A New Generation of Power Semiconductor Devices

Size: px
Start display at page:

Download "A New Generation of Power Semiconductor Devices"

Transcription

1 A New Generation of Power Semiconductor Devices José Millán Centro Nacional de Microelectrónica, CNM CNM-CSIC, Campus Universitad Autónoma de Barcelona, Bellaterra, Barcelona, Spain

2 Outline Introduction Si Power Devices Si IGBTs Si Super-junctions SiC Power Devices SiC Power Rectifiers SiC Power Switches GaN Power Devices WBG Future Trends

3 Introduction Power Electronics is: efficient processing of electrical energy through means of electronic switching devices 40% of Energy consumed as electricity

4 Introduction Energy Distribution Communications Traction/Automotive

5 Power Devices Classification of High Voltage Devices

6 Si Power Devices Si Power Devices

7 GTO, Power MOSFET and Cool MOS Voltage Range Power MOSFET Si Power Devices Cool MOS Power supplies Electric cars Motor control Traction & HVDC GTO Thyristor

8 Si IGBTs IGBT Structure & Output Characteristics Structure of DMOS IGBT Static Characteristics Current x10 compared with power MOSFET

9 Si IGBTs IGBT OFF-state The p -base/n-base junction blocks the voltage while the device is in the off-state

10 Si IGBTs - IGBT ON-state When the device is in the on-state the electron current at the cathode flows through the channel like in a MOSFET and acts as the base current for the pnp transistor formed between the p+ anode-(emitter), n- base & n+ buffer (base) and p-base (collector). Due to high level of injection in the on-state the entire n-base is modulated by mobile carriers in equilibrium with an effective charge of few orders of magnitude higher than the original doping

11 Si IGBTs The IGBT Equivalent Circuit The IGBT has within its structure three MOS- bipolar devices: (i) The cascade MOSFET - PIN diode (ii) MOS base current controlled - wide base PNP transistor (iii) Parasitic MOS turn-on thyristor - must be always suppressed Source/Cathode Gate Source/Cathode n + p well p well n + p+ p+ p + Anode n- drift region

12 Si IGBTs IGBT turn-off Characteristics (1) (2) (3) (4) Examples of measured IGBT turn-off characteristics in inductive conditions. The characteristics are plotted for different rail voltages. There are three distinctive regions (1) voltage rise (2) electron current fall, (3) removal of main charge stored in the drift region (4) current tail through recombination

13 Si IGBTs Three concepts that led to major advancements in IGBTs from one generation to another Trench and thin wafer technologies led to ~30 % cut in the on-state voltage drop PIN diode effect Enhanced injection of electrons at the top side (channel side) of the drift region led to a further 20% decrease in the on-state voltage drop Field stop (Soft Punch Through) technology led to ~20% cut in the turn-off losses and 10-20% decrease in the on-state voltage drop

14 Si IGBTs PT & NPT IGBT Structures E cr E cr Punch-Through (PT IGBT) Safety distance Non Punch-Through (NPT IGBT)

15 Si IGBTs Trench IGBT Cross Sections 5μm 4μm Schematic SEM

16 Si IGBTs Breakdown vs on-state in DMOS IGBT & Trench IGBT

17 Si IGBTs The ability to engineer the PIN diode section in the TIGBT can be used to optimise its performance Cathode Channel p+ n+ n+ p+ p -well Gate Electron injector Cathode p -well The heavily charged accumulation layer serves as an electron injector forming a PIN diode with n-drift region and p-anode There are two paths for the current flow: (i) the double sided injection path of the PIN diode with increased plasma at both injection ends (anode and cathode end), and (ii) the pnp path with increased plasma only at the IGBT anode end. n- drift region n buffer P anode Anode Increasing the PIN diode contribution over that of the pnp transistor is the key to enhance the device performance This is equivalent to suppressing the collection of holes by the p well to the cathode short

18 Si IGBTs On-state Characteristics of a TIGBT

19 The Field Stop (or Soft Punch-Through), PT and NPT structures Source/Cath PT - IGBT NPT -IGBT SPT -IGBT Gate Source/Cath Gate Source/Cath Gate n + p well n + p well Si IGBTs n + p well 120μ m 15μm n- drift region N-buffer 200μm 120μ m 1-2 μm 1 μm n- drift region n- buffer field stop P transparent anode 250μ m p+ (substrate) 1μm P transparent anode

20 Si IGBTs The Field Stop (or Soft Punch-Through), PT and NPT comparison Structure PT -IGBT NPT -IGBT SPT - IGBT Drift layer thickness thin thick thin Wafer type (for 600 V Epitaxial Float zone (FZ) Float Zone (FZ) and 1.2 kv) Buffer Layer Thick and highly doped N/A Thin and lowly doped P+ anode injector Thick and highly doped Thin and relatively Thin and relatively (whole substrate) lowly doped lowly doped Bipolar gain control Lifetime killing Injection efficiency Injection efficiency On-state losses low medium low Switching losses high medium low Turn-off tail short long short Voltage overshoot (in high low low some applications) Temperature coefficient negative (mostly) positive positive SCSOA (short circuit conditions) RBSOA (reverse bias conditions) medium large large narrow large large

21 1.2 kv IGBTs. SPT has a better carrier profile than the PT and NPT structures with the Trench SPT showing the most favorable result. Si IGBTs

22 Si IGBTs The trade-off between on-state voltage and turn-off energy losses for 1.2 kv DMOS PT IGBT, the Trench IGBT and the Trench SPT IGBT

23 Si IGBTs The Reverse Conducting IGBT n+ n+ M. Rahimo, 3.3 kv RC IGBT using SPT+ technology (ISPSD 2008) H. Takahashi, 1.2 kv Reverse Conducting IGBT (ISPSD 2004), Mitsubishi

24 Si IGBTs The Reverse Blocking IGBT 600V RB-IGBT designed and fabricated at CNM Additional protection of IGBT periphery: trench isolation (patent pending) Applications: Current inverters, resonant converters, Matrix converters, BDS P + - Epitaxy -N Substrate-P+ Al SiO 2 Poly Si N Body-P Junction supporting forward bias Junction supporting reverse bias + Substrate-P I C (ma) 1,25 1,00 0,75 0,50 0,25 0,00-0,25-0,50-0,75-1,00-1, RBI Wafer 11 Bidirectional Blocking Capability RB-IGBT (G-E short) V CE (V)

25 Si Super-junctions Super-Junction MOSFETS COOLMOS Rectangular e-field distribution allows increasing Nepi doping. RonxA below Si limit

26 WBG Semiconductors WBG Power Devices

27 WBG Semiconductors Why WBG Semiconductors? Si devices are limited to operation at junction temperatures lower than 200 ºC Si power devices not suitable at very high frequencies SiC and GaN offer the potential to overcome both the temperature, frequency and power management limitations of Si.

28 WBG Semiconductors Physical properties of WBG for Power Devices Material E g μ n (cm²/vs) μ p (cm²/vs) V sat (cm/s) E c (V/cm ) λ (W/cm.ºK) ε r Si H - SiC GaN Diamond

29 WBG Technology GaN & SiC process technologies are more mature At present, SiC is considered to have the best trade-off between properties and commercial maturity GaN can offer better HF and HV performances, but the lack of good quality large area substrates is a disadvantage for vertical devices GaN presents a lower thermal conductivity than SiC GaN allows forming 2DEG heterojunctions (InAlGaN alloys) grown on SiC or Si substrates Currently, it is a sort of competition SiC vs GaN, in a battle of performance versus cost There is not a clear winner at the moment. They will find their respective application niches with a tremendous potential market

30 SiC Power Devices SiC Power Devices

31 SiC Power Diodes SiC Power Rectifiers Schottky barrier diodes (SBD): extremely high switching speed but lower blocking voltage and high leakage current. PiN diodes: high-voltage operation and low leakage current, reverse recovery charging during switching. Junction Barrier Schottky (JBS) diodes: Schottky-like on-state and switching characteristics, and PiN-like off-state characteristics.

32 SiC Power Diodes State-of-the-Art SiC rectifiers Schottky and now JBS diodes are commercially available up to 1.2 kv: CREE, Infineon basically. PiN diodes will be only relevant for BV over 3 kv. - Need to overcome its reliability problem (forward voltage drift) before commercialisation

33 SiC Power Switches

34 SiC Power Switches (unipolar) x Main problem: Normally on (?) Very low R on Rugged Gate-structure Excellent short-circuit capability High temperature possible

35 SiC Power Switches (unipolar) Hybrid Si/SiC cascode electric switch Compared to a COOLMOS based converter, the SiCbased one offers the highest efficiency (90%) All SiC sparse matix converters CoolMOS + SiC efficiency higher than 96% All SiC sparse matrix converter: 100 KHz 1.5 kw efficiency 94% 1300V 4 A SiCED Cascodes V 5 A CREE Schottky diodes 3 phase PWM rectifier 10kW 500KHz 480V CoolMOS + SiC Schottky diodes : efficiency higher than 96%

36 SiC Power Switches (unipolar) Trench/DiMOSFET MOSFET Advantages Simple planar structrure Voltage gate control Extensively used in Si technology Normally-off x MOSFET main problems Low channel mobility in SiC High temperature operation? Gate reliability? Lateral DMOFET

37 SiC Power Switches (unipolar) CREE: 2.3KV-5A R on =0.48 Ω (25ºC) 13.5mΩ.cm 2, Ir=200uA. Cin=380pF, Cout=100pF, reverse transfer C=19pF (Vgs=0,Vds=25V, 1MHz) Infineon: 1200V-10A, Ron=0.27 Ω (25ºC) 12mΩ.cm 2 Denso: 1200V-10A, 5 mω.cm 2 (25ºC), 8.5mΩ.cm 2 (150ºC)

38 SiC Power Switches (unipolar) [M. Das et al. at ISPSD 2008, pp ] 10 kv MOSFET (Cree)

39 SiC Power Switches (bipolar) State-of-the-art [S. Krishnaswami et al., ISPSD 2006, pp ] 3500 V V range 4 kv, 10 A BJT βmax = 34 chip area = 4.24 mm 4.24 mm IR = kv turn-on time = 168 RT turn-off time = 106 RT Unlike Si BJT, SiC BJT does not suffer from a secondary breakdown ß is reduced (50%) under bias stress (stacking faults base-emitter region)

40 SiC Power Switches (bipolar) SiC IGBT? Problems of MOSFETS (Channel mobility, reliability) Problems of Bipolar (current gain degradation, stacking faults) Problems of highly doped P substrate growth May 2008 (ISPSD 2008): CREE 10kV n-channel IGBT 3V knee, 14.3 mωcm 2 At 200ºC the n-igbt operates at 2 the current density of the n-mosfet

41 GaN Power Devices GaN Power Devices

42 GaN Power Diodes GaN Power Rectifiers Until recently, because of the lack of electrically conducting GaN substrates, GaN Schottky diodes were either lateral or quasi-vertical Breakdown voltages of lateral GaN rectifiers on Sapphire substrates as high as 9.7 kv have been reported Zhang et al. IEEE T-ED,48, 407, 2001 SBD PiN

43 GaN Power HEMTs GaN Power HEMTs GaN HEMTs have attracted most attention with impressive trade-off between Ron vs BV Power densities 1.1 W/mm in 1996 initially to microwave power HEMTs with high output power capability as high as 40 W/mm recently A major obstacle trapping effects though drain-current collapse Several solutions : (1) surface-charge-controlled n-gan-cap structure (2) the recessed gate and field-modulating plate structure (3) passivation of surface states via silicon nitride or other dielectric.

44 GaN Power HEMTs High voltage AlGaN/GaN HEMTs over 1 kv were reported in 2006 S. YOSHIDA et al. ISPSD 2006 It has been also demonstrated a GaN power switch for kw power conversion. The switch shows a speed grater than 2 MHz with rise- and fall-time of less than 25 ns, and turn-on/turn-off switching losses of 11 µj with a resistive load. Switching at 100 V/11 A and 40 V/23 A was achieved with resistive and inductive loads, respectively.

45 GaN Power HEMTs Via-holes through sapphire at the drain electrodes enable very efficient layout of the lateral HFET array as well as better heat dissipation 8.3 kv HEMT (Panasonic) Y. Uemoto et al. IEDM 2007

46 GaN Power HEMTs GaN Power HEMTs The state-of-the-art AlGaN/GaN HEMT [T. Nomura et al., ISPSD 2006, pp ] Process technology based on a tri-metal Ti/AlSi/Mo layer very low contact resistance and an excellent surface morphology. Mo (barrier metal) to improve the surface morphology AlSi results more efficient for a low contact resistance than Al. Low stress, high-refractive index SiN x layer Gate leakage current as low as 10-7 A/mm. R on = 6.3 mω.cm 2, V BR = 750 V. Turn-on time: 7.2 ns (1/10 of Si MOSFET). Switching operation no significant degraded at 225ºC.

47 GaN Power HEMTs GaN Power normally-off AlGaN/GaN HEMTs The state-of-the-art normally-off AlGaN/GaN HEMT [N. Kaneko et al., ISPSD 2009, pp ] Recess gate electrode and NiOx as gate electrode (NiOx operates as a p-type) W gate = 157 mm, V th = +0.8 V R on A = 6.3 mω.cm 2 R on = 72 mω V BR > 800 V I Dmax > 20 A Thegateleakagecurrentfourordersofmagnitudesmallerthan the conventional normally-on HFETs.

48 GaN Power MOSFETs Lateral GaN MOSFETs Lateral MOSFETs have been fabricated on p-gan epilayer (MOCVD) on sapphire substrates [W. Huang et al., ISPSD 2008, pp. 291]. - High quality SiO 2 /GaN interface kv breakdown voltage - High channel mobility (170 cm 2 /V.s) Lateral GaN MOSFETs can compete with SiC MOSFETs and GaN HEMTs? Reduction of source/drain resistance is crucial to further reduce the device on-resistance.

49 WBG Future Trends WBG Future Trends SiC Switches Successful demonstration of the cascode pair (a highvoltage, normally-on SiC JFET + a low-voltage Si MOSFET). An industrial normally-off SiC switch is expected. It could be the SiC MOSFET (<5kV) or the SiC IGBT (>5kV). BJTs/Darlingtons are promising, they also suffer from reliability problems. A normally-off SiC power transistor in the BV range of 600V-1200V available within next two years.

50 GaN Power HEMTs GaN Power Devices WBG Future Trends GaN is already commercialised in optoelectronics. Its applications in power switching still require further work in materials, processing and device design. GaN HEMT (5-10 A, V normally-off) It will be interesting to see if GaN power devices, especially low cost Schottky diode, can overtake or displace SiC diodes.

51 Thanks for your attention

3.3 kv IGBT Modules. Takeharu Koga Yasuhiko Arita Takatoshi Kobayashi. 1. Introduction. 2. Specifications of 3.3 kv IGBT Module

3.3 kv IGBT Modules. Takeharu Koga Yasuhiko Arita Takatoshi Kobayashi. 1. Introduction. 2. Specifications of 3.3 kv IGBT Module 3.3 kv IGBT Modules Takeharu Koga Yasuhiko Arita Takatoshi Kobayashi A B S T R A C T Fuji Electric has developed a 3.3 kv-1.2 ka IGBT module in response to market needs for inverters suitable for industrial

More information

1700V Bi-Mode Insulated Gate Transistor (BIGT) on Thin Wafer Technology

1700V Bi-Mode Insulated Gate Transistor (BIGT) on Thin Wafer Technology 1700V Bi-Mode Insulated Gate Transistor (BIGT) on Thin Wafer Technology Munaf Rahimo, Jan Vobecky, Chiara Corvasce ISPS, September 2010, Prague, Czech Republic Copyright [2010] IEEE. Reprinted from the

More information

Insulated Gate Bipolar Transistor (IGBT) Basics Abdus Sattar, IXYS Corporation 1 IXAN0063

Insulated Gate Bipolar Transistor (IGBT) Basics Abdus Sattar, IXYS Corporation 1 IXAN0063 Abdus Sattar, IXYS Corporation 1 This application note describes the basic characteristics and operating performance of IGBTs. It is intended to give the reader a thorough background on the device technology

More information

ST SiC MOSFET Evolution in Power Electronics

ST SiC MOSFET Evolution in Power Electronics ST SiC MOSFET Evolution in Power Electronics Simone Buonomo Market & Application Development Manager Power Transistor Division simone.buonomo@st.com Power Transistor Division Agenda 2 SiC MOSFET Time Speaker

More information

organismos internacionales

organismos internacionales Semiconductores de potencia de gap ancho en organismos internacionales Philippe Godignon & Power devices and Systems Group Systems Integration Department Centro Nacional de Microelectrónica, CNM CNM-CSIC,

More information

Application Note AN-983

Application Note AN-983 Application Note AN-983 IGBT Characteristics Table of Contents 1. How the IGBT complements the power MOSFET... 2 Page 2. Silicon structure and equivalent circuit... 2 3. Conduction characteristics... 4

More information

CAR IGNITION WITH IGBTS

CAR IGNITION WITH IGBTS APPLICATION NOTE CAR IGNITION WITH IGBTS by M. Melito ABSTRACT IGBTs are used in a variety of switching applications thanks to their attractive characteristics, particularly their peak current capability,

More information

Future Trends in High Power MOS Controlled Power Semiconductors

Future Trends in High Power MOS Controlled Power Semiconductors Future Trends in High Power MOS Controlled Power Semiconductors Munaf Rahimo ISPS, August 2012, Prague, Czech Republic Copyright [2012] IEEE. Reprinted from the Internacional Seminar on Power Semiconductors.

More information

New Low Loss High-Power Thyristors for Industrial Applications

New Low Loss High-Power Thyristors for Industrial Applications New Low Loss High-Power Thyristors for Industrial Applications Though one of the oldest semiconductor devices ever, the thyristor maintains a significant market share. This is because of its attractive

More information

High Voltage Silicon Carbide Power Devices

High Voltage Silicon Carbide Power Devices High Voltage Silicon Carbide Power Devices ARPA-E Power Technologies Workshop February 9, 2010 John W. Palmour Cree, Inc. 4600 Silicon Drive Durham, NC 27703; USA Tel:: 919-313-5646 Email: john_palmour@cree.com

More information

IGBT or MOSFET: Choose Wisely by Carl Blake and Chris Bull, International Rectifier

IGBT or MOSFET: Choose Wisely by Carl Blake and Chris Bull, International Rectifier IGBT or MOSFET: Choose Wisely by Carl Blake and Chris Bull, International Rectifier With the proliferation of choices between MOSFETs and IGBTs, it is becoming increasingly difficult for today s designer

More information

SiC Jfet technology for a jump in Inverter efficiency. SemiSouth Laboratories, Inc. www.semisouth.com

SiC Jfet technology for a jump in Inverter efficiency. SemiSouth Laboratories, Inc. www.semisouth.com SiC Jfet technology for a jump in Inverter efficiency SemiSouth Laboratories, Inc. Nigel Springett Applications consultant nigel.springett@semisouth.com www.semisouth.com Italian Distributor Enrico Falloni

More information

Semiconductor Technology

Semiconductor Technology May 4 th, 2011 Semiconductor Technology Evolution to optimize inverter efficiency Andrea Merello Field Applications Engineer Page 1 More than 70% of the energy gets lost on its way to the target application

More information

Advantages of SiC MOSFETs in Power Applications

Advantages of SiC MOSFETs in Power Applications Advantages of SiC MOSFETs in Power Applications Power Forum, Bologna September 18 th, 2014 Pascal Ducluzeau Product Marketing Director Microsemi Power Module Products pducluzeau@microsemi.com Topics Advantages

More information

STGW40NC60V N-CHANNEL 50A - 600V - TO-247 Very Fast PowerMESH IGBT

STGW40NC60V N-CHANNEL 50A - 600V - TO-247 Very Fast PowerMESH IGBT N-CHANNEL 50A - 600V - TO-247 Very Fast PowerMESH IGBT Table 1: General Features STGW40NC60V 600 V < 2.5 V 50 A HIGH CURRENT CAPABILITY HIGH FREQUENCY OPERATION UP TO 50 KHz LOSSES INCLUDE DIODE RECOVERY

More information

IGBT Tutorial. Introduction. How to Select an IGBT. IGBT Overview. Application Note APT0201 Rev. B July 1, 2002. John Hess Vice President, Marketing

IGBT Tutorial. Introduction. How to Select an IGBT. IGBT Overview. Application Note APT0201 Rev. B July 1, 2002. John Hess Vice President, Marketing Application Note APT0201 Rev. B July 1, 2002 Jonathan Dodge, P.E. Senior Applications Engineer IGBT Tutorial Advanced Power Technology 405 S.W. Columbia Street Bend, OR 97702 John Hess Vice President,

More information

Silicon Carbide market update: From discrete devices to modules

Silicon Carbide market update: From discrete devices to modules PCIM EUROPE 2014 20th 22nd May 2014 Nuremberg Silicon Carbide market update: From discrete devices to modules Dr. Kamel Madjour, Technology & Market Analyst, Yole Développement 2014 www.yole.fr May 21th

More information

Zero voltage drop synthetic rectifier

Zero voltage drop synthetic rectifier Zero voltage drop synthetic rectifier Vratislav Michal Brno University of Technology, Dpt of Theoretical and Experimental Electrical Engineering Kolejní 4/2904, 612 00 Brno Czech Republic vratislav.michal@gmail.com,

More information

CONTENTS. Preface. 1.1.2. Energy bands of a crystal (intuitive approach)

CONTENTS. Preface. 1.1.2. Energy bands of a crystal (intuitive approach) CONTENTS Preface. Energy Band Theory.. Electron in a crystal... Two examples of electron behavior... Free electron...2. The particle-in-a-box approach..2. Energy bands of a crystal (intuitive approach)..3.

More information

White Paper. SiC MOSFET Gate Drive Optocouplers. Introduction. Advantages of SiC MOSFET. SiC MOSFET Market and Adoption

White Paper. SiC MOSFET Gate Drive Optocouplers. Introduction. Advantages of SiC MOSFET. SiC MOSFET Market and Adoption SiC MOSFET Gate Drive Optocouplers White Paper By Robinson Law, Applications Engineer and Chun Keong Tee, Product Manager, Avago Technologies Introduction Silicon Carbide (SiC) power semiconductors are

More information

Fundamental Characteristics of Thyristors

Fundamental Characteristics of Thyristors A1001 Introduction The Thyristor family of semiconductors consists of several very useful devices. The most widely used of this family are silicon controlled rectifiers (SCRs), Triacs, SIDACs, and DIACs.

More information

= 600 V = 56 A = 2.7 V. C2-Class High Speed IGBTs (Electrically Isolated Back Surface) = 32 ns V CE(SAT) t fi(typ. Preliminary Data Sheet

= 600 V = 56 A = 2.7 V. C2-Class High Speed IGBTs (Electrically Isolated Back Surface) = 32 ns V CE(SAT) t fi(typ. Preliminary Data Sheet HiPerFAST TM IGBT IXGR 4N6C2 ISOPLUS247 TM IXGR 4N6C2D C2-Class High Speed IGBTs (Electrically Isolated Back Surface) S = 6 V 25 = 56 A (SAT) = 2.7 V t fi(typ = 32 ns Preliminary Data Sheet IXGR_C2 IXGR_C2D

More information

Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime

Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime Outline The Bipolar Junction Transistor (BJT): structure and basic operation I-V characteristics in forward active regime Reading Assignment:

More information

IS2.3-6 Wide Bandgap (WBG) Power Devices for High-Density Power Converters Excitement and Reality

IS2.3-6 Wide Bandgap (WBG) Power Devices for High-Density Power Converters Excitement and Reality IS2.3-6 Wide Bandgap (WBG) Power Devices for High-Density Power Converters Excitement and Reality Krishna Shenai, Ph.D. Principal Electrical Engineer, Argonne National Laboratory Senior Fellow, NAISE,

More information

Power MOSFET Basics By Vrej Barkhordarian, International Rectifier, El Segundo, Ca.

Power MOSFET Basics By Vrej Barkhordarian, International Rectifier, El Segundo, Ca. Power MOFET Basics By Vrej Barkhordarian, International Rectifier, El egundo, Ca. Breakdown Voltage... On-resistance... Transconductance... Threshold Voltage... iode Forward Voltage... Power issipation...

More information

N-channel enhancement mode TrenchMOS transistor

N-channel enhancement mode TrenchMOS transistor FEATURES SYMBOL QUICK REFERENCE DATA Trench technology d V DSS = V Low on-state resistance Fast switching I D = A High thermal cycling performance Low thermal resistance R DS(ON) mω (V GS = V) g s R DS(ON)

More information

Application Note AN-1005

Application Note AN-1005 Application Note AN-1005 Power MOSFET Avalanche Design Guidelines By Tim McDonald, Marco Soldano, Anthony Murray, Teodor Avram Table of Contents Page Table of Figures...3 Introduction...4 Overview...4

More information

Characteristics of blocking voltage for power 4H-SiC BJTs with mesa edge termination

Characteristics of blocking voltage for power 4H-SiC BJTs with mesa edge termination Vol. 31, No. 7 Journal of Semiconductors July 2010 Characteristics of blocking voltage for power 4H-SiC BJTs with mesa edge termination Zhang Qian( 张 倩 ), Zhang Yuming( 张 玉 明 ), and Zhang Yimen( 张 义 门

More information

ELEC 3908, Physical Electronics, Lecture 15. BJT Structure and Fabrication

ELEC 3908, Physical Electronics, Lecture 15. BJT Structure and Fabrication ELEC 3908, Physical Electronics, Lecture 15 Lecture Outline Now move on to bipolar junction transistor (BJT) Strategy for next few lectures similar to diode: structure and processing, basic operation,

More information

IRGP4068DPbF IRGP4068D-EPbF

IRGP4068DPbF IRGP4068D-EPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE FOR INDUCTION HEATING AND SOFT SWITCHING APPLICATIONS Features Low V CE (ON) Trench IGBT Technology Low Switching Losses Maximum Junction temperature

More information

AN3022. Establishing the Minimum Reverse Bias for a PIN Diode in a High-Power Switch. 1. Introduction. Rev. V2

AN3022. Establishing the Minimum Reverse Bias for a PIN Diode in a High-Power Switch. 1. Introduction. Rev. V2 Abstract - An important circuit design parameter in a high-power p-i-n diode application is the selection of an appropriate applied dc reverse bias voltage. Until now, this important circuit parameter

More information

OptiMOS 3 Power-Transistor

OptiMOS 3 Power-Transistor Type IPD6N3L G OptiMOS 3 Power-Transistor Features Fast switching MOSFET for SMPS Optimized technology for DC/DC converters Qualified according to JEDEC 1) for target applications Product Summary V DS

More information

Features. Symbol JEDEC TO-220AB

Features. Symbol JEDEC TO-220AB Data Sheet June 1999 File Number 2253.2 3A, 5V,.4 Ohm, N-Channel Power MOSFET This is an N-Channel enhancement mode silicon gate power field effect transistor designed for applications such as switching

More information

3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1

3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1 3. Diodes and Diode Circuits 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1 3.1 Diode Characteristics Small-Signal Diodes Diode: a semiconductor device, which conduct the current

More information

Field-Effect (FET) transistors

Field-Effect (FET) transistors Field-Effect (FET) transistors References: Hayes & Horowitz (pp 142-162 and 244-266), Rizzoni (chapters 8 & 9) In a field-effect transistor (FET), the width of a conducting channel in a semiconductor and,

More information

Advanced VLSI Design CMOS Processing Technology

Advanced VLSI Design CMOS Processing Technology Isolation of transistors, i.e., their source and drains, from other transistors is needed to reduce electrical interactions between them. For technologies

More information

Application Note AN-940

Application Note AN-940 Application Note AN-940 How P-Channel MOSFETs Can Simplify Your Circuit Table of Contents Page 1. Basic Characteristics of P-Channel HEXFET Power MOSFETs...1 2. Grounded Loads...1 3. Totem Pole Switching

More information

Application Note AN-1070

Application Note AN-1070 Application Note AN-1070 Class D Audio Amplifier Performance Relationship to MOSFET Parameters By Jorge Cerezo, International Rectifier Table of Contents Page Abstract... 2 Introduction... 2 Key MOSFET

More information

GS66516T Top-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

GS66516T Top-side cooled 650 V E-mode GaN transistor Preliminary Datasheet Features 650 V enhancement mode power switch Top-side cooled configuration R DS(on) = 25 mω I DS(max) = 60 A Ultra-low FOM Island Technology die Low inductance GaNPX package Easy gate drive requirements

More information

Philosophy of Topology and Components Selection for Cost and Performance in Automotive Converters.

Philosophy of Topology and Components Selection for Cost and Performance in Automotive Converters. Philosophy of Topology and Components Selection for Cost and Performance in Automotive Converters. Alexander Isurin ( sashai@vanner.com ) Alexander Cook (alecc@vanner.com ) Vanner inc. USA Abstract- This

More information

I. INTRODUCTION II. MOSFET FAILURE MODES IN ZVS OPERATION

I. INTRODUCTION II. MOSFET FAILURE MODES IN ZVS OPERATION MOSFET Failure Modes in the Zero-Voltage-Switched Full-Bridge Switching Mode Power Supply Applications Alexander Fiel and Thomas Wu International Rectifier Applications Department El Segundo, CA 9045,

More information

CHAPTER 10 Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor

CHAPTER 10 Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor CHAPTER 10 Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor Study the characteristics of energy bands as a function of applied voltage in the metal oxide semiconductor structure known

More information

Quad, Rail-to-Rail, Fault-Protected, SPST Analog Switches

Quad, Rail-to-Rail, Fault-Protected, SPST Analog Switches 19-2418; Rev ; 4/2 Quad, Rail-to-Rail, Fault-Protected, General Description The are quad, single-pole/single-throw (SPST), fault-protected analog switches. They are pin compatible with the industry-standard

More information

Module 7 : I/O PADs Lecture 33 : I/O PADs

Module 7 : I/O PADs Lecture 33 : I/O PADs Module 7 : I/O PADs Lecture 33 : I/O PADs Objectives In this lecture you will learn the following Introduction Electrostatic Discharge Output Buffer Tri-state Output Circuit Latch-Up Prevention of Latch-Up

More information

Low Noise, Matched Dual PNP Transistor MAT03

Low Noise, Matched Dual PNP Transistor MAT03 a FEATURES Dual Matched PNP Transistor Low Offset Voltage: 100 V Max Low Noise: 1 nv/ Hz @ 1 khz Max High Gain: 100 Min High Gain Bandwidth: 190 MHz Typ Tight Gain Matching: 3% Max Excellent Logarithmic

More information

TSM2N7002K 60V N-Channel MOSFET

TSM2N7002K 60V N-Channel MOSFET SOT-23 SOT-323 Pin Definition: 1. Gate 2. Source 3. Drain PRODUCT SUMMARY V DS (V) R DS(on) (Ω) I D (ma) 5 @ V GS = 10V 100 60 5.5 @ V GS = 5V 100 Features Low On-Resistance ESD Protection High Speed Switching

More information

Planar versus conventional transformer

Planar versus conventional transformer Planar versus conventional transformer Majid Dadafshar, Principal Engineer Gerard Healy, Field Application Engineer Pulse, a Technitrol Company Power Division Usually the first step on any power supply

More information

COMPARISON OF WIDE-BANDGAP SEMICONDUCTORS FOR POWER ELECTRONICS APPLICATIONS

COMPARISON OF WIDE-BANDGAP SEMICONDUCTORS FOR POWER ELECTRONICS APPLICATIONS ORNL/TM-2003/257 COMPARISON OF WIDE-BANDGAP SEMICONDUCTORS FOR POWER ELECTRONICS APPLICATIONS B. Ozpineci L. M. Tolbert Oak Ridge National Laboratory DOCUMENT AVAILABILITY Reports produced after January

More information

Chip Diode Application Note

Chip Diode Application Note Chip Diode Application Note Introduction The markets of portable communications, computing and video equipment are challenging the semiconductor industry to develop increasingly smaller electronic components.

More information

Chapter 4. LLC Resonant Converter

Chapter 4. LLC Resonant Converter Chapter 4 LLC Resonant Converter 4.1 Introduction In previous chapters, the trends and technical challenges for front end DC/DC converter were discussed. High power density, high efficiency and high power

More information

BUZ11. 30A, 50V, 0.040 Ohm, N-Channel Power MOSFET. Features. [ /Title (BUZ1 1) /Subject. (30A, 50V, 0.040 Ohm, N- Channel. Ordering Information

BUZ11. 30A, 50V, 0.040 Ohm, N-Channel Power MOSFET. Features. [ /Title (BUZ1 1) /Subject. (30A, 50V, 0.040 Ohm, N- Channel. Ordering Information Data Sheet June 1999 File Number 2253.2 [ /Title (BUZ1 1) /Subject (3A, 5V,.4 Ohm, N- Channel Power MOS- FET) /Autho r () /Keywords (Intersil Corporation, N- Channel Power MOS- FET, TO- 22AB ) /Creator

More information

Module 1. Power Semiconductor Devices. Version 2 EE IIT, Kharagpur 1

Module 1. Power Semiconductor Devices. Version 2 EE IIT, Kharagpur 1 Module 1 Power Semiconductor Devices Version 2 EE IIT, Kharagpur 1 Lesson 1 Power Electronics Version 2 EE IIT, Kharagpur 2 Introduction This lesson provides the reader the following: (i) (ii) (iii) (iv)

More information

Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1

Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1 Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1 LECTURE 030 - DEEP SUBMICRON (DSM) CMOS TECHNOLOGY LECTURE ORGANIZATION Outline Characteristics of a deep submicron CMOS technology Typical deep submicron

More information

New 1200V Integrated Circuit Changes The Way 3-Phase Motor Drive Inverters Are Designed David Tam International Rectifier, El Segundo, California

New 1200V Integrated Circuit Changes The Way 3-Phase Motor Drive Inverters Are Designed David Tam International Rectifier, El Segundo, California New 1200V Integrated Circuit Changes The Way 3-Phase Motor Drive Inverters Are Designed David Tam International Rectifier, El Segundo, California New 1200-V high voltage integrated circuit technology and

More information

Field Effect Transistors

Field Effect Transistors 506 19 Principles of Electronics Field Effect Transistors 191 Types of Field Effect Transistors 193 Principle and Working of JFET 195 Importance of JFET 197 JFET as an Amplifier 199 Salient Features of

More information

Diodes and Transistors

Diodes and Transistors Diodes What do we use diodes for? Diodes and Transistors protect circuits by limiting the voltage (clipping and clamping) turn AC into DC (voltage rectifier) voltage multipliers (e.g. double input voltage)

More information

A new SOI Single Chip Inverter IC implemented into a newly designed SMD package

A new SOI Single Chip Inverter IC implemented into a newly designed SMD package A new SOI Single Chip Inverter IC implemented into a newly designed SMD package Kiyoto Watabe**, Marco Honsberg*, Hatade Kazunari** and Toru Araki** **Mitsubishi Electric Corp., Power Device Works, 1-1-1,

More information

DRIVE CIRCUITS FOR POWER MOSFETs AND IGBTs

DRIVE CIRCUITS FOR POWER MOSFETs AND IGBTs DRIVE CIRCUITS FOR POWER MOSFETs AND IGBTs by B. Maurice, L. Wuidart 1. INTRODUCTION Unlike the bipolar transistor, which is current driven, Power MOSFETs, with their insulated gates, are voltage driven.

More information

Application Note 9020. IGBT Basic II CONTENTS. April, 2002. By K.J Um. Section I. Gate drive considerations

Application Note 9020. IGBT Basic II CONTENTS. April, 2002. By K.J Um. Section I. Gate drive considerations B. R G a. Effect on turn-on Application Note 9020 April, 2002 IGBT Basic II By K.J Um CONTENTS Section I. Gate drive considerations 1. Introductions 2. Gate Drive Considerations 3. IGBT switching waveforms

More information

AMPLIFIERS BJT BJT TRANSISTOR. Types of BJT BJT. devices that increase the voltage, current, or power level

AMPLIFIERS BJT BJT TRANSISTOR. Types of BJT BJT. devices that increase the voltage, current, or power level AMPLFERS Prepared by Engr. JP Timola Reference: Electronic Devices by Floyd devices that increase the voltage, current, or power level have at least three terminals with one controlling the flow between

More information

(Amplifying) Photo Detectors: Avalanche Photodiodes Silicon Photomultiplier

(Amplifying) Photo Detectors: Avalanche Photodiodes Silicon Photomultiplier (Amplifying) Photo Detectors: Avalanche Photodiodes Silicon Photomultiplier (no PiN and pinned Diodes) Peter Fischer P. Fischer, ziti, Uni Heidelberg, Seite 1 Overview Reminder: Classical Photomultiplier

More information

5SNA 3600E170300 HiPak IGBT Module

5SNA 3600E170300 HiPak IGBT Module Data Sheet, Doc. No. 5SYA 44-6 2-24 5SNA 36E73 HiPak IGBT Module VCE = 7 V IC = 36 A Ultra low-loss, rugged SPT+ chip-set Smooth switching SPT+ chip-set for good EMC AlSiC base-plate for high power cycling

More information

IRF150 [REF:MIL-PRF-19500/543] 100V, N-CHANNEL. Absolute Maximum Ratings

IRF150 [REF:MIL-PRF-19500/543] 100V, N-CHANNEL. Absolute Maximum Ratings PD - 90337G REPETITIVE AVALANCHE AND dv/dt RATED HEXFET TRANSISTORS THRU-HOLE (TO-204AA/AE) Product Summary Part Number BVDSS RDS(on) ID IRF150 100V 0.055Ω 38A IRF150 JANTX2N6764 JANTXV2N6764 [REF:MIL-PRF-19500/543]

More information

EDC Lesson 12: Transistor and FET Characteristics. 2008 EDCLesson12- ", Raj Kamal, 1

EDC Lesson 12: Transistor and FET Characteristics. 2008 EDCLesson12- , Raj Kamal, 1 EDC Lesson 12: Transistor and FET Characteristics Lesson-12: MOSFET (enhancement and depletion mode) Characteristics and Symbols 2008 EDCLesson12- ", Raj Kamal, 1 1. Metal Oxide Semiconductor Field Effect

More information

Arkansas Power Electronics International, Inc. High Temperature and High Power Density SiC Power Electronic Converters

Arkansas Power Electronics International, Inc. High Temperature and High Power Density SiC Power Electronic Converters Arkansas Power Electronics International, Inc. High Temperature and High Power Density SiC Power Electronic Converters DOE Peer Review November 2-3, 2006 Marcelo Schupbach, Ph.D. Senior Engineer APEI,

More information

2SD315AI Dual SCALE Driver Core for IGBTs and Power MOSFETs

2SD315AI Dual SCALE Driver Core for IGBTs and Power MOSFETs 2SD315AI Dual SCALE Driver Core for IGBTs and Power MOSFETs Description The SCALE drivers from CONCEPT are based on a chip set that was developed specifically for the reliable driving and safe operation

More information

SIPMOS Small-Signal-Transistor

SIPMOS Small-Signal-Transistor SIPMOS Small-Signal-Transistor Features N-channel Depletion mode dv /dt rated Product Summary V DS V R DS(on),max 3.5 Ω I DSS,min.4 A Available with V GS(th) indicator on reel Pb-free lead plating; RoHS

More information

Types of Epitaxy. Homoepitaxy. Heteroepitaxy

Types of Epitaxy. Homoepitaxy. Heteroepitaxy Epitaxy Epitaxial Growth Epitaxy means the growth of a single crystal film on top of a crystalline substrate. For most thin film applications (hard and soft coatings, optical coatings, protective coatings)

More information

High-Megawatt Converter Technology Workshop for Coal-Gas Based Fuel Cell Power Plants January 24, 2007 at NIST

High-Megawatt Converter Technology Workshop for Coal-Gas Based Fuel Cell Power Plants January 24, 2007 at NIST Session 4a Enjeti 1 High-Megawatt Converter Technology Workshop for Coal-Gas Based Fuel Cell Power Plants January 24, 2007 at NIST Dr. Prasad Enjeti TI TI Professor Power Electronics Laboratory College

More information

Features 1.7 A, 20 V. R DS(ON) Symbol Parameter Ratings Units

Features 1.7 A, 20 V. R DS(ON) Symbol Parameter Ratings Units N-Channel.5V Specified PowerTrench TM MOSFET April 999 General Description This N-Channel.5V specified MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially

More information

1ED Compact A new high performance, cost efficient, high voltage gate driver IC family

1ED Compact A new high performance, cost efficient, high voltage gate driver IC family 1ED Compact A new high performance, cost efficient, high voltage gate driver IC family Heiko Rettinger, Infineon Technologies AG, Am Campeon 1-12, 85579 Neubiberg, Germany, heiko.rettinger@infineon.com

More information

MADP-000504-10720T. Non Magnetic MELF PIN Diode

MADP-000504-10720T. Non Magnetic MELF PIN Diode MADP-54-172T Features High Power Handling Low Loss / Low Distortion Leadless Low Inductance MELF Package Non-Magnetic Surface Mountable RoHS Compliant MSL 1 Package Style 172 Dot Denotes Cathode Description

More information

AN ISOLATED GATE DRIVE FOR POWER MOSFETs AND IGBTs

AN ISOLATED GATE DRIVE FOR POWER MOSFETs AND IGBTs APPLICATION NOTE AN ISOLATED GATE DRIVE FOR POWER MOSFETs AND IGBTs by J.M. Bourgeois ABSTRACT Power MOSFET and IGBT gate drives often face isolation and high voltage constraints. The gate drive described

More information

Design Considerations to Increase Power Density in Welding Machines Converters Using TRENCHSTOP 5 IGBT

Design Considerations to Increase Power Density in Welding Machines Converters Using TRENCHSTOP 5 IGBT Design Considerations to Increase Power Density in Welding Machines Converters Using TRENCHSTOP 5 IGBT Fabio Brucchi (*), Forrest Zheng (**) (*) Infineon Technologies Austria AG, Siemensstrasse 2, 9500

More information

n-channel t SC 5μs, T J(max) = 175 C V CE(on) typ. = 1.65V

n-channel t SC 5μs, T J(max) = 175 C V CE(on) typ. = 1.65V IRGP463DPbF IRGP463D-EPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features Low V CE (ON) Trench IGBT Technology Low switching losses Maximum Junction temperature 175 C 5 μs

More information

Chapter 2. Technical Terms and Characteristics

Chapter 2. Technical Terms and Characteristics Chapter 2 Technical Terms and Characteristics CONTENTS Page 1 IGBT terms 2-2 2 IGBT characteristics 2-5 This section explains relevant technical terms and characteristics of IGBT modules. 2-1 1 IGBT terms

More information

IGBT (Insulated Gate Bipolar Transistor) 1 Differences Between MOSFET and IGBT

IGBT (Insulated Gate Bipolar Transistor) 1 Differences Between MOSFET and IGBT IGBT (Insulated Gate Biolar Transistor) 1 Differences Between MOSFET and IGBT 1.1 Structure The IGBT combines in it all the advantages of the biolar and MOS field effect transistor. As can be seen from

More information

Introduction to CMOS VLSI Design

Introduction to CMOS VLSI Design Introduction to CMOS VLSI esign Slides adapted from: N. Weste,. Harris, CMOS VLSI esign, Addison-Wesley, 3/e, 24 Introduction Integrated Circuits: many transistors on one chip Very Large Scale Integration

More information

OptiMOS Power-Transistor Product Summary

OptiMOS Power-Transistor Product Summary OptiMOS Power-Transistor Product Summary V DS 55 V R DS(on),max 4) 35 mω Features Dual N-channel Logic Level - Enhancement mode AEC Q11 qualified I D 2 A PG-TDSON-8-4 MSL1 up to 26 C peak reflow 175 C

More information

Influence of Short Circuit conditions on IGBT Short circuit current in motor drives

Influence of Short Circuit conditions on IGBT Short circuit current in motor drives Influence of Short Circuit conditions on IGBT Short circuit current in motor drives Vijay Bolloju, IGBT Applications Manager, International Rectifier, El Segundo, CA USA Jun Yang IGBT Applications Engineer,

More information

Two-Switch Forward Converter: Operation, FOM, and MOSFET Selection Guide

Two-Switch Forward Converter: Operation, FOM, and MOSFET Selection Guide VISHAY SILICONIX www.vishay.com MOSFETs by Philip Zuk and Sanjay Havanur The two-switch forward converter is a widely used topology and considered to be one of the most reliable converters ever. Its benefits

More information

Power MOSFET Basics Abdus Sattar, IXYS Corporation

Power MOSFET Basics Abdus Sattar, IXYS Corporation Power MOSFET Basics Abdus Sattar, IXYS Corporation Power MOSFETs have become the standard choice for the main switching devices in a broad range of power conversion applications. They are majority carrier

More information

Wide-bandgap materials and power applications

Wide-bandgap materials and power applications 106Conference report: IEDM Wide-bandgap materials and power applications Efforts continue to realize the potential of wide-bandgap semiconductors for power switching applications. Researchers presented

More information

HA-5104/883. Low Noise, High Performance, Quad Operational Amplifier. Features. Description. Applications. Ordering Information. Pinout.

HA-5104/883. Low Noise, High Performance, Quad Operational Amplifier. Features. Description. Applications. Ordering Information. Pinout. HA5104/883 April 2002 Features This Circuit is Processed in Accordance to MILSTD 883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1. Low Input Noise Voltage Density at 1kHz. 6nV/ Hz (Max)

More information

Power MOSFET Tutorial

Power MOSFET Tutorial Power MOSFET Tutorial Jonathan Dodge, P.E. Applications Engineering Manager Advanced Power Technology 405 S.W. Columbia Street Bend, OR 97702 Introduction Power MOSFETs are well known for superior switching

More information

Design and Applications of HCPL-3020 and HCPL-0302 Gate Drive Optocouplers

Design and Applications of HCPL-3020 and HCPL-0302 Gate Drive Optocouplers Design and Applications of HCPL-00 and HCPL-00 Gate Drive Optocouplers Application Note 00 Introduction The HCPL-00 (DIP-) and HCPL-00 (SO-) consist of GaAsP LED optically coupled to an integrated circuit

More information

STW20NM50 N-CHANNEL 550V @ Tjmax - 0.20Ω - 20ATO-247 MDmesh MOSFET

STW20NM50 N-CHANNEL 550V @ Tjmax - 0.20Ω - 20ATO-247 MDmesh MOSFET N-CHANNEL 550V @ Tjmax - 0.20Ω - 20ATO-247 MDmesh MOSFET TYPE V DSS (@Tjmax) R DS(on) I D STW20NM50 550V < 0.25Ω 20 A TYPICAL R DS (on) = 0.20Ω HIGH dv/dt AND AVALANCHE CAPABILITIES 100% AVALANCHE TESTED

More information

Semiconductors, diodes, transistors

Semiconductors, diodes, transistors Semiconductors, diodes, transistors (Horst Wahl, QuarkNet presentation, June 2001) Electrical conductivity! Energy bands in solids! Band structure and conductivity Semiconductors! Intrinsic semiconductors!

More information

OptiMOS 3 Power-Transistor

OptiMOS 3 Power-Transistor Type IPD36N4L G OptiMOS 3 Power-Transistor Features Fast switching MOSFET for SMPS Optimized technology for DC/DC converters Qualified according to JEDEC ) for target applications Product Summary V DS

More information

STP80NF55-08 STB80NF55-08 STB80NF55-08-1 N-CHANNEL 55V - 0.0065 Ω - 80A D2PAK/I2PAK/TO-220 STripFET II POWER MOSFET

STP80NF55-08 STB80NF55-08 STB80NF55-08-1 N-CHANNEL 55V - 0.0065 Ω - 80A D2PAK/I2PAK/TO-220 STripFET II POWER MOSFET STP80NF55-08 STB80NF55-08 STB80NF55-08-1 N-CHANNEL 55V - 0.0065 Ω - 80A D2PAK/I2PAK/TO-220 STripFET II POWER MOSFET TYPE V DSS R DS(on) I D STB80NF55-08/-1 STP80NF55-08 55 V 55 V

More information

Introduction to VLSI Fabrication Technologies. Emanuele Baravelli

Introduction to VLSI Fabrication Technologies. Emanuele Baravelli Introduction to VLSI Fabrication Technologies Emanuele Baravelli 27/09/2005 Organization Materials Used in VLSI Fabrication VLSI Fabrication Technologies Overview of Fabrication Methods Device simulation

More information

P-Channel 20 V (D-S) MOSFET

P-Channel 20 V (D-S) MOSFET Si30CDS P-Channel 0 V (D-S) MOSFET MOSFET PRODUCT SUMMARY V DS (V) R DS(on) ( ) I D (A) a Q g (Typ.) - 0 0. at V GS = - 4.5 V - 3. 0.4 at V GS = -.5 V -.7 3.3 nc TO-36 (SOT-3) FEATURES Halogen-free According

More information

Data Sheet September 2004. Features. Packaging

Data Sheet September 2004. Features. Packaging HGTG3N6A4D Data Sheet September 24 6V, SMPS Series N-Channel IGBT with Anti-Parallel Hyperfast Diode The HGTG3N6A4D is a MOS gated high voltage switching devices combining the best features of MOSFETs

More information

OLED display. Ying Cao

OLED display. Ying Cao OLED display Ying Cao Outline OLED basics OLED display A novel method of fabrication of flexible OLED display Potentials of OLED Suitable for thin, lightweight, printable displays Broad color range Good

More information

UNISONIC TECHNOLOGIES CO., LTD 50N06 Power MOSFET

UNISONIC TECHNOLOGIES CO., LTD 50N06 Power MOSFET UNISONIC TECHNOLOGIES CO., LTD 50N06 50 Amps, 60 Volts N-CHANNEL POWER MOSFET DESCRIPTION TO-263 TO-25 The UTC 50N06 is three-terminal silicon device with current conduction capability of about 50A, fast

More information

1 Form A Solid State Relay

1 Form A Solid State Relay Form A Solid State Relay VOAT, VOAABTR FEATURES 9 S S DC S' 3 S' High speed SSR - t on /t off < 8 μs Maximum R ON. Isolation test voltage 3 V RMS Load voltage V Load current A DC configuration DIP- package

More information

FEATURE ARTICLE. Figure 1: Current vs. Forward Voltage Curves for Silicon Schottky Diodes with High, Medium, Low and ZBD Barrier Heights

FEATURE ARTICLE. Figure 1: Current vs. Forward Voltage Curves for Silicon Schottky Diodes with High, Medium, Low and ZBD Barrier Heights PAGE 1 FEBRUARY 2009 Schottky Diodes by Rick Cory, Skyworks Solutions, Inc. Introduction Schottky diodes have been used for several decades as the key elements in frequency mixer and RF power detector

More information

N-Channel 20-V (D-S) 175 C MOSFET

N-Channel 20-V (D-S) 175 C MOSFET N-Channel -V (D-S) 75 C MOSFET SUD7N-4P PRODUCT SUMMARY V DS (V) r DS(on) ( ) (A) a.37 @ V GS = V 37.6 @ V GS = 4.5 V 9 TO-5 D FEATURES TrenchFET Power MOSFET 75 C Junction Temperature PWM Optimized for

More information

Features. Applications. Truth Table. Close

Features. Applications. Truth Table. Close ASSR-8, ASSR-9 and ASSR-8 Form A, Solid State Relay (Photo MOSFET) (0V/0.A/0Ω) Data Sheet Description The ASSR-XX Series consists of an AlGaAs infrared light-emitting diode (LED) input stage optically

More information

The MOSFET Transistor

The MOSFET Transistor The MOSFET Transistor The basic active component on all silicon chips is the MOSFET Metal Oxide Semiconductor Field Effect Transistor Schematic symbol G Gate S Source D Drain The voltage on the gate controls

More information