Numerical Methods for the Navier-Stokes Equations

Size: px
Start display at page:

Download "Numerical Methods for the Navier-Stokes Equations"

Transcription

1 Comaioal Flid Dyamics I Nmerical Meods or e Navier-Sokes Eqaios Isrcor: Hog G. Im iversiy o Miciga Fall 00

2 Comaioal Flid Dyamics I Olie Wa will be covered Smmary o solio meods - Icomressible Navier-Sokes eqaios - Comressible Navier-Sokes eqaios Hig accracy meods - Saial accracy imroveme - Time iegraio meods Wa will o be covered No-iie dierece aroaces sc as - Fiie eleme meods (srcred grid) - Secral meods

3 Comaioal Flid Dyamics I Icomressible Navier-Sokes Eqaios

4 Comaioal Flid Dyamics I Icomressible Navier-Sokes Eqaios α 0 v w Te (ydrodyamic) ressre is decoled rom e res o e solio variables. Pysically, i is e ressre a drives e low, b i racice ressre is solved sc a e icomressibiliy codiio is saisied. Te sysem o ordiary diereial eqaios (ODE s) are caged o a sysem o diereial-algebraic eqaios (DAE s), were algebraic eqaios acs like a cosrai.

5 Comaioal Flid Dyamics I Voriciy-sream cio ormlaio Advaages: - Pressre does o aear exlicily (ca be obaied laer) - Icomressibiliy is aomaically saisied (by deiiio o sream cio) Drawbacks: - Limied o -D alicaios (Revised 3-D aroaces are available)

6 Comaioal Flid Dyamics I Solio Meods or Icomressible N-S Eqaios i Primiive Formlaio: Ariicial comressibiliy (Cori, 967) mosly seady Pressre correcio aroac ime-accrae - MAC (Harlow ad Welc, 965) - Proecio meod (Cori ad Temam, 968) - Fracioal se meod (Kim ad Moi, 975) - SIMPLE, SIMPLER (Paakar, 98)

7 Comaioal Flid Dyamics I Ariicial Comressibiliy - Back o a sysem o ODE by Wi roerly-cose, solve il Origially develoed or seady roblems Te erm ariicial comressibiliy is coied rom eqaio o sae Possible merical diiclies or large c α c 0 c : arbirary cosa c 0 ( ( x) ) c

8 Comaioal Flid Dyamics I Ariicial Comressibiliy - Te coce ca be alied o a ime-accrae meod by sig sedo-ime seig a every sb-ses. β α c 0 A every real ime se, ake sedo-ime seig sig exlici ime iegraio il 0, 0 Sice e sedo ime scale is o ysical, we ca accelerae e iegraio owever we wa.

9 Comaioal Flid Dyamics I Pressre Correcio Meod - Marker-ad-Cell (MAC) Meod Harlow ad Welc (965) Origially derived or ree srace lows wi saggered grid Exlici iegraio α ( α Takig divergece o momem eqaio, ( ) ) ad α 0 ( Poisso eqaio )

10 Comaioal Flid Dyamics I WPI Proecio Meod Cori (968), Temam (969) Origially derived o a colocaed grid Ideical o MAC exce or e Poisso eqaio Pressre Correcio Meod - 0 0

11 Comaioal Flid Dyamics I Pressre Correcio Meod - 3 MAC vs. Proecio. Iegraio wio ressre ( A D ). Poisso eqaio ( ) 3. Proecio io icomressible ield ( A D )

12 Comaioal Flid Dyamics I Pressre Correcio Meod - 4 SIMPLE Algorim Paakar (98) (Semi-Imlici Meod or Pressre Liked Eqaios) - Ieraive rocedre wi ressre correcio. Gess e ressre ield. Solve e momem eqaio (imlicily) 3. Solve e ressre correcio eqaio α 0 ( ) 0 0

13 Comaioal Flid Dyamics I Pressre Correcio Meod Correc e ressre ad velociy Go o. Reea e rocess il e solio coverges. Noes: - Origially develoed or e saggered grid sysem. - Te correced velociy ield saisies e coiiy eqaio eve i e ressre correcio is oly aroximae. - Someimes eds o be overesimaed 0 ω ( ω 0.8) derrelaxaio

14 Comaioal Flid Dyamics I Pressre Correcio Meod - 6 SIMPLER (SIMPLE Revised) - Icororaig e roecio meod (racioal se). Gess e velociy ield 0. Solve momem eqaio (imlicily) wio ressre ˆ 0 ˆ ˆ α ˆ 3. Solve e ressre Poisso eqaio * ( û)

15 Comaioal Flid Dyamics I Pressre Correcio Meod Solve e momem eqaio wi * 0 6. Pressre correcio eqaio * 7. Correc e velociy, b o e ressre * * α ( * ) 8. Go o. Reea e rocess il solio is coverged. * * *

16 Comaioal Flid Dyamics I Sabiliy Cosideraio Exlici ime iegraio i -D reqires e sabiliy codiio: 4α < ad < ( ) v 4α Hig-Re low: advecio-corolled Low-Re low: disio-corolled 4 ( v ) /α 4α se imlici scemes or aroriae erms! 0 / α ~ Re a bo limis!

17 Comaioal Flid Dyamics I PI W Accracy Imroveme Saial Saial Accracy Exlici dierecig - se larger secils ) ( O ) ( O Tridiagoal - Padé (comac) scemes ( ) ) ( O Peadiagoal L e d c b a ε δ γ β α

18 Comaioal Flid Dyamics I Accracy Imroveme Saial 3 Exac E 4E 6E 6T 8E 8T k' k Re: Keedy, C. A. ad Career, M. H., Alied Nmerical Maemaics, 4, (994).

19 Comaioal Flid Dyamics I Accracy Imroveme Temoral Temoral Accracy A( ) D( ) Imlici Crak-Nicolso A( ) A( [ ( ) ] / ) α( ) Noliear advecio erm reqires ieraio.

20 Comaioal Flid Dyamics I PI W Accracy Imroveme Temoral Liearizaio o Advecio Terms For examle, a -D eqaio ca be liearized as 0 y x F E v xy xx v E yy xy v v v F [ ] [ ] 0 y B x A [ ] [ ] F E B A, were Jacobia marix

21 Comaioal Flid Dyamics I Accracy Imroveme Temoral 3 Fracioal Se Meod Kim & Moi (985) Proecio meod exeded o iger accracy φ 0 Re [ ] 3A( ) A( ) ( ) Adams-Basor (AB) φ Crak-Nicolso Noe a φ is diere rom e origial ressre φ φ Re

22 Comaioal Flid Dyamics I Accracy Imroveme Temoral 4 Treame o imlici viscos erms [ ] 3 ( ) ( ) A A ( ) Re ( δ xx δ yy δ zz ) Re Re Re 3A( ) A( ) δ xx δ yy δ zz Re Facorizig, ( δ xx δ yy δ zz ) Re Re Re 3A( ) A( ) δ xx δ yy δ Re TDMA i ree direcios [ ] ( ) [ ] ( ) zz

23 Comaioal Flid Dyamics I Accracy Imroveme Temoral 5 Noes o Fracioal Se Meod Origially imlemeed io a saggered grid sysem Laer imroved wi 3rd-order Rge-Ka meod Re: Le & Moi, J. Com. Pys., 9:369 (99) Te meod ca be alied o a variable-desiy roblem (e.g. sbsoic combsio, wo-ase low) were Poisso eqaio becomes ( ) φ T Eq. o Sae Re: Rlad, P. D. Tesis, Saord iversiy (989) Bell, Collela ad Glaz, JCP, 85:57 (989)

24 Comaioal Flid Dyamics I Bodary Codiios Bodary Codiios or Icomressible Flows I geeral, bodary codiio reame is easier a or e comressible low ormlaio de o e absece o acosics Tyical bodary codiios: - Periodic:, N N ec. - Ilow codiios: ( x 0) F( y, z, ) - Olow codiios: covecive olow codiio 0 a x L x A da

25 Comaioal Flid Dyamics I Comressible Navier-Sokes Eqaios

26 Comaioal Flid Dyamics I WPI 0 z y x G F E E w v x xz xy xx E w v ψ ) ( E y yz yy xy v E vw v v v ψ ) ( F z zz yz xz w E vw vw w w ψ ) ( G T c T c e RT v,, R e T e R c v ) (, ) (, γ γ γ or Cosiive relaios z zz yz xz z y yz yy xy y x xz xy xx x q w v q w v q w v ψ ψ ψ were

27 Comaioal Flid Dyamics I Solio meods or comressible N-S eqaios E x F y G z ollows e same eciqes sed or yerbolic eqaios For smoo solios wi viscos erms, ceral dierecig sally works. No eed o worry abo wid meod, lx-sliig, TVD, FCT (lx-correced rasor), ec. I geeral, wid-like meods irodces merical dissiaio, ece rovides sabiliy, b accracy becomes a cocer.

28 Comaioal Flid Dyamics I Exlici Meods - MacCormack meod - Lea rog/dfor-frakel meod - Lax-Wedro meod - Rge-Ka meod Imlici Meods - Beam-Warmig sceme - Rge-Ka meod Mos meods are d order. Te Rge-Ka meod ca be easily ailored o iger order meod (bo exlici ad imlici).

29 Comaioal Flid Dyamics I WPI Mos o e ime, a imlici iegraio meod ivolves oliear advecio erms wic are liearized as z y x G F E [ ] [ ] [ ] z C y B x A [ ] [ ] [ ] C B A G F E,, ADI, acorizaio, ec.

30 Comaioal Flid Dyamics I limaely, comressible Navier-Sokes eqaios ca be wrie as a sysem o ODE s d F d ( E F x y (, ( ) ) 0 ) 0 G z Iiial codiio Solio eciqes or a sysem o ODE alies. - Exlici vs. Imlici (Nosi vs. Si) - Mli-sage vs. Mli-se

31 Comaioal Flid Dyamics I Bodary Codiios Bodary Codiios or Comressible Flows I geeral, bodary codiio or e comressible low is rickier becase all e acosic waves ms be roerly ake care o a e bodaries. Tyical bodary codiios: - Periodic: sill easy o imleme - Bo ilow ad olow codiios reqire reame o caracerisic waves (ard-wall, orelecig, soge, ec).

Outline. Numerical Analysis Boundary Value Problems & PDE. Exam. Boundary Value Problems. Boundary Value Problems. Solution to BVProblems

Outline. Numerical Analysis Boundary Value Problems & PDE. Exam. Boundary Value Problems. Boundary Value Problems. Solution to BVProblems Oulie Numericl Alysis oudry Vlue Prolems & PDE Lecure 5 Jeff Prker oudry Vlue Prolems Sooig Meod Fiie Differece Meod ollocio Fiie Eleme Fll, Pril Differeil Equios Recp of ove Exm You will o e le o rig

More information

Mechanical Vibrations Chapter 4

Mechanical Vibrations Chapter 4 Mechaical Vibraios Chaper 4 Peer Aviabile Mechaical Egieerig Deparme Uiversiy of Massachuses Lowell 22.457 Mechaical Vibraios - Chaper 4 1 Dr. Peer Aviabile Modal Aalysis & Corols Laboraory Impulse Exciaio

More information

α α λ α = = λ λ α ψ = = α α α λ λ ψ α = + β = > θ θ β > β β θ θ θ β θ β γ θ β = γ θ > β > γ θ β γ = θ β = θ β = θ β = β θ = β β θ = = = β β θ = + α α α α α = = λ λ λ λ λ λ λ = λ λ α α α α λ ψ + α =

More information

University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report

University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report University of Maryland Fraternity & Sorority Life Academic Report Academic and Population Statistics Population: # of Students: # of New Members: Avg. Size: Avg. GPA: % of the Undergraduate Population

More information

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ). PROCEDIMIENTO DE RECUPERACION Y COPIAS DE SEGURIDAD DEL CORTAFUEGOS LINUX P ar a p od e r re c u p e ra r nu e s t r o c o rt a f u e go s an t e un d es a s t r e ( r ot u r a d e l di s c o o d e l a

More information

Optimal Control Formulation using Calculus of Variations

Optimal Control Formulation using Calculus of Variations Lecure 5 Opimal Conrol Formulaion using Calculus o Variaions Dr. Radhakan Padhi Ass. Proessor Dep. o Aerospace Engineering Indian Insiue o Science - Bangalore opics Opimal Conrol Formulaion Objecive &

More information

DIFFERENTIAL FORMULATION OF THE BASIC LAWS

DIFFERENTIAL FORMULATION OF THE BASIC LAWS CHAPER DIFFERENIAL FORMULAION OF HE BASIC LAWS. Introdction Differential fmlation of basic las: Conseration of mass Conseration of momentm Conseration of energ. Flo Generation (i) Fced conection. Motion

More information

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval

More information

Solving the Navier-Stokes! Equations in Primitive Variables!

Solving the Navier-Stokes! Equations in Primitive Variables! ttp://www.d.edu/~gtryggva/cfd-course/ Outlie Solvig te Navier-Stokes Equatios i Primitive Variables Te projectio metod review Metods for te Navier-Stokes Equatios Moi ad Kim Bell, et al Colocated grids

More information

Mechanical Properties - Stresses & Strains

Mechanical Properties - Stresses & Strains Mechanical Properties - Stresses & Strains Types of Deformation : Elasic Plastic Anelastic Elastic deformation is defined as instantaneous recoverable deformation Hooke's law : For tensile loading, σ =

More information

ASCII CODES WITH GREEK CHARACTERS

ASCII CODES WITH GREEK CHARACTERS ASCII CODES WITH GREEK CHARACTERS Dec Hex Char Description 0 0 NUL (Null) 1 1 SOH (Start of Header) 2 2 STX (Start of Text) 3 3 ETX (End of Text) 4 4 EOT (End of Transmission) 5 5 ENQ (Enquiry) 6 6 ACK

More information

G ri d m on i tori n g w i th N A G I O S (*) (*) Work in collaboration with P. Lo Re, G. S av a and G. T ortone WP3-I CHEP 2000, N F N 10.02.2000 M e e t i n g, N a p l e s, 29.1 1.20 0 2 R o b e r 1

More information

Chapter 5 Darcy s Law and Applications

Chapter 5 Darcy s Law and Applications Chater 5 Darcy s La and Alications 4.1 Introdction Darcy' s la Note : Time q reservoir scale is dn dt added 1 4. Darcy s La; Flid Potential K h 1 l h K h l Different Sand Pac Different K The ressre at

More information

I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y

I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y and KB rl iak s iol mi a, hme t a ro cp hm a5 a 2k p0r0o 9f i,e ls hv oa nr t ds eu rmv oedye l o nf dae cr

More information

Section 1. Finding Common Terms

Section 1. Finding Common Terms Worksheet 2.1 Factors of Algebraic Expressions Section 1 Finding Common Terms In worksheet 1.2 we talked about factors of whole numbers. Remember, if a b = ab then a is a factor of ab and b is a factor

More information

Unit 6 Plane Stress and Plane Strain

Unit 6 Plane Stress and Plane Strain Unit 6 Plane Stress and Plane Strain Readings: T & G 8, 9, 10, 11, 12, 14, 15, 16 Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics and Engineering Systems There are many structural configurations

More information

CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation

CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation Prof. David Marshall School of Computer Science & Informatics Factorisation Factorisation is a way of

More information

How To Factor By Gcf In Algebra 1.5

How To Factor By Gcf In Algebra 1.5 7-2 Factoring by GCF Warm Up Lesson Presentation Lesson Quiz Algebra 1 Warm Up Simplify. 1. 2(w + 1) 2. 3x(x 2 4) 2w + 2 3x 3 12x Find the GCF of each pair of monomials. 3. 4h 2 and 6h 2h 4. 13p and 26p

More information

The All New... TACO ZONE CONTROLS WIRING GUIDE

The All New... TACO ZONE CONTROLS WIRING GUIDE he All ew... ACO ZOE COROLS WIRIG GUIDE Pages Switching Relays Single Zone Wiring 4 Switching Relays Oil Boiler Wiring Safety otice 5 Switching Relays O EXP Connected ogether with Priority 6 9 Switching

More information

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA

MATHEMATICS FOR ENGINEERING BASIC ALGEBRA MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL 1 ALGEBRAIC LAWS This tutorial is useful to anyone studying engineering. It uses the principle of learning by example. On completion of this tutorial

More information

15. Symmetric polynomials

15. Symmetric polynomials 15. Symmetric polynomials 15.1 The theorem 15.2 First examples 15.3 A variant: discriminants 1. The theorem Let S n be the group of permutations of {1,, n}, also called the symmetric group on n things.

More information

Economics Honors Exam 2008 Solutions Question 5

Economics Honors Exam 2008 Solutions Question 5 Economics Honors Exam 2008 Soluions Quesion 5 (a) (2 poins) Oupu can be decomposed as Y = C + I + G. And we can solve for i by subsiuing in equaions given in he quesion, Y = C + I + G = c 0 + c Y D + I

More information

Transforming the Net Present Value for a Comparable One

Transforming the Net Present Value for a Comparable One 'Club of coomics i Miskolc' TMP Vol. 8., Nr. 1., pp. 4-3. 1. Trasformig e Ne Prese Value for a Comparable Oe MÁRIA ILLÉS, P.D. UNIVRSITY PROFSSOR e-mail: [email protected] SUMMARY Tis sudy examies e

More information

MTH6121 Introduction to Mathematical Finance Lesson 5

MTH6121 Introduction to Mathematical Finance Lesson 5 26 MTH6121 Inroducion o Mahemaical Finance Lesson 5 Conens 2.3 Brownian moion wih drif........................... 27 2.4 Geomeric Brownian moion........................... 28 2.5 Convergence of random

More information

Derivative Securities: Lecture 7 Further applications of Black-Scholes and Arbitrage Pricing Theory. Sources: J. Hull Avellaneda and Laurence

Derivative Securities: Lecture 7 Further applications of Black-Scholes and Arbitrage Pricing Theory. Sources: J. Hull Avellaneda and Laurence Deivaive ecuiies: Lecue 7 uhe applicaios o Black-choles ad Abiage Picig heoy ouces: J. Hull Avellaeda ad Lauece Black s omula omeimes is easie o hik i ems o owad pices. Recallig ha i Black-choles imilaly

More information

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets.

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. Norm The notion of norm generalizes the notion of length of a vector in R n. Definition. Let V be a vector space. A function α

More information

Why we use compounding and discounting approaches

Why we use compounding and discounting approaches Comoudig, Discouig, ad ubiased Growh Raes Near Deb s school i Souher Colorado. A examle of slow growh. Coyrigh 000-04, Gary R. Evas. May be used for o-rofi isrucioal uroses oly wihou ermissio of he auhor.

More information

ANALYTIC PROOF OF THE PRIME NUMBER THEOREM

ANALYTIC PROOF OF THE PRIME NUMBER THEOREM ANALYTIC PROOF OF THE PRIME NUMBER THEOREM RYAN SMITH, YUAN TIAN Conens Arihmeical Funcions Equivalen Forms of he Prime Number Theorem 3 3 The Relaionshi Beween Two Asymoic Relaions 6 4 Dirichle Series

More information

RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A

RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A RAJALAKSHMI ENGINEERING COLLEGE MA 26 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS. Solve (D 2 + D 2)y = 0. 2. Solve (D 2 + 6D + 9)y = 0. PART A 3. Solve (D 4 + 4)x = 0 where D = d dt 4. Find Particular Integral:

More information

1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes

1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes Arithmetic of Algebraic Fractions 1.4 Introduction Just as one whole number divided by another is called a numerical fraction, so one algebraic expression divided by another is known as an algebraic fraction.

More information

Lecture 2: Telegrapher Equations For Transmission Lines. Power Flow.

Lecture 2: Telegrapher Equations For Transmission Lines. Power Flow. Whies, EE 481 Lecure 2 Page 1 of 13 Lecure 2: Telegraher Equaions For Transmission Lines. Power Flow. Microsri is one mehod for making elecrical connecions in a microwae circui. I is consruced wih a ground

More information

Unsteady State Molecular Diffusion

Unsteady State Molecular Diffusion Chaper. Differeial Mass Balae Useady Sae Moleular Diffusio Whe he ieral oeraio gradie is o egligible or Bi

More information

Unit 3 Boolean Algebra (Continued)

Unit 3 Boolean Algebra (Continued) Unit 3 Boolean Algebra (Continued) 1. Exclusive-OR Operation 2. Consensus Theorem Department of Communication Engineering, NCTU 1 3.1 Multiplying Out and Factoring Expressions Department of Communication

More information

Traffic Modeling and Prediction using ARIMA/GARCH model

Traffic Modeling and Prediction using ARIMA/GARCH model Traffic Modelig ad Predictio usig ARIMA/GARCH model Preseted by Zhili Su, Bo Zhou, Uiversity of Surrey, UK COST 285 Symposium 8-9 September 2005 Muich, Germay Outlie Motivatio ARIMA/GARCH model Parameter

More information

Unit 3 (Review of) Language of Stress/Strain Analysis

Unit 3 (Review of) Language of Stress/Strain Analysis Unit 3 (Review of) Language of Stress/Strain Analysis Readings: B, M, P A.2, A.3, A.6 Rivello 2.1, 2.2 T & G Ch. 1 (especially 1.7) Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics and Engineering

More information

Solutions for Review Problems

Solutions for Review Problems olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector

More information

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample

More information

The Notebook Series. The solution of cubic and quartic equations. R.S. Johnson. Professor of Applied Mathematics

The Notebook Series. The solution of cubic and quartic equations. R.S. Johnson. Professor of Applied Mathematics The Notebook Series The solution of cubic and quartic equations by R.S. Johnson Professor of Applied Mathematics School of Mathematics & Statistics University of Newcastle upon Tyne R.S.Johnson 006 CONTENTS

More information

Associativity condition for some alternative algebras of degree three

Associativity condition for some alternative algebras of degree three Associativity condition for some alternative algebras of degree three Mirela Stefanescu and Cristina Flaut Abstract In this paper we find an associativity condition for a class of alternative algebras

More information

Pressure Drop in Air Piping Systems Series of Technical White Papers from Ohio Medical Corporation

Pressure Drop in Air Piping Systems Series of Technical White Papers from Ohio Medical Corporation Pressure Dro in Air Piing Systems Series of Technical White Paers from Ohio Medical Cororation Ohio Medical Cororation Lakeside Drive Gurnee, IL 600 Phone: (800) 448-0770 Fax: (847) 855-604 [email protected]

More information

Section 11.3: The Integral Test

Section 11.3: The Integral Test Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

More information

Algebra (Expansion and Factorisation)

Algebra (Expansion and Factorisation) Chapter10 Algebra (Expansion and Factorisation) Contents: A B C D E F The distributive law Siplifying algebraic expressions Brackets with negative coefficients The product (a + b)(c + d) Geoetric applications

More information

CHAPTER 22 ASSET BASED FINANCING: LEASE, HIRE PURCHASE AND PROJECT FINANCING

CHAPTER 22 ASSET BASED FINANCING: LEASE, HIRE PURCHASE AND PROJECT FINANCING CHAPTER 22 ASSET BASED FINANCING: LEASE, HIRE PURCHASE AND PROJECT FINANCING Q.1 Defie a lease. How does i differ from a hire purchase ad isalme sale? Wha are he cash flow cosequeces of a lease? Illusrae.

More information

Systems Design Project: Indoor Location of Wireless Devices

Systems Design Project: Indoor Location of Wireless Devices Systems Desig Project: Idoor Locatio of Wireless Devices Prepared By: Bria Murphy Seior Systems Sciece ad Egieerig Washigto Uiversity i St. Louis Phoe: (805) 698-5295 Email: [email protected] Supervised

More information

Boolean Algebra Part 1

Boolean Algebra Part 1 Boolean Algebra Part 1 Page 1 Boolean Algebra Objectives Understand Basic Boolean Algebra Relate Boolean Algebra to Logic Networks Prove Laws using Truth Tables Understand and Use First Basic Theorems

More information

1/22/2007 EECS 723 intro 2/3

1/22/2007 EECS 723 intro 2/3 1/22/2007 EES 723 iro 2/3 eraily, all elecrical egieers kow of liear sysems heory. Bu, i is helpful o firs review hese coceps o make sure ha we all udersad wha his heory is, why i works, ad how i is useful.

More information

Table of Contents Appendix 4-9

Table of Contents Appendix 4-9 Table of Contents Appendix 4-9 Appendix Multi-Input Thermometer & Datalogger Software Manual v1.0 4-8 Table of Contents 1. Introduction...1-1 1.1 Operation Environment...1-1 1.2 Hardware...1-1 1.3 Connecting

More information

SCHOOL PESTICIDE SAFETY AN D IN TEG R ATED PEST M AN AG EM EN T Statutes put into law by the Louisiana Department of Agriculture & Forestry to ensure the safety and well-being of children and school personnel

More information

Mortality Variance of the Present Value (PV) of Future Annuity Payments

Mortality Variance of the Present Value (PV) of Future Annuity Payments Morali Variance of he Presen Value (PV) of Fuure Annui Pamens Frank Y. Kang, Ph.D. Research Anals a Frank Russell Compan Absrac The variance of he presen value of fuure annui pamens plas an imporan role

More information

Modulation Principles

Modulation Principles EGR 544 Communiation Theory 5. Charaterization of Communiation Signas and Systems Z. Aiyaziiogu Eetria and Computer Engineering Department Ca Poy Pomona Moduation Prinipes Amost a ommuniation systems transmit

More information

Math 53 Worksheet Solutions- Minmax and Lagrange

Math 53 Worksheet Solutions- Minmax and Lagrange Math 5 Worksheet Solutions- Minmax and Lagrange. Find the local maximum and minimum values as well as the saddle point(s) of the function f(x, y) = e y (y x ). Solution. First we calculate the partial

More information

Research Article Dynamic Pricing of a Web Service in an Advance Selling Environment

Research Article Dynamic Pricing of a Web Service in an Advance Selling Environment Hidawi Publishig Corporaio Mahemaical Problems i Egieerig Volume 215, Aricle ID 783149, 21 pages hp://dx.doi.org/1.1155/215/783149 Research Aricle Dyamic Pricig of a Web Service i a Advace Sellig Evirome

More information

REVISTA INVESTIGACION OPERACIONAL VOL. 31, No.2, 159-170, 2010

REVISTA INVESTIGACION OPERACIONAL VOL. 31, No.2, 159-170, 2010 REVISTA INVESTIGACION OPERACIONAL VOL. 3, No., 59-70, 00 AN ALGORITHM TO OBTAIN AN OPTIMAL STRATEGY FOR THE MARKOV DECISION PROCESSES, WITH PROBABILITY DISTRIBUTION FOR THE PLANNING HORIZON. Gouliois E.

More information

Group Theory and Molecular Symmetry

Group Theory and Molecular Symmetry Group Theory and Molecular Symmetry Molecular Symmetry Symmetry Elements and perations Identity element E - Apply E to object and nothing happens. bject is unmoed. Rotation axis C n - Rotation of object

More information

Wavelet Transform of Fractional Integrals for Integrable Boehmians

Wavelet Transform of Fractional Integrals for Integrable Boehmians Available a hp://pvamu.edu/aam Appl. Appl. Mah. ISSN: 932-9466 Vol. 5, Issue (Jue 200) pp. 0 (Previously, Vol. 5, No. ) Applicaios ad Applied Mahemaics: A Ieraioal Joural (AAM) Wavele Trasorm o Fracioal

More information

Høgskolen i Narvik Sivilingeniørutdanningen

Høgskolen i Narvik Sivilingeniørutdanningen Høgskolen i Narvik Sivilingeniørutdanningen Eksamen i Faget STE66 ELASTISITETSTEORI Klasse: 4.ID Dato: 7.0.009 Tid: Kl. 09.00 1.00 Tillatte hjelpemidler under eksamen: Kalkulator Kopi av Boken Mechanics

More information

Hilbert Transform Relations

Hilbert Transform Relations BULGARIAN ACADEMY OF SCIENCES CYBERNEICS AND INFORMAION ECHNOLOGIES Volume 5, No Sofia 5 Hilber rasform Relaios Each coiuous problem (differeial equaio) has may discree approximaios (differece equaios)

More information

Job Market: Top Accounting Students Optimistic

Job Market: Top Accounting Students Optimistic Job Market: Top Accounting Students Optimistic The fall 2004 recruiting season is here and there is cause for optimism. Per a spring 2004 survey performed by the National Association of Colleges and Employers,

More information

Additional questions for chapter 4

Additional questions for chapter 4 Additional questions for chapter 4 1. A stock price is currently $ 1. Over the next two six-month periods it is expected to go up by 1% or go down by 1%. The risk-free interest rate is 8% per annum with

More information

Stock Price Pinning near Option Expiration Dates

Stock Price Pinning near Option Expiration Dates Stock Price Piig ear Optio Expiratio Dates Marco Avellaeda, New York Uiversity Geady Kasya, New York Uiversity Michael D. Lipki, Katama Tradig & Columbia Uiversity George Papaicolaou Coferece Paris, December

More information

5 means to write it as a product something times something instead of a sum something plus something plus something.

5 means to write it as a product something times something instead of a sum something plus something plus something. Intermediate algebra Class notes Factoring Introduction (section 6.1) Recall we factor 10 as 5. Factoring something means to think of it as a product! Factors versus terms: terms: things we are adding

More information

Campus Sustainability Assessment and Related Literature

Campus Sustainability Assessment and Related Literature Campus Sustainability Assessment and Related Literature An Annotated Bibliography and Resource Guide Andrew Nixon February 2002 Campus Sustainability Assessment Review Project Telephone: (616) 387-5626

More information

Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley

Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Cosider a legth- sequece x[ with a -poit DFT X[ where Represet the idices ad as +, +, Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Usig these

More information

The Business Case for D om aink ey s I d ent ified M ail Andy Spillane V ic e P r es ident, Y ah o o! M February 13, 2006 ail 1 Fighting Spam & Email Abuse R eq uir es a M ulti-fac eted Appr o ac h DomainKeys

More information

Math 21a Curl and Divergence Spring, 2009. 1 Define the operator (pronounced del ) by. = i

Math 21a Curl and Divergence Spring, 2009. 1 Define the operator (pronounced del ) by. = i Math 21a url and ivergence Spring, 29 1 efine the operator (pronounced del by = i j y k z Notice that the gradient f (or also grad f is just applied to f (a We define the divergence of a vector field F,

More information

Fluent Software Training TRN-99-003. Solver Settings. Fluent Inc. 2/23/01

Fluent Software Training TRN-99-003. Solver Settings. Fluent Inc. 2/23/01 Solver Settings E1 Using the Solver Setting Solver Parameters Convergence Definition Monitoring Stability Accelerating Convergence Accuracy Grid Indeendence Adation Aendix: Background Finite Volume Method

More information

Equities: Positions and Portfolio Returns

Equities: Positions and Portfolio Returns Foundaions of Finance: Equiies: osiions and orfolio Reurns rof. Alex Shapiro Lecure oes 4b Equiies: osiions and orfolio Reurns I. Readings and Suggesed racice roblems II. Sock Transacions Involving Credi

More information

Distributed Containment Control with Multiple Dynamic Leaders for Double-Integrator Dynamics Using Only Position Measurements

Distributed Containment Control with Multiple Dynamic Leaders for Double-Integrator Dynamics Using Only Position Measurements IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 6, JUNE 22 553 Disribued Coaime Corol wih Muliple Dyamic Leaders for Double-Iegraor Dyamics Usig Oly Posiio Measuremes Jiazhe Li, Wei Re, Member, IEEE,

More information

Factoring - Greatest Common Factor

Factoring - Greatest Common Factor 6.1 Factoring - Greatest Common Factor Objective: Find the greatest common factor of a polynomial and factor it out of the expression. The opposite of multiplying polynomials together is factoring polynomials.

More information

Theory of turbo machinery / Turbomaskinernas teori. Chapter 4

Theory of turbo machinery / Turbomaskinernas teori. Chapter 4 Theory of turbo machinery / Turbomaskinernas teori Chapter 4 Axial-Flow Turbines: Mean-Line Analyses and Design Power is more certainly retained by wary measures than by daring counsels. (Tacitius, Annals)

More information

Tridiagonal Solvers on the GPU and Applications to Fluid Simulation. Nikolai Sakharnykh, NVIDIA [email protected]

Tridiagonal Solvers on the GPU and Applications to Fluid Simulation. Nikolai Sakharnykh, NVIDIA nsakharnykh@nvidia.com Tridiagonal Solvers on the GPU and Applications to Flid Simlation Nikolai Sakharnykh, NVIDIA [email protected] Agenda Introdction and Problem Statement Governing Eqations ADI Nmerical Method GPU Implementation

More information

S. Tanny MAT 344 Spring 1999. be the minimum number of moves required.

S. Tanny MAT 344 Spring 1999. be the minimum number of moves required. S. Tay MAT 344 Sprig 999 Recurrece Relatios Tower of Haoi Let T be the miimum umber of moves required. T 0 = 0, T = 7 Iitial Coditios * T = T + $ T is a sequece (f. o itegers). Solve for T? * is a recurrece,

More information

1 9 / m S t a n d a r d w y m a g a ń - e g z a m i n m i s t r z o w s k i dla zawodu M E C H A N I K P O J A Z D Ó W S A M O C H O D O W Y C H Kod z klasyfikacji zawodów i sp e cjaln oś ci dla p ot r

More information

12. Spur Gear Design and selection. Standard proportions. Forces on spur gear teeth. Forces on spur gear teeth. Specifications for standard gear teeth

12. Spur Gear Design and selection. Standard proportions. Forces on spur gear teeth. Forces on spur gear teeth. Specifications for standard gear teeth . Spur Gear Desig ad selecio Objecives Apply priciples leared i Chaper 11 o acual desig ad selecio of spur gear sysems. Calculae forces o eeh of spur gears, icludig impac forces associaed wih velociy ad

More information

PRESSURE BUILDUP. Figure 1: Schematic of an ideal buildup test

PRESSURE BUILDUP. Figure 1: Schematic of an ideal buildup test Tom Aage Jelmer NTNU Dearmen of Peroleum Engineering and Alied Geohysics PRESSURE BUILDUP I is difficul o kee he rae consan in a roducing well. This is no an issue in a buildu es since he well is closed.

More information

W Cisco Kompetanse eek end 2 0 0 8 SMB = Store Mu ll ii gg hh eter! Nina Gullerud ng ulleru@ c is c o. c o m 1 Vår E n t e r p r i s e e r f a r i n g... 2 S m å o g M e llo m s t o r e B e d r i f t e

More information

Data Center end users for 40G/100G and market dy nami c s for 40G/100G on S M F Adam Carter Ci s c o 1 W Now that 40GbE is part of the IEEE 802.3ba there will be a wid er array of applic ation s that will

More information

Introduction to Complex Numbers in Physics/Engineering

Introduction to Complex Numbers in Physics/Engineering Introduction to Complex Numbers in Physics/Engineering ference: Mary L. Boas, Mathematical Methods in the Physical Sciences Chapter 2 & 14 George Arfken, Mathematical Methods for Physicists Chapter 6 The

More information

Factoring x n 1: cyclotomic and Aurifeuillian polynomials Paul Garrett <[email protected]>

Factoring x n 1: cyclotomic and Aurifeuillian polynomials Paul Garrett <garrett@math.umn.edu> (March 16, 004) Factorig x 1: cyclotomic ad Aurifeuillia polyomials Paul Garrett Polyomials of the form x 1, x 3 1, x 4 1 have at least oe systematic factorizatio x 1 = (x 1)(x 1

More information

Using Predictive Modeling to Reduce Claims Losses in Auto Physical Damage

Using Predictive Modeling to Reduce Claims Losses in Auto Physical Damage Using Predictive Modeling to Reduce Claims Losses in Auto Physical Damage CAS Loss Reserve Seminar 23 Session 3 Private Passenger Automobile Insurance Frank Cacchione Carlos Ariza September 8, 23 Today

More information

3 Energy. 3.3. Non-Flow Energy Equation (NFEE) Internal Energy. MECH 225 Engineering Science 2

3 Energy. 3.3. Non-Flow Energy Equation (NFEE) Internal Energy. MECH 225 Engineering Science 2 MECH 5 Egieerig Sciece 3 Eergy 3.3. No-Flow Eergy Equatio (NFEE) You may have oticed that the term system kees croig u. It is ecessary, therefore, that before we start ay aalysis we defie the system that

More information

The Australian Journal of Mathematical Analysis and Applications

The Australian Journal of Mathematical Analysis and Applications The Australian Journal of Mathematical Analysis and Applications Volume 7, Issue, Article 11, pp. 1-14, 011 SOME HOMOGENEOUS CYCLIC INEQUALITIES OF THREE VARIABLES OF DEGREE THREE AND FOUR TETSUYA ANDO

More information

OHIO REGION PHI THETA KAPPA 2012-13

OHIO REGION PHI THETA KAPPA 2012-13 OHIO REGION PHI THETA KAPPA REGION HALLMARK AWARDS HONORS IN ACTION HALLMARK WINNER Alpha Rho Epsilon Columbus State Community College HONORS IN ACTION HALLMARK FIRST RUNNER-UP Washington State Community

More information

Constrained optimization.

Constrained optimization. ams/econ 11b supplementary notes ucsc Constrained optimization. c 2010, Yonatan Katznelson 1. Constraints In many of the optimization problems that arise in economics, there are restrictions on the values

More information

4.3. The Integral and Comparison Tests

4.3. The Integral and Comparison Tests 4.3. THE INTEGRAL AND COMPARISON TESTS 9 4.3. The Itegral ad Compariso Tests 4.3.. The Itegral Test. Suppose f is a cotiuous, positive, decreasig fuctio o [, ), ad let a = f(). The the covergece or divergece

More information

Rotation Matrices and Homogeneous Transformations

Rotation Matrices and Homogeneous Transformations Rotation Matrices and Homogeneous Transformations A coordinate frame in an n-dimensional space is defined by n mutually orthogonal unit vectors. In particular, for a two-dimensional (2D) space, i.e., n

More information

VECTOR ALGEBRA. 10.1.1 A quantity that has magnitude as well as direction is called a vector. is given by a and is represented by a.

VECTOR ALGEBRA. 10.1.1 A quantity that has magnitude as well as direction is called a vector. is given by a and is represented by a. VECTOR ALGEBRA Chapter 10 101 Overview 1011 A quantity that has magnitude as well as direction is called a vector 101 The unit vector in the direction of a a is given y a and is represented y a 101 Position

More information

1. Prove that the empty set is a subset of every set.

1. Prove that the empty set is a subset of every set. 1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: [email protected] Proof: For any element x of the empty set, x is also an element of every set since

More information

root node level: internal node edge leaf node CS@VT Data Structures & Algorithms 2000-2009 McQuain

root node level: internal node edge leaf node CS@VT Data Structures & Algorithms 2000-2009 McQuain inary Trees 1 A binary tree is either empty, or it consists of a node called the root together with two binary trees called the left subtree and the right subtree of the root, which are disjoint from each

More information

Part II: Finite Difference/Volume Discretisation for CFD

Part II: Finite Difference/Volume Discretisation for CFD Part II: Finite Difference/Volume Discretisation for CFD Finite Volume Metod of te Advection-Diffusion Equation A Finite Difference/Volume Metod for te Incompressible Navier-Stokes Equations Marker-and-Cell

More information

4.1 Modules, Homomorphisms, and Exact Sequences

4.1 Modules, Homomorphisms, and Exact Sequences Chapter 4 Modules We always assume that R is a ring with unity 1 R. 4.1 Modules, Homomorphisms, and Exact Sequences A fundamental example of groups is the symmetric group S Ω on a set Ω. By Cayley s Theorem,

More information

Teoretisk Fysik KTH. Advanced QM (SI2380), test questions 1

Teoretisk Fysik KTH. Advanced QM (SI2380), test questions 1 Teoretisk Fysik KTH Advanced QM (SI238), test questions NOTE THAT I TYPED THIS IN A HURRY AND TYPOS ARE POSSIBLE: PLEASE LET ME KNOW BY EMAIL IF YOU FIND ANY (I will try to correct typos asap - if you

More information