# Chapter 9: ELECTRONS IN ATOMS AND THE PERIODIC TABLE

Size: px
Start display at page:

Transcription

1 Chapter 9: ELECTRONS IN ATOMS AND THE PERIODIC TABLE Problems: 1-3, 13-15, 19, 23-25, 31-32, 43, 45-46, 49c, 50a, 50b, 57c, 58 (b,c,d), 61-62, 69, 71-74, 77-88, LIGHT: Electromagnetic Radiation Light is a form of electromagnetic radiation, a type of energy that travels through space at a constant speed, known as the speed of light (symbol c): m/s (~186,000 mi./hour) While light may appear instantaneous to us, it s really a wave traveling at this finite speed. The term electromagnetic comes from the theory proposed by Scottish scientist James Clerk Maxwell that radiant energy consists of waves with an oscillating electric field and an oscillating magnetic field, which are perpendicular to one another. 9.3 Electromagnetic Spectrum: continuum of radiant energy (see Fig. 9.4 on p. 280) The substances below are about the size of the wavelength indicated in the EM spectrum. e.g., an atom is about m in size while a CD is about 10-3 m (or 1 mm) thick. visible region: the portion of the EM spectrum that we can perceive as color For example, a "red-hot" or "white-hot" iron bar freshly removed from a high-temperature source has forms of energy in different parts of the EM spectrum red or white glow falls within the visible region, heat falls within the infrared region CHEM 121: Tro Chapter 9 v1012 page 1 of 13

2 Thus, these electromagnetic waves have both a wavelength and a frequency: wavelength (λ=greek lambda ): distance between successive peaks frequency (ν=greek nu ): number of waves passing a given point in 1 s How is energy related to wavelength and frequency? As the wavelength, the frequency, and the energy As the wavelength, the frequency, and the energy Example: Which is higher in energy, red light at 700 nm or blue light at 400 nm? CHEM 121: Tro Chapter 9 v1012 page 2 of 13

3 Classical Descriptions of Matter John Dalton (1803) Atoms are hard, indivisible, billiard-like particles. Atoms have distinct masses (what distinguishes on type of atom from another). All atoms of an element are the same. JJ Thomson (1890s) discovered charge-to-mass ratio of electrons atoms are divisible because the electrons are one part of atom Ernest Rutherford (1910) shot positively charged alpha particles at a thin foil of gold discovery of the atomic nucleus James Maxwell (1873) visible light consists of electromagnetic waves Transition between Classical and Quantum Theory Max Planck (1900); Blackbody Radiation heated solids to red or white heat noted matter did not emit energy in continuous bursts, but in whole-number multiples of certain well-defined quantities matter absorbs/emits energy in bundles = "quanta" (single bundle of energy= "quantum") Albert Einstein (1905); Photoelectric Effect Photoelectric Effect: Light shining on a clean metal emission of electrons only when the light has a minimum threshold frequency, ν 0 For ν < ν 0 no electrons are emitted For ν > ν 0 electrons are emitted, more e emitted with greater intensity of light, Einstein applied Planck's quantum theory to light light exists as a stream of "particles" called photons CHEM 121: Tro Chapter 9 v1012 page 3 of 13

4 9.4 The Bohr Model: Atoms with Orbits A Danish physicist named Niels Bohr used the results from the hydrogen emission spectrum to develop a quantum model for the hydrogen atom. Bohr Postulates: Bohr Model of the Atom 1. Energy-level Postulate Electrons move in discrete (quantized), circular orbits around the nucleus "tennis ball and stairs" analogy for electrons and energy levels a ball can bounce up to or drop from one stair to another, but it can never sit halfway between two levels Each orbit has a specific energy associated with it, indicated as the principal energy level or quantum number, n=1, 2, 3,... ground state or ground level (n = 1): lowest energy state for atom when the electron is in the lowest energy level in a hydrogen atom excited state: when the electron is in a higher energy level (n = 2,3,4,...) 2. Transitions Between Energy Levels When an atom absorbs energy the electron can jump from a lower energy level to a higher energy level. When an electron drops from a higher energy level to a lower energy level the atom releases energy, sometimes in the form of visible light. CHEM 121: Tro Chapter 9 v1012 page 4 of 13

5 Emission Spectra: continuous or line spectra of radiation emitted by substances a heated solid (e.g. the filament in an incandescent light bulb) emits light that spreads out to give a continuous spectrum = spectrum of all wavelengths of light, like a rainbow Hydrogen Line Spectrum In contrast, when a sample of hydrogen is electrified, the resulting hydrogen emission spectrum contains only a few discrete lines: These discrete lines correspond to specific wavelengths specific energies The hydrogen atoms electrons can only emit certain energies The energy of the electrons in the atom must also be quantized. Planck s postulate that energy is quantized also applies to the electrons in an atom. Each element has a unique line spectrum. Emission spectra can be used to identify unknown elements in chemical analysis. The element s line spectrum is often called its "atomic fingerprint". CHEM 121: Tro Chapter 9 v1012 page 5 of 13

6 Other examples of emission line spectra for mercury and neon to compare with hydrogen. 9.6 THE QUANTUM-MECHANICAL ORBITALS Limitations of the Bohr Model Quantum Mechanical Model Unfortunately, the Bohr Model failed for all other elements that had more than one proton and more than one electron. (The multiple electron-nuclear attractions, electron-electron repulsions, and nuclear repulsions make other atoms much more complicated than hydrogen.) Quantum Mechanical Model In 1920s, a new discipline, quantum mechanics, was developed to describe the motion of submicroscopic particles confined to tiny regions of space. Quantum mechanics makes no attempt to specify the position of a submicroscopic particle at a given instant or how the particle got there It only gives the probability of finding submicroscopic particles (e.g. food court analogy) Instead we take a snapshot of the atom at different times and see where the electrons are likely to be found (See Fig on p. 296). CHEM 121: Tro Chapter 9 v1012 page 6 of 13

7 ORBITALS AND THEIR SHAPES Erwin Schrödinger (1926) developed a model that predicts the probability of finding the electron near a given point probability density for an electron is called the "electron cloud" shape of atomic orbitals Energy Levels and Sublevels For all other elements (with more than 1 proton and more than 1 electron), principal energy levels (numbered 1, 2, 3, ) are further divided into energy sublevels (s, p, d, f). Principal Energy Level (n=1, 2, 3, ): Indicates the size and energy of the orbital occupied by the electron As n increases, the orbital becomes larger, so the electron spends more time further away from the nucleus. The further the electron is from the nucleus, the higher its energy. principal energy level (or shell), n: n=1,2,3,... energy sublevels: s, p, d, and f (or subshells) These sublevels consist of orbitals with specific shapes corresponding to the probability of finding the electron in a given region in space. An electron within a given energy sublevel doesn't orbit around the nucleus. Instead, it has a high probability of being found within a given volume corresponding to the orbital and its energy. s orbitals: spherical size of the orbitals increase with principal quantum number, n 1s < 2s < 3s, etc. CHEM 121: Tro Chapter 9 v1012 page 7 of 13

8 p orbitals: dumbbell-shaped 3 types: p x, p y, p z (where x, y, and z indicates axis on which orbital aligns) The figures below shows the boundary surface representations of the p orbitals. Note: There are also d and f orbitals, but we will not be studying these orbitals in this class. ELECTRON CONFIGURATIONS: Shorthand descriptions of the arrangement of electrons within an atom REMEMBER the following! s orbitals can hold 2 electrons a set of p orbitals can hold 6 electrons a set of d orbitals can hold 10 electrons a set of f orbitals can hold 14 electrons Writing Electron Configurations 1. Electrons are distributed in orbitals of increasing energy, with the lowest energy orbitals filled first. (Consider the parking garage analogy.) 2. Once an orbital has the maximum number of electrons it can hold, it is considered filled. Remaining electrons must then be placed into the next higher energy orbital, and so on. Orbitals in order of increasing energy: (See p. 299, Fig. 9.24) 1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 5d < 6p Ex. 1 He e Ex. 2 C e electron configuration for He: electron config for C: Ex. 3 S e electron config for S: Ex. 4 Cl e electron config for Cl: Ex. 5 K e electron config for K: CHEM 121: Tro Chapter 9 v1012 page 8 of 13

9 9.7 ELECTRON CONFIGURATIONS AND THE PERIODIC TABLE Blocks of Elements The shape of the Periodic Table actually corresponds to the order of energy sublevels. Consider the figure below to see how electrons for each element are distributed into energy sublevels. Electron configurations of atoms with many electrons can become cumbersome. Core notation using Noble gas configurations: Elements in the last column of the Periodic Table are called noble gases. Since noble gases are at the end of each row in the Periodic Table, all of their electrons are in filled orbitals. [He] = 1s 2 [Ne] = 1s 2 2s 2 2p 6 [Ar] = 1s 2 2s 2 2p 6 3s 2 3p 6 Such electrons are called core electrons since they are more stable (less reactive) when they belong to completely filled orbitals. Noble gas electron configurations can be used to abbreviate the core electrons of all elements Electron configurations using Noble gas abbreviations are called core notation CHEM 121: Tro Chapter 9 v1012 page 9 of 13

10 Electron Configurations using Core Notation: a. Electron configuration for S using full notation: 1s 2 2s 2 2p 6 3s 2 3p 4 Electron configuration for S using core notation: [Ne] 3s 2 3p 4 b. Electron configuration for Al using full notation: Electron configuration for Al using core notation: c. Electron configuration for Ca using full notation: Electron configuration for Ca using core notation: Note: Be able to write electron configurations for elements #1-20. VALENCE ELECTRONS core electrons: innermost electrons belonging to filled electron shells valence electrons: Electrons in the outermost shell Since atoms want filled electron shells to be most stable, they ll combine with other atoms with unfilled shells (gaining or losing e s) to get stability. Valence electrons lead to chemical bonds and reactions between atoms. An element s chemical properties are determined by its number of valence electrons. The electron configurations using core notation represent the core electrons with the Noble gas, and the remaining electrons are the valence electrons. valence electrons For example, consider the electron configuration for Ca: [Ar] 4s 2 In Ca, the first 18 e s are the core electrons, and the 2 e s in 4s are valence electrons. For Main Group (A) elements, Group # # of valence electrons Elements in Group IA: Each has 1 valence electron Elements in Group IIA: Each has 2 valence electrons Elements in Group IIIA: Each has 3 valence electrons Elements in Group IVA: Each has 4 valence electrons Elements in Group VA: Each has 5 valence electrons Elements in Group VIA: Each has 6 valence electrons Elements in Group VIIA: Each has 7 valence electrons Elements in Group VIIIA: Each has 8 valence electrons CHEM 121: Tro Chapter 9 v1012 page 10 of 13

11 Electron-Dot (or Lewis) Symbols Show the atom of an element with 1. Element symbol representing the nucleus and core electrons 2. Dots representing the valence e Rules for writing Electron Dot Symbol 1. Write down the element symbol 2. Determine the number of valence electrons using the group number 3. Assume the atom has four sides, and distribute electrons with one electron per side before pairing electrons. Write the Lewis symbol for each of the following: boron: phosphorus: oxygen: fluorine: 9.8 The Explanatory Power of the Quantum-Mechanical Model 4.7 Ions: Losing and Gaining Electrons Although we do not delve into the quantitative aspects of the quantum-mechanical model in this course, calculations show that atoms with the number of valence electrons as the noble gases (2 valence electrons for helium and 8 valence electrons for all the other noble gases) are very low in energy and are therefore stable. Thus, elements tends to gain or lose electrons, so they are isoelectronic with (have the same number of electrons as) a Noble gas to become more stable. Ex. 1: Indicate the number of protons and electrons for the following: Na Na + S S 2 CHEM 121: Tro Chapter 9 v1012 page 11 of 13

12 Ex. 2: Give the formula for the ion formed by each of the following elements: calcium: chlorine: magnesium: barium: nitrogen: oxygen: phosphorus: potassium: isoelectronic: has the same number of electrons Thus, Na + is isoelectronic with, and S 2 is isoelectronic with. Ex. 1: Circle all of the following ions that are isoelectronic with argon: K + Sr 2+ Al 3+ P 3 Ti 4+ Ca 2+ O 2 Mg PERIODIC TRENDS: Atomic Size, Ionization Energy, and Metallic Character Atomic Radius (or Size): distance from the nucleus to the outermost electrons Periodic Trend for Atomic Radius Increases down a group: More p+, n, and e bigger radius Decreases from left to right along a period: Effective nuclear charge: # of protons # of outermost electrons Number of p + and e increases, but electrons going into same orbitals. The higher the effective nuclear charge smaller radius because nucleus pulling e in CHEM 121: Tro Chapter 9 v1012 page 12 of 13

13 Example: Compare an Al atom with a Cl atom below: Trend from top to bottom like a snowman Trend from left to right like a snowman that fell to the right METALLIC CHARACTER: Tendency to behave like a metal rather than a nonmetal Periodic Trend for Metallic Character: Decreases from left to right along a period: Metals concentrated on left-hand side of P.T., nonmetals on right-hand side Increases down a group: Looking at groups IVA and VA, go from nonmetals (C & N) to semimetals (Si & As) to metals (Sn & Bi) Same snowman trends as for atomic radius! IONIZATION ENERGY: Na(g) + ionization energy Na + (g) + e Energy required to remove an electron from a neutral atom to form an ion Periodic Trend for Ionization Energy Decreases down a group: Bigger the atom, the further away electrons are from protons in nucleus electrons held less tightly and are more easily removed Increases from left to right along a period: Elements with fewer (1 3) valence electrons can more easily give up electrons to gain noble gas configuration (stability) Elements with more (4 7) valence electrons can more easily gain electrons to gain noble gas configuration (stability) Trend from top to bottom like an upsidedown snowman Trend from left to right like a upside-down snowman that fell to the right CHEM 121: Tro Chapter 9 v1012 page 13 of 13

### CHAPTER 11: MODERN ATOMIC THEORY

CHAPTER 11: MODERN ATOMIC THEORY Active Learning Questions: 1-2, 8-10, 14-18; End-of-Chapter Problems: 3-9, 11-13, 16, 18, 20-36, 45-54, 56-64, 66b, 67, 69-91, 98, 101-102, 108, 110, 113, 116, 11.2 ELECTROMAGNETIC

### Chapter 7. Electron Structure of the Atom. Chapter 7 Topics

Chapter 7 Electron Structure of the Atom Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Chapter 7 Topics 1. Electromagnetic radiation 2. The Bohr model of

WAVES AND ELECTROMAGNETIC RADIATION All waves are characterized by their wavelength, frequency and speed. Wavelength (lambda, ): the distance between any 2 successive crests or troughs. Frequency (nu,):

### Electrons in Atoms & Periodic Table Chapter 13 & 14 Assignment & Problem Set

Electrons in Atoms & Periodic Table Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Electrons in Atoms & Periodic Table 2 Study Guide: Things You

### 2. John Dalton did his research work in which of the following countries? a. France b. Greece c. Russia d. England

CHAPTER 3 1. Which combination of individual and contribution is not correct? a. Antoine Lavoisier - clarified confusion over cause of burning b. John Dalton - proposed atomic theory c. Marie Curie - discovered

### CHEM 1411 Chapter 5 Homework Answers

1 CHEM 1411 Chapter 5 Homework Answers 1. Which statement regarding the gold foil experiment is false? (a) It was performed by Rutherford and his research group early in the 20 th century. (b) Most of

### Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics

13 ELECTRONS IN ATOMS Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options

### 3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur?

PSI AP Chemistry Periodic Trends MC Review Name Periodic Law and the Quantum Model Use the PES spectrum of Phosphorus below to answer questions 1-3. 1. Which peak corresponds to the 1s orbital? (A) 1.06

### Unit 3 Study Guide: Electron Configuration & The Periodic Table

Name: Teacher s Name: Class: Block: Date: Unit 3 Study Guide: Electron Configuration & The Periodic Table 1. For each of the following elements, state whether the element is radioactive, synthetic or both.

### Electrons In Atoms Mr. O Brien (SFHS) Chapter 5 Standard 1D

Electrons In Atoms Mr. O Brien (SFHS) Chapter 5 Standard 1D Electrons in Atoms (std.1d) What are Bohr Models? planetary model in which the negatively-charged electrons orbit a small, positively-charged

### MODERN ATOMIC THEORY AND THE PERIODIC TABLE

CHAPTER 10 MODERN ATOMIC THEORY AND THE PERIODIC TABLE SOLUTIONS TO REVIEW QUESTIONS 1. Wavelength is defined as the distance between consecutive peaks in a wave. It is generally symbolized by the Greek

### B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal

1. The elements on the Periodic Table are arranged in order of increasing A) atomic mass B) atomic number C) molar mass D) oxidation number 2. Which list of elements consists of a metal, a metalloid, and

### Periodic Table Questions

Periodic Table Questions 1. The elements characterized as nonmetals are located in the periodic table at the (1) far left; (2) bottom; (3) center; (4) top right. 2. An element that is a liquid at STP is

### UNIT (2) ATOMS AND ELEMENTS

UNIT (2) ATOMS AND ELEMENTS 2.1 Elements An element is a fundamental substance that cannot be broken down by chemical means into simpler substances. Each element is represented by an abbreviation called

### Untitled Document. 1. Which of the following best describes an atom? 4. Which statement best describes the density of an atom s nucleus?

Name: Date: 1. Which of the following best describes an atom? A. protons and electrons grouped together in a random pattern B. protons and electrons grouped together in an alternating pattern C. a core

### Name period AP chemistry Unit 2 worksheet Practice problems

Name period AP chemistry Unit 2 worksheet Practice problems 1. What are the SI units for a. Wavelength of light b. frequency of light c. speed of light Meter hertz (s -1 ) m s -1 (m/s) 2. T/F (correct

### Electron Configurations, Isoelectronic Elements, & Ionization Reactions. Chemistry 11

Electron Configurations, Isoelectronic Elements, & Ionization Reactions Chemistry 11 Note: Of the 3 subatomic particles, the electron plays the greatest role in determining the physical and chemical properties

### Atomic Structure: Chapter Problems

Atomic Structure: Chapter Problems Bohr Model Class Work 1. Describe the nuclear model of the atom. 2. Explain the problems with the nuclear model of the atom. 3. According to Niels Bohr, what does n stand

### 9/13/2013. However, Dalton thought that an atom was just a tiny sphere with no internal parts. This is sometimes referred to as the cannonball model.

John Dalton was an English scientist who lived in the early 1800s. Dalton s atomic theory served as a model for how matter worked. The principles of Dalton s atomic theory are: 1. Elements are made of

### SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni

SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni Which metal in the list above has the most metallic character? Explain. Cesium as the

### Models of the Atom and periodic Trends Exam Study Guide

Name 1. What is the term for the weighted average mass of all the naturally occurring isotopes of an element? ans: atomic mass 2. Which is exactly equal to 1/12 the mass of a carbon -12 atom? ans: atomic

### Find a pair of elements in the periodic table with atomic numbers less than 20 that are an exception to the original periodic law.

Example Exercise 6.1 Periodic Law Find the two elements in the fifth row of the periodic table that violate the original periodic law proposed by Mendeleev. Mendeleev proposed that elements be arranged

### Chapter 18: The Structure of the Atom

Chapter 18: The Structure of the Atom 1. For most elements, an atom has A. no neutrons in the nucleus. B. more protons than electrons. C. less neutrons than electrons. D. just as many electrons as protons.

### Part I: Principal Energy Levels and Sublevels

Part I: Principal Energy Levels and Sublevels As you already know, all atoms are made of subatomic particles, including protons, neutrons, and electrons. Positive protons and neutral neutrons are found

### Chapter 7 Periodic Properties of the Elements

Chapter 7 Periodic Properties of the Elements 1. Elements in the modern version of the periodic table are arranged in order of increasing. (a). oxidation number (b). atomic mass (c). average atomic mass

### Copyrighted by Gabriel Tang B.Ed., B.Sc.

Chapter 8: The Periodic Table 8.1: Development of the Periodic Table Johann Dobereiner: - first to discover a pattern of a group of elements like Cl, Br, and I (called triads). John Newland: - suggested

### CHEMSITRY NOTES Chapter 13. Electrons in Atoms

CHEMSITRY NOTES Chapter 13 Electrons in Atoms Goals : To gain an understanding of : 1. Atoms and their structure. 2. The development of the atomic theory. 3. The quantum mechanical model of the atom. 4.

### 6.5 Periodic Variations in Element Properties

324 Chapter 6 Electronic Structure and Periodic Properties of Elements 6.5 Periodic Variations in Element Properties By the end of this section, you will be able to: Describe and explain the observed trends

### Chemistry - Elements Electron Configurations The Periodic Table. Ron Robertson

Chemistry - Elements Electron Configurations The Periodic Table Ron Robertson History of Chemistry Before 16 th Century Alchemy Attempts (scientific or otherwise) to change cheap metals into gold no real

### Atomic Structure Ron Robertson

Atomic Structure Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\atomicstructuretrans.doc I. What is Light? Debate in 1600's: Since waves or particles can transfer energy, what is

### Chapter 5 TEST: The Periodic Table name

Chapter 5 TEST: The Periodic Table name HPS # date: Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The order of elements in the periodic table is based

### 7.4. Using the Bohr Theory KNOW? Using the Bohr Theory to Describe Atoms and Ions

7.4 Using the Bohr Theory LEARNING TIP Models such as Figures 1 to 4, on pages 218 and 219, help you visualize scientific explanations. As you examine Figures 1 to 4, look back and forth between the diagrams

### ELECTRON CONFIGURATION (SHORT FORM) # of electrons in the subshell. valence electrons Valence electrons have the largest value for "n"!

179 ELECTRON CONFIGURATION (SHORT FORM) - We can represent the electron configuration without drawing a diagram or writing down pages of quantum numbers every time. We write the "electron configuration".

### Chapter 2 Atoms, Ions, and the Periodic Table

Chapter 2 Atoms, Ions, and the Periodic Table 2.1 (a) neutron; (b) law of conservation of mass; (c) proton; (d) main-group element; (e) relative atomic mass; (f) mass number; (g) isotope; (h) cation; (i)

### ATOMS A T O M S, I S O T O P E S, A N D I O N S. The Academic Support Center @ Daytona State College (Science 120, Page 1 of 39)

ATOMS A T O M S, I S O T O P E S, A N D I O N S The Academic Support Center @ Daytona State College (Science 120, Page 1 of 39) THE ATOM All elements listed on the periodic table are made up of atoms.

### Arrangement of Electrons in Atoms

CHAPTER 4 PRE-TEST Arrangement of Electrons in Atoms In the space provided, write the letter of the term that best completes each sentence or best answers each question. 1. Which of the following orbital

### Electron Configuration Worksheet (and Lots More!!)

Electron Configuration Worksheet (and Lots More!!) Brief Instructions An electron configuration is a method of indicating the arrangement of electrons about a nucleus. A typical electron configuration

### Chapter 3. Elements, Atoms, Ions, and the Periodic Table

Chapter 3. Elements, Atoms, Ions, and the Periodic Table The Periodic Law and the Periodic Table In the early 1800's many elements had been discovered and found to have different properties. In 1817 Döbreiner's

### 47374_04_p25-32.qxd 2/9/07 7:50 AM Page 25. 4 Atoms and Elements

47374_04_p25-32.qxd 2/9/07 7:50 AM Page 25 4 Atoms and Elements 4.1 a. Cu b. Si c. K d. N e. Fe f. Ba g. Pb h. Sr 4.2 a. O b. Li c. S d. Al e. H f. Ne g. Sn h. Au 4.3 a. carbon b. chlorine c. iodine d.

### Ch. 9 - Electron Organization. The Bohr Model [9.4] Orbitals [9.5, 9.6] Counting Electrons, configurations [9.7]

Ch. 9 - Electron Organization The Bohr Model [9.4] Orbitals [9.5, 9.6] Counting Electrons, configurations [9.7] Predicting ion charges from electron configurations. CHEM 100 F07 1 Organization of Electrons

### 13- What is the maximum number of electrons that can occupy the subshell 3d? a) 1 b) 3 c) 5 d) 2

Assignment 06 A 1- What is the energy in joules of an electron undergoing a transition from n = 3 to n = 5 in a Bohr hydrogen atom? a) -3.48 x 10-17 J b) 2.18 x 10-19 J c) 1.55 x 10-19 J d) -2.56 x 10-19

### Chapter 5 Periodic Table. Dmitri Mendeleev: Russian Chemist credited with the discovery of the periodic table.

Chapter 5 Periodic Table Dmitri Mendeleev: Russian Chemist credited with the discovery of the periodic table. How did he organize the elements? According to similarities in their chemical and physical

### Elements, Atoms & Ions

Introductory Chemistry: A Foundation FOURTH EDITION by Steven S. Zumdahl University of Illinois Elements, Atoms & Ions Chapter 4 1 2 Elements Aims: To learn about the relative abundances of the elements,

### The Advanced Placement Examination in Chemistry. Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010

The Advanced Placement Examination in Chemistry Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010 Atomic Theory and Periodicity Part I 1984 1. Which of

### 5.4 Trends in the Periodic Table

5.4 Trends in the Periodic Table Think about all the things that change over time or in a predictable way. For example, the size of the computer has continually decreased over time. You may become more

### Atomic Calculations. 2.1 Composition of the Atom. number of protons + number of neutrons = mass number

2.1 Composition of the Atom Atomic Calculations number of protons + number of neutrons = mass number number of neutrons = mass number - number of protons number of protons = number of electrons IF positive

### Chapter 3, Elements, Atoms, Ions, and the Periodic Table

1. Which two scientists in 1869 arranged the elements in order of increasing atomic masses to form a precursor of the modern periodic table of elements? Ans. Mendeleev and Meyer 2. Who stated that the

### CHAPTER 8 PRACTICE TEST QUESTIONS (END OF CHAPTER 7 TOO)

CHAPTER 8 PRACTICE TEST QUESTIONS (END OF CHAPTER 7 TOO) Information that most likely will be on the front cover of your exam: h i Z 2 ΔE = @ 2.18 x 10 @ 18 f Z 2 f J j @ k n f 2 n i 2 1. Which of the

### Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total

Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total 1. Calculate the energy in joules of a photon of red light that has a frequency

### Molecular Models & Lewis Dot Structures

Molecular Models & Lewis Dot Structures Objectives: 1. Draw Lewis structures for atoms, ions and simple molecules. 2. Use Lewis structures as a guide to construct three-dimensional models of small molecules.

### Chemistry CP Unit 2 Atomic Structure and Electron Configuration. Learning Targets (Your exam at the end of Unit 2 will assess the following:)

Chemistry CP Unit 2 Atomic Structure and Electron Learning Targets (Your exam at the end of Unit 2 will assess the following:) 2. Atomic Structure and Electron 2-1. Give the one main contribution to the

### History of the Atom & Atomic Theory

Chapter 5 History of the Atom & Atomic Theory You re invited to a Thinking Inside the Box Conference Each group should nominate a: o Leader o Writer o Presenter You have 5 minutes to come up with observations

### Chem 1A Exam 2 Review Problems

Chem 1A Exam 2 Review Problems 1. At 0.967 atm, the height of mercury in a barometer is 0.735 m. If the mercury were replaced with water, what height of water (in meters) would be supported at this pressure?

### Unit 2 Periodic Behavior and Ionic Bonding

Unit 2 Periodic Behavior and Ionic Bonding 6.1 Organizing the Elements I. The Periodic Law A. The physical and chemical properties of the elements are periodic functions of their atomic numbers B. Elements

### Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation

The Nature of Light Light and other forms of radiation carry information to us from distance astronomical objects Visible light is a subset of a huge spectrum of electromagnetic radiation Maxwell pioneered

### PROTONS AND ELECTRONS

reflect Imagine that you have a bowl of oranges, bananas, pineapples, berries, pears, and watermelon. How do you identify each piece of fruit? Most likely, you are familiar with the characteristics of

### AP* Atomic Structure & Periodicity Free Response Questions KEY page 1

AP* Atomic Structure & Periodicity ree Response Questions KEY page 1 1980 a) points 1s s p 6 3s 3p 6 4s 3d 10 4p 3 b) points for the two electrons in the 4s: 4, 0, 0, +1/ and 4, 0, 0, - 1/ for the three

### APS Science Curriculum Unit Planner

APS Science Curriculum Unit Planner Grade Level/Subject Chemistry Stage 1: Desired Results Enduring Understanding Topic 1: Elements and the Periodic Table: The placement of elements on the periodic table

### Periodic Table Trends in Element Properties Ron Robertson

Periodic Table Trends in Element Properties Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\ch9trans2.doc The Periodic Table Quick Historical Review Mendeleev in 1850 put together

### Sample Exercise 6.1 Concepts of Wavelength and Frequency

Sample Exercise 6.1 Concepts of Wavelength and Frequency Two electromagnetic waves are represented in the margin. (a) Which wave has the higher frequency? (b) If one wave represents visible light and the

### Elements in the periodic table are indicated by SYMBOLS. To the left of the symbol we find the atomic mass (A) at the upper corner, and the atomic num

. ATOMIC STRUCTURE FUNDAMENTALS LEARNING OBJECTIVES To review the basics concepts of atomic structure that have direct relevance to the fundamental concepts of organic chemistry. This material is essential

### The Periodic Table; Chapter 5: Section 1 - History of the Periodic Table Objectives: Explain the roles of Mendeleev and Moseley in the development of

The Periodic Table; Chapter 5: Section 1 - History of the Periodic Table Objectives: Explain the roles of Mendeleev and Moseley in the development of the periodic table. Describe the modern periodic table.

### KEY. Honors Chemistry Assignment Sheet- Unit 3

KEY Honors Chemistry Assignment Sheet- Unit 3 Extra Learning Objectives (beyond regular chem.): 1. Related to electron configurations: a. Be able to write orbital notations for s, p, & d block elements.

### Flame Tests & Electron Configuration

Flame Tests & Electron Configuration INTRODUCTION Many elements produce colors in the flame when heated. The origin of this phenomenon lies in the arrangement, or configuration of the electrons in the

### Chemistry: The Periodic Table and Periodicity

Chemistry: The Periodic Table and Periodicity Name: per: Date:. 1. By what property did Mendeleev arrange the elements? 2. By what property did Moseley suggest that the periodic table be arranged? 3. What

### 2014 Spring CHEM101 Ch1-2 Review Worksheet Modified by Dr. Cheng-Yu Lai,

Ch1 1) Which of the following underlined items is not an intensive property? A) A chemical reaction requires 3.00 g of oxygen. B) The density of helium at 25 C is 1.64 10-4 g/cm3. C) The melting point

### 3 CHEMICAL FOUNDATIONS: ELEMENTS, ATOMS AND IONS

3 CHEMICAL FOUNDATIONS: ELEMENTS, ATOMS AND IONS All matter is built up from chemical combinations of elements. As of 2003, there are 114 known elements, of which 88 are naturally occurring; the remaining

### Bonding Practice Problems

NAME 1. When compared to H 2 S, H 2 O has a higher 8. Given the Lewis electron-dot diagram: boiling point because H 2 O contains stronger metallic bonds covalent bonds ionic bonds hydrogen bonds 2. Which

### Electron Arrangements

Section 3.4 Electron Arrangements Objectives Express the arrangement of electrons in atoms using electron configurations and Lewis valence electron dot structures New Vocabulary Heisenberg uncertainty

### SCH 3UI Unit 2 Outline Up to Quiz #1 Atomic Theory and the Periodic Table

Lesson Topics Covered SCH 3UI Unit 2 Outline Up to Quiz #1 Atomic Theory and the Periodic Table 1 Note: History of Atomic Theory progression of understanding of composition of matter; ancient Greeks and

### Student Exploration: Electron Configuration

Name: Date: Student Exploration: Electron Configuration Vocabulary: atomic number, atomic radius, Aufbau principle, chemical family, diagonal rule, electron configuration, Hund s rule, orbital, Pauli exclusion

### Multi-electron atoms

Multi-electron atoms Today: Using hydrogen as a model. The Periodic Table HWK 13 available online. Please fill out the online participation survey. Worth 10points on HWK 13. Final Exam is Monday, Dec.

### Department of Physics and Geology The Elements and the Periodic Table

Department of Physics and Geology The Elements and the Periodic Table Physical Science 1422 Equipment Needed Qty Periodic Table 1 Part 1: Background In 1869 a Russian chemistry professor named Dmitri Mendeleev

### Lewis Dot Structures of Atoms and Ions

Why? The chemical properties of an element are based on the number of electrons in the outer shell of its atoms. We use Lewis dot structures to map these valence electrons in order to identify stable electron

### IONISATION ENERGY CONTENTS

IONISATION ENERGY IONISATION ENERGY CONTENTS What is Ionisation Energy? Definition of t Ionisation Energy What affects Ionisation Energy? General variation across periods Variation down groups Variation

### Section 11.3 Atomic Orbitals Objectives

Objectives 1. To learn about the shapes of the s, p and d orbitals 2. To review the energy levels and orbitals of the wave mechanical model of the atom 3. To learn about electron spin A. Electron Location

### NOTES ON The Structure of the Atom

NOTES ON The Structure of the Atom Chemistry is the study of matter and its properties. Those properties can be explained by examining the atoms that compose the matter. An atom is the smallest particle

### 18.2 Comparing Atoms. Atomic number. Chapter 18

As you know, some substances are made up of only one kind of atom and these substances are called elements. You already know something about a number of elements you ve heard of hydrogen, helium, silver,

### Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of:

ConcepTest 27.1 Photons Which has more energy, a photon of: 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy 400 nm 500 nm 600 nm 700 nm ConcepTest 27.1 Photons Which

### Unit 3.2: The Periodic Table and Periodic Trends Notes

Unit 3.2: The Periodic Table and Periodic Trends Notes The Organization of the Periodic Table Dmitri Mendeleev was the first to organize the elements by their periodic properties. In 1871 he arranged the

### ******* KEY ******* Atomic Structure & Periodic Table Test Study Guide

Atomic Structure & Periodic Table Test Study Guide VOCABULARY: Write a brief definition of each term in the space provided. 1. Atoms: smallest unit of an element that has all of the properties of that

### Ions & Their Charges Worksheet

Ions & Their Charges Worksheet Name Date Teacher Diagram of charges based on groups on the periodic table including transition metals and noble gases: IA IIA Transition IIIA IVA VA VIA VIIA VIIIA metals

### Periodic Table. 1. In the modern Periodic Table, the elements are arranged in order of increasing. A. atomic number B. mass number

Name: ate: 1. In the modern, the elements are arranged in order of increasing. atomic number. mass number. oxidation number. valence number 5. s the elements in Group I are considered in order of increasing

### 19.1 Bonding and Molecules

Most of the matter around you and inside of you is in the form of compounds. For example, your body is about 80 percent water. You learned in the last unit that water, H 2 O, is made up of hydrogen and

### neutrons are present?

AP Chem Summer Assignment Worksheet #1 Atomic Structure 1. a) For the ion 39 K +, state how many electrons, how many protons, and how many 19 neutrons are present? b) Which of these particles has the smallest

### Objectives. PAM1014 Introduction to Radiation Physics. Constituents of Atoms. Atoms. Atoms. Atoms. Basic Atomic Theory

PAM1014 Introduction to Radiation Physics Basic Atomic Theory Objectives Introduce and Molecules The periodic Table Electronic Energy Levels Atomic excitation & de-excitation Ionisation Molecules Constituents

### 5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves

5. The Nature of Light Light travels in vacuum at 3.0. 10 8 m/s Light is one form of electromagnetic radiation Continuous radiation: Based on temperature Wien s Law & the Stefan-Boltzmann Law Light has

### Ernest Rutherford Atomic Model 1911. Plum Pudding Model J.J. Thomson 1897

1 The arrangement of electrons in an atom determine most of the chemical properties of that atom. Electrons are what actually do the reacting. Plum Pudding Model J.J. Thomson 1897 Ernest Rutherford Atomic

### Review of the isotope effect in the hydrogen spectrum

Review of the isotope effect in the hydrogen spectrum 1 Balmer and Rydberg Formulas By the middle of the 19th century it was well established that atoms emitted light at discrete wavelengths. This is in

### Atoms Absorb & Emit Light

Atoms Absorb & Emit Light Spectra The wavelength of the light that an element emits or absorbs is its fingerprint. Atoms emit and absorb light First Test is Thurs, Feb 1 st About 30 multiple choice questions

### CHAPTER 4: ATOMS AND ELEMENTS

CHAPTER 4: ATOMS AND ELEMENTS Problems: 1-70 then after Chapter 9, complete 71-94, 103-104, 107-108, 113-114 4.1 Experiencing Atoms at Tiburon atom: smallest identifiable unit of an element All matter

### Trends of the Periodic Table Diary

Trends of the Periodic Table Diary Trends are patterns of behaviors that atoms on the periodic table of elements follow. Trends hold true most of the time, but there are exceptions, or blips, where the

### The Periodic Table: Periodic trends

Unit 1 The Periodic Table: Periodic trends There are over one hundred different chemical elements. Some of these elements are familiar to you such as hydrogen, oxygen, nitrogen and carbon. Each one has

### Level 3 Achievement Scale

Unit 1: Atoms Level 3 Achievement Scale Can state the key results of the experiments associated with Dalton, Rutherford, Thomson, Chadwick, and Bohr and what this lead each to conclude. Can explain that

### ANSWER KEY : BUILD AN ATOM PART I: ATOM SCREEN Build an Atom simulation ( http://phet.colorado.edu/en/simulation/build an atom )

ANSWER KEY : PART I: ATOM SCREEN Build an Atom simulation ( http://phet.colorado.edu/en/simulation/build an atom ) 1. Explore the Build an Atom simulation with your group. As you explore, talk about what

### Unit 2 Atomic Structure

Unit 2 Atomic Structure Big Idea: Atomic structure explains patterns in the behavior of elements and allows us to predict the chemical and physical behavior of a given element. The organization of elements

### Noble Gases. Outline Nobel Gas Elements Radon and Health Chemistry Homework

Radon and Other Noble Gases The elements in the last column of the periodic table are all very stable, mono-atomic gases. Until 1962, they were called inert gases because they did not react with other

### ATOMS AND THE PERIODIC TABLE CHAPTER 3 PHYSICAL SCIENCE

ATOMS AND THE PERIODIC TABLE CHAPTER 3 PHYSICAL SCIENCE Chapter 3 Vocabulary Words (27 words) Nucleus Atomic number Proton Mass number Neutron Isotopes Electron Atomic mass unit (amu) Energy level Average