1 % Determine a number when a percent of it is provided. For example, 3 is 16% of what? Method A, use proportions: 3 16 x x 16 x Method B, translate to an equation and solve using algebra. 3 is 16% of what? 3 = = = 2014 Vancouver Community College Learning Centre. 5

6 Practice Problems 1. Change each of the following percents into a decimal. a) 0.15% b) 8.6% d) % e) % c) 124% f) % 2. Change each of the following percents into a fraction in lowest terms. Convert any improper fractions to mixed numbers. a) 40% d) % b) 0.35% e) % c) 150% f) % 3. Express each of the following as a percent: a) b) c) Find the requested quantity: a) What is 15% of 555? b) 25% of 44 is what? c) What percent of 50 is 23? d) 13 is what percent of 52? d) 4 30 e) 9 8 f) 4 5 e) 120% of what is 42? f) 48 is 25% of what? g) 1.8 is what percent of 1.5? h) 52 is what percent of 13? Solutions 1. a) b) c) 1.24 d) e) f) a) 2 5 b) c) d) e) f) a) 5.9% b) 2.78% c) 115% d) 13.3 % e) 112.5% f) 80% 4. a) b) 11 c) 46% d) 25% e) 35 f) 192 g) 120% h) 400% 2014 Vancouver Community College Learning Centre. 6

### PREPARATION FOR MATH TESTING at CityLab Academy

PREPARATION FOR MATH TESTING at CityLab Academy compiled by Gloria Vachino, M.S. Refresh your math skills with a MATH REVIEW and find out if you are ready for the math entrance test by taking a PRE-TEST

### MATH-0910 Review Concepts (Haugen)

Unit 1 Whole Numbers and Fractions MATH-0910 Review Concepts (Haugen) Exam 1 Sections 1.5, 1.6, 1.7, 1.8, 2.1, 2.2, 2.3, 2.4, and 2.5 Dividing Whole Numbers Equivalent ways of expressing division: a b,

### INTRODUCTION TO FRACTIONS

Tallahassee Community College 16 INTRODUCTION TO FRACTIONS Figure A (Use for 1 5) 1. How many parts are there in this circle?. How many parts of the circle are shaded?. What fractional part of the circle

### Maths Workshop for Parents 2. Fractions and Algebra

Maths Workshop for Parents 2 Fractions and Algebra What is a fraction? A fraction is a part of a whole. There are two numbers to every fraction: 2 7 Numerator Denominator 2 7 This is a proper (or common)

### PERCENTS. Percent means per hundred. Writing a number as a percent is a way of comparing the number with 100. For example: 42% =

PERCENTS Percent means per hundred. Writing a number as a percent is a way of comparing the number with 100. For example: 42% = Percents are really fractions (or ratios) with a denominator of 100. Any

### Accuplacer Arithmetic Study Guide

Accuplacer Arithmetic Study Guide Section One: Terms Numerator: The number on top of a fraction which tells how many parts you have. Denominator: The number on the bottom of a fraction which tells how

### Fractions. If the top and bottom numbers of a fraction are the same then you have a whole one.

What do fractions mean? Fractions Academic Skills Advice Look at the bottom of the fraction first this tells you how many pieces the shape (or number) has been cut into. Then look at the top of the fraction

### Welcome to Basic Math Skills!

Basic Math Skills Welcome to Basic Math Skills! Most students find the math sections to be the most difficult. Basic Math Skills was designed to give you a refresher on the basics of math. There are lots

### Paramedic Program Pre-Admission Mathematics Test Study Guide

Paramedic Program Pre-Admission Mathematics Test Study Guide 05/13 1 Table of Contents Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 Page 9 Page 10 Page 11 Page 12 Page 13 Page 14 Page 15 Page

### 5.4 Solving Percent Problems Using the Percent Equation

5. Solving Percent Problems Using the Percent Equation In this section we will develop and use a more algebraic equation approach to solving percent equations. Recall the percent proportion from the last

### 3 cups ¾ ½ ¼ 2 cups ¾ ½ ¼. 1 cup ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼

cups cups cup Fractions are a form of division. When I ask what is / I am asking How big will each part be if I break into equal parts? The answer is. This a fraction. A fraction is part of a whole. The

### FRACTIONS MODULE Part I

FRACTIONS MODULE Part I I. Basics of Fractions II. Rewriting Fractions in the Lowest Terms III. Change an Improper Fraction into a Mixed Number IV. Change a Mixed Number into an Improper Fraction BMR.Fractions

### Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

### ADDITION. Children should extend the carrying method to numbers with at least four digits.

Y5 AND Y6 ADDITION Children should extend the carrying method to numbers with at least four digits. 587 3587 + 475 + 675 1062 4262 1 1 1 1 1 Using similar methods, children will: add several numbers with

### north seattle community college

INTRODUCTION TO FRACTIONS If we divide a whole number into equal parts we get a fraction: For example, this circle is divided into quarters. Three quarters, or, of the circle is shaded. DEFINITIONS: The

### Three Types of Percent Problems

6.4 Three Types of Percent Problems 6.4 OBJECTIVES. Find the unknown amount in a percent problem 2. Find the unknown rate in a percent problem 3. Find the unknown base in a percent problem From your work

### Numerator Denominator

Fractions A fraction is any part of a group, number or whole. Fractions are always written as Numerator Denominator A unitary fraction is one where the numerator is always 1 e.g 1 1 1 1 1...etc... 2 3

### Math Circle Beginners Group October 18, 2015

Math Circle Beginners Group October 18, 2015 Warm-up problem 1. Let n be a (positive) integer. Prove that if n 2 is odd, then n is also odd. (Hint: Use a proof by contradiction.) Suppose that n 2 is odd

### Ratio and Proportion Study Guide 12

Ratio and Proportion Study Guide 12 Ratio: A ratio is a comparison of the relationship between two quantities or categories of things. For example, a ratio might be used to compare the number of girls

### Quick Reference ebook

This file is distributed FREE OF CHARGE by the publisher Quick Reference Handbooks and the author. Quick Reference ebook Click on Contents or Index in the left panel to locate a topic. The math facts listed

### Solutions of Linear Equations in One Variable

2. Solutions of Linear Equations in One Variable 2. OBJECTIVES. Identify a linear equation 2. Combine like terms to solve an equation We begin this chapter by considering one of the most important tools

### Exponents, Radicals, and Scientific Notation

General Exponent Rules: Exponents, Radicals, and Scientific Notation x m x n = x m+n Example 1: x 5 x = x 5+ = x 7 (x m ) n = x mn Example : (x 5 ) = x 5 = x 10 (x m y n ) p = x mp y np Example : (x) =

### Multiplying Fractions

. Multiplying Fractions. OBJECTIVES 1. Multiply two fractions. Multiply two mixed numbers. Simplify before multiplying fractions 4. Estimate products by rounding Multiplication is the easiest of the four

### Solution Guide Chapter 14 Mixing Fractions, Decimals, and Percents Together

Solution Guide Chapter 4 Mixing Fractions, Decimals, and Percents Together Doing the Math from p. 80 2. 0.72 9 =? 0.08 To change it to decimal, we can tip it over and divide: 9 0.72 To make 0.72 into a

### Adding and Subtracting Fractions. 1. The denominator of a fraction names the fraction. It tells you how many equal parts something is divided into.

Tallahassee Community College Adding and Subtracting Fractions Important Ideas:. The denominator of a fraction names the fraction. It tells you how many equal parts something is divided into.. The numerator

### HFCC Math Lab Arithmetic - 4. Addition, Subtraction, Multiplication and Division of Mixed Numbers

HFCC Math Lab Arithmetic - Addition, Subtraction, Multiplication and Division of Mixed Numbers Part I: Addition and Subtraction of Mixed Numbers There are two ways of adding and subtracting mixed numbers.

### Integers, I, is a set of numbers that include positive and negative numbers and zero.

Grade 9 Math Unit 3: Rational Numbers Section 3.1: What is a Rational Number? Integers, I, is a set of numbers that include positive and negative numbers and zero. Imagine a number line These numbers are

### 47 Numerator Denominator

JH WEEKLIES ISSUE #22 2012-2013 Mathematics Fractions Mathematicians often have to deal with numbers that are not whole numbers (1, 2, 3 etc.). The preferred way to represent these partial numbers (rational

### Florida Math 0018. Correlation of the ALEKS course Florida Math 0018 to the Florida Mathematics Competencies - Lower

Florida Math 0018 Correlation of the ALEKS course Florida Math 0018 to the Florida Mathematics Competencies - Lower Whole Numbers MDECL1: Perform operations on whole numbers (with applications, including

### Fractions to decimals

Worksheet.4 Fractions and Decimals Section Fractions to decimals The most common method of converting fractions to decimals is to use a calculator. A fraction represents a division so is another way of

### 1.6 The Order of Operations

1.6 The Order of Operations Contents: Operations Grouping Symbols The Order of Operations Exponents and Negative Numbers Negative Square Roots Square Root of a Negative Number Order of Operations and Negative

### How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.

The verbal answers to all of the following questions should be memorized before completion of pre-algebra. Answers that are not memorized will hinder your ability to succeed in algebra 1. Number Basics

### Using Proportions to Solve Percent Problems I

RP7-1 Using Proportions to Solve Percent Problems I Pages 46 48 Standards: 7.RP.A. Goals: Students will write equivalent statements for proportions by keeping track of the part and the whole, and by solving

### REVIEW SHEETS BASIC MATHEMATICS MATH 010

REVIEW SHEETS BASIC MATHEMATICS MATH 010 A Summary of Concepts Needed to be Successful in Mathematics The following sheets list the key concepts that are taught in the specified math course. The sheets

### Students will benefit from pencils with erasers, if possible since revisions are part of learning.

Suggestions and/or Directions for Implementing Extended Concept (2) Activities Students will benefit from pencils with erasers, if possible since revisions are part of learning. Students should be allowed

### Direct Translation is the process of translating English words and phrases into numbers, mathematical symbols, expressions, and equations.

Section 1 Mathematics has a language all its own. In order to be able to solve many types of word problems, we need to be able to translate the English Language into Math Language. is the process of translating

### ACCUPLACER Arithmetic & Elementary Algebra Study Guide

ACCUPLACER Arithmetic & Elementary Algebra Study Guide Acknowledgments We would like to thank Aims Community College for allowing us to use their ACCUPLACER Study Guides as well as Aims Community College

### Multiplying and Dividing Signed Numbers. Finding the Product of Two Signed Numbers. (a) (3)( 4) ( 4) ( 4) ( 4) 12 (b) (4)( 5) ( 5) ( 5) ( 5) ( 5) 20

SECTION.4 Multiplying and Dividing Signed Numbers.4 OBJECTIVES 1. Multiply signed numbers 2. Use the commutative property of multiplication 3. Use the associative property of multiplication 4. Divide signed

### HFCC Math Lab Beginning Algebra 13 TRANSLATING ENGLISH INTO ALGEBRA: WORDS, PHRASE, SENTENCES

HFCC Math Lab Beginning Algebra 1 TRANSLATING ENGLISH INTO ALGEBRA: WORDS, PHRASE, SENTENCES Before being able to solve word problems in algebra, you must be able to change words, phrases, and sentences

### ModuMath Basic Math Basic Math 1.1 - Naming Whole Numbers Basic Math 1.2 - The Number Line Basic Math 1.3 - Addition of Whole Numbers, Part I

ModuMath Basic Math Basic Math 1.1 - Naming Whole Numbers 1) Read whole numbers. 2) Write whole numbers in words. 3) Change whole numbers stated in words into decimal numeral form. 4) Write numerals in

### DECIMAL COMPETENCY PACKET

DECIMAL COMPETENCY PACKET Developed by: Nancy Tufo Revised: Sharyn Sweeney 2004 Student Support Center North Shore Community College 2 In this booklet arithmetic operations involving decimal numbers are

### Exponents. Exponents tell us how many times to multiply a base number by itself.

Exponents Exponents tell us how many times to multiply a base number by itself. Exponential form: 5 4 exponent base number Expanded form: 5 5 5 5 25 5 5 125 5 625 To use a calculator: put in the base number,

### Warm-Up. Today s Objective/Standards: Students will use the correct order of operations to evaluate algebraic expressions/ Gr. 6 AF 1.

Warm-Up CST/CAHSEE: Gr. 6 AF 1.4 Simplify: 8 + 8 2 + 2 A) 4 B) 8 C) 10 D) 14 Review: Gr. 7 NS 1.2 Complete the statement using ,. Explain. 2 5 5 2 How did students get the other answers? Other: Gr.

### Sequential Skills. Strands and Major Topics

Sequential Skills This set of charts lists, by strand, the skills that are assessed, taught, and practiced in the Skills Tutorial program. Each Strand ends with a Mastery Test. You can enter correlating

### Order of Operations More Essential Practice

Order of Operations More Essential Practice We will be simplifying expressions using the order of operations in this section. Automatic Skill: Order of operations needs to become an automatic skill. Failure

### Answer: Quantity A is greater. Quantity A: 0.717 0.717717... Quantity B: 0.71 0.717171...

Test : First QR Section Question 1 Test, First QR Section In a decimal number, a bar over one or more consecutive digits... QA: 0.717 QB: 0.71 Arithmetic: Decimals 1. Consider the two quantities: Answer:

### Number Sense and Operations

Number Sense and Operations representing as they: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6.N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Demonstrate an understanding of positive integer exponents

CONTENTS Introduction...iv. Number Systems... 2. Algebraic Expressions.... Factorising...24 4. Solving Linear Equations...8. Solving Quadratic Equations...0 6. Simultaneous Equations.... Long Division

### 0.8 Rational Expressions and Equations

96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions - that is, algebraic fractions - and equations which contain them. The reader is encouraged to

### Training Manual. Pre-Employment Math. Version 1.1

Training Manual Pre-Employment Math Version 1.1 Created April 2012 1 Table of Contents Item # Training Topic Page # 1. Operations with Whole Numbers... 3 2. Operations with Decimal Numbers... 4 3. Operations

1 Decimals Adding and Subtracting Decimals are a group of digits, which express numbers or measurements in units, tens, and multiples of 10. The digits for units and multiples of 10 are followed by a decimal

### Numerical and Algebraic Fractions

Numerical and Algebraic Fractions Aquinas Maths Department Preparation for AS Maths This unit covers numerical and algebraic fractions. In A level, solutions often involve fractions and one of the Core

### Decimal Notations for Fractions Number and Operations Fractions /4.NF

Decimal Notations for Fractions Number and Operations Fractions /4.NF Domain: Cluster: Standard: 4.NF Number and Operations Fractions Understand decimal notation for fractions, and compare decimal fractions.

### Decimals and other fractions

Chapter 2 Decimals and other fractions How to deal with the bits and pieces When drugs come from the manufacturer they are in doses to suit most adult patients. However, many of your patients will be very

### Solving Exponential Equations

Solving Exponential Equations Deciding How to Solve Exponential Equations When asked to solve an exponential equation such as x + 6 = or x = 18, the first thing we need to do is to decide which way is

### The gas can has a capacity of 4.17 gallons and weighs 3.4 pounds.

hundred million\$ ten------ million\$ million\$ 00,000,000 0,000,000,000,000 00,000 0,000,000 00 0 0 0 0 0 0 0 0 0 Session 26 Decimal Fractions Explain the meaning of the values stated in the following sentence.

Grade 6 Math Oak Meadow Coursebook Oak Meadow, Inc. Post Office Box 1346 Brattleboro, Vermont 05302-1346 oakmeadow.com Item #b064010 Grade 6 Contents Introduction... ix Lessons... Lesson 1... 1 Multiplication

### Teaching Pre-Algebra in PowerPoint

Key Vocabulary: Numerator, Denominator, Ratio Title Key Skills: Convert Fractions to Decimals Long Division Convert Decimals to Percents Rounding Percents Slide #1: Start the lesson in Presentation Mode

### LESSON PLANS FOR PERCENTAGES, FRACTIONS, DECIMALS, AND ORDERING Lesson Purpose: The students will be able to:

LESSON PLANS FOR PERCENTAGES, FRACTIONS, DECIMALS, AND ORDERING Lesson Purpose: The students will be able to: 1. Change fractions to decimals. 2. Change decimals to fractions. 3. Change percents to decimals.

### FRACTIONS COMMON MISTAKES

FRACTIONS COMMON MISTAKES 0/0/009 Fractions Changing Fractions to Decimals How to Change Fractions to Decimals To change fractions to decimals, you need to divide the numerator (top number) by the denominator

### Section 4.1 Rules of Exponents

Section 4.1 Rules of Exponents THE MEANING OF THE EXPONENT The exponent is an abbreviation for repeated multiplication. The repeated number is called a factor. x n means n factors of x. The exponent tells

### DIVISION OF DECIMALS. 1503 9. We then we multiply by the

Tallahassee Community College 0 DIVISION OF DECIMALS To divide 9, we write these fractions: reciprocal of the divisor 0 9. We then we multiply by the 0 67 67 = = 9 67 67 The decimal equivalent of is. 67.

### 3.1. RATIONAL EXPRESSIONS

3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers

### Unit Two Practice Test: Powers and Exponent Laws

Class: Date: Unit Two Practice Test: Powers and Exponent Laws Multiple Choice Identify the choice that best completes the statement or answers the question 1 Write the base of ( 6) 5 a 6 b 6 c 6 5 d 5

### Unit 1 Number Sense. In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions.

Unit 1 Number Sense In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions. BLM Three Types of Percent Problems (p L-34) is a summary BLM for the material

### COWLEY COUNTY COMMUNITY COLLEGE REVIEW GUIDE Compass Algebra Level 2

COWLEY COUNTY COMMUNITY COLLEGE REVIEW GUIDE Compass Algebra Level This study guide is for students trying to test into College Algebra. There are three levels of math study guides. 1. If x and y 1, what

### All the examples in this worksheet and all the answers to questions are available as answer sheets or videos.

BIRKBECK MATHS SUPPORT www.mathsupport.wordpress.com Numbers 3 In this section we will look at - improper fractions and mixed fractions - multiplying and dividing fractions - what decimals mean and exponents

### Simplification Problems to Prepare for Calculus

Simplification Problems to Prepare for Calculus In calculus, you will encounter some long epressions that will require strong factoring skills. This section is designed to help you develop those skills.

### How To Understand Algebraic Equations

Please use the resources below to review mathematical concepts found in chemistry. 1. Many Online videos by MiraCosta Professor Julie Harland: www.yourmathgal.com 2. Text references in red/burgundy and

### MBA Jump Start Program

MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Online Appendix: Basic Mathematical Concepts 2 1 The Number Spectrum Generally we depict numbers increasing from left to right

### Preliminary Mathematics

Preliminary Mathematics The purpose of this document is to provide you with a refresher over some topics that will be essential for what we do in this class. We will begin with fractions, decimals, and

### averages simple arithmetic average (arithmetic mean) 28 29 weighted average (weighted arithmetic mean) 32 33

537 A accumulated value 298 future value of a constant-growth annuity future value of a deferred annuity 409 future value of a general annuity due 371 future value of an ordinary general annuity 360 future

### Math Review. Numbers. Place Value. Rounding Whole Numbers. Place value thousands hundreds tens ones

Math Review Knowing basic math concepts and knowing when to apply them are essential skills. You should know how to add, subtract, multiply, divide, calculate percentages, and manipulate fractions. This

### Simplifying Algebraic Fractions

5. Simplifying Algebraic Fractions 5. OBJECTIVES. Find the GCF for two monomials and simplify a fraction 2. Find the GCF for two polynomials and simplify a fraction Much of our work with algebraic fractions

### Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

### 3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes

Partial Fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. For 4x + 7 example it can be shown that x 2 + 3x + 2 has the same

### ACCUPLACER. Testing & Study Guide. Prepared by the Admissions Office Staff and General Education Faculty Draft: January 2011

ACCUPLACER Testing & Study Guide Prepared by the Admissions Office Staff and General Education Faculty Draft: January 2011 Thank you to Johnston Community College staff for giving permission to revise

### Balancing Chemical Equations

Balancing Chemical Equations A mathematical equation is simply a sentence that states that two expressions are equal. One or both of the expressions will contain a variable whose value must be determined

### MTH 092 College Algebra Essex County College Division of Mathematics Sample Review Questions 1 Created January 17, 2006

MTH 092 College Algebra Essex County College Division of Mathematics Sample Review Questions Created January 7, 2006 Math 092, Elementary Algebra, covers the mathematical content listed below. In order

### Multiplying and Dividing Fractions

Multiplying and Dividing Fractions 1 Overview Fractions and Mixed Numbers Factors and Prime Factorization Simplest Form of a Fraction Multiplying Fractions and Mixed Numbers Dividing Fractions and Mixed

### Scope and Sequence KA KB 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B

Scope and Sequence Earlybird Kindergarten, Standards Edition Primary Mathematics, Standards Edition Copyright 2008 [SingaporeMath.com Inc.] The check mark indicates where the topic is first introduced

8. Radicals - Rational Exponents Objective: Convert between radical notation and exponential notation and simplify expressions with rational exponents using the properties of exponents. When we simplify

### Fractions and Linear Equations

Fractions and Linear Equations Fraction Operations While you can perform operations on fractions using the calculator, for this worksheet you must perform the operations by hand. You must show all steps

### MULTIPLICATION AND DIVISION OF REAL NUMBERS In this section we will complete the study of the four basic operations with real numbers.

1.4 Multiplication and (1-25) 25 In this section Multiplication of Real Numbers Division by Zero helpful hint The product of two numbers with like signs is positive, but the product of three numbers with

### Free Pre-Algebra Lesson 55! page 1

Free Pre-Algebra Lesson 55! page 1 Lesson 55 Perimeter Problems with Related Variables Take your skill at word problems to a new level in this section. All the problems are the same type, so that you can

### Simplifying Square-Root Radicals Containing Perfect Square Factors

DETAILED SOLUTIONS AND CONCEPTS - OPERATIONS ON IRRATIONAL NUMBERS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!

### Using a Scientific Calculator

1 Using a Scientific Calculator In this course, we will be using a scientific calculator to do all of our computations. So, in this section, we want to get use to some of the features of a scientific calculator.

### Fraction Competency Packet

Fraction Competency Packet Developed by: Nancy Tufo Revised 00: Sharyn Sweeney Student Support Center North Shore Community College To use this booklet, review the glossary, study the examples, then work

### Math Placement Test Study Guide. 2. The test consists entirely of multiple choice questions, each with five choices.

Math Placement Test Study Guide General Characteristics of the Test 1. All items are to be completed by all students. The items are roughly ordered from elementary to advanced. The expectation is that

### Converting from Fractions to Decimals

.6 Converting from Fractions to Decimals.6 OBJECTIVES. Convert a common fraction to a decimal 2. Convert a common fraction to a repeating decimal. Convert a mixed number to a decimal Because a common fraction

### If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C?

Problem 3 If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Suggested Questions to ask students about Problem 3 The key to this question

### FRACTIONS OPERATIONS

FRACTIONS OPERATIONS Summary 1. Elements of a fraction... 1. Equivalent fractions... 1. Simplification of a fraction... 4. Rules for adding and subtracting fractions... 5. Multiplication rule for two fractions...

### Equations Involving Fractions

. Equations Involving Fractions. OBJECTIVES. Determine the ecluded values for the variables of an algebraic fraction. Solve a fractional equation. Solve a proportion for an unknown NOTE The resulting equation

### Pre-Algebra Lecture 6

Pre-Algebra Lecture 6 Today we will discuss Decimals and Percentages. Outline: 1. Decimals 2. Ordering Decimals 3. Rounding Decimals 4. Adding and subtracting Decimals 5. Multiplying and Dividing Decimals

### Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.

Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear

### + = has become. has become. Maths in School. Fraction Calculations in School. by Kate Robinson

+ has become 0 Maths in School has become 0 Fraction Calculations in School by Kate Robinson Fractions Calculations in School Contents Introduction p. Simplifying fractions (cancelling down) p. Adding