Introduction to Nuclear Magnetic Resonance Spectroscopy
|
|
|
- Marshall Stevenson
- 9 years ago
- Views:
Transcription
1 Introduction to Nuclear Magnetic Resonance Spectroscopy Dr. Dean L. Olson, NMR Lab Director School of Chemical Sciences University of Illinois Called figures, equations, and tables are from Principles of Instrumental Analysis, 6 th Ed. Skoog, Holler, and Crouch, 2007; Thompson Corp.
2 NMR basic layout & components Workstation Console (Transceiver) Superconducting Magnet NMR Probe (the transceiver antenna placed inside magnet bore; only seen from below)
3 NMR basic layout & components A variety of configurations; UIUC has all Agilent/Varian equipment NMR console: Latest Agilent/Varian Style NMR Workstation Computer and Superconductive Magnet
4 Nuclear Magnetic Resonance NMR is based on the behavior of a sample placed in an electromagnet and irradiated with radiofrequency waves: MHz (l 0.5 m) The magnet is typically large, strong, $$$, and delivers a stable, uniform field required for the best NMR data A transceiver antenna, called the NMR probe, is inserted into the center bore of the magnet, and the sample is placed inside the probe Sample can be in a narrow tube, or Sample can flow in via an autosampler Qualitative or Quantitative; liquid or solid Universal proton (others) detector; non-destructive
5 NMR, continued NMR is a chemical analysis technique MRI = magnetic resonance imaging; usually an imaging technique, but is also becoming a chemical method called functional MRI (fmri) MRI is also non-destructive Prof. Paul Lauterbur, UIUC, Nobel Laureate for Medicine or Physiology, 2003, with Sir Peter Mansfield, U. Nottingham MRI is really NMRI; the MRI industry cleverly omitted the nuclear from their product for easier marketing to the public
6 A plaque just outside Chemical Life Sciences Laboratory A commemorating Paul Lauterbur, Professor of Chemistry, U of Illinois. Nobel Prize, 2003 for MRI Another plaque, outside Noyes Lab (SE corner), honors Herb Gutowsky Professor of Chemistry, U of Illinois. He was the first to apply the nuclear magnetic resonance method to chemical research. His experimental and theoretical work on the chemical shift effect and its relation to molecular structure.
7 NMR components Magnet (inside a Dewar) Workstation computer NMR Console (creates and receives pulses) NMR Probe: really a transceiver antenna) (inside magnet) Overhead perspective; solenoid inside Photos from
8 NMR components Magnet (inside a Dewar) Overhead perspective; solenoid inside NMR Probe (inside magnet) NMR Probe Pneumatic Legs (to stabilize vibrations)
9 U. Bristol, United Kingdom 14.1 Tesla magnet Termed a 600 MHz magnet B o = Static Magnetic Field Varian is now Agilent as of late MHz is the frequency at which the proton ( 1 H) nucleus spin resonates in a magnet of this strength (14.1 Tesla) 1000 MHz is equivalent to 23.5 Tesla
10 U. Bristol, United Kingdom 14.1 Tesla magnet Termed a 600 MHz magnet B o = Static Magnetic Field The magnet is superconducting, always charged, but not powered, and surrounded by liquid helium (4.2 K) and the He is surrounded by liquid nitrogen (77 K). The current is coasting, that is, persistent, uniform & stable. 600 MHz is the frequency at which the proton ( 1 H) nucleus spin resonates in a magnet of this strength. The big white tanks outside Noyes and RAL hold liquid N 2 for NMR and other cold stuff. No high pressures are involved; vented.
11 NMR magnet cut-away Bore Liquid Helium sleeve Liquid Nitrogen sleeve Vacuum sleeve Solenoid (cut-away) Superconducting coil B o In the Atrium of Chemical Life Sciences Lab A B o
12 NMR sample handling options Spinning tube NMR Sample syringe Sample vial A typical NMR sample tube: 8 inches long; 5 mm outer diameter. Inserted into the NMR probe from above either manually or using automation. Automated flow NMR Pumps and solvents Autosampler
13 Magnet Housing How does NMR work? Probe Coils create the Transverse (B 1 ) Field from a current pulse of time t B o B o Magnet Housing Solenoid Coil B o = Static Magnetic Field from the big supercon magnet: persistent Helmholtz Coil
14 2 Helmholtz Coils: 1 inside the other for tube NMR. One coil for protons, the other for carbon. The inner coil is the most sensitive. Solenoidal Microcoil for flow NMR; one coil does it all
15 NMR depends on the spin of the nucleus under study the most common is 1 H Fig Nuclear spin in an applied magnetic field A magnetic dipole, m, is produced The spin precesses The spin is quantized 1 H has a spin quantum number of either +½ (low E) or ½ (high E) Many nuclei have suitable spin quantum numbers for NMR: 13 C (only 1.1% abundance) 19 F 31 P 14 N Many nuclei are not NMR active: 12 C (sadly) & 16 O (also sadly)
16 NMR depends on the spin of the nucleus under study: the magnetogyric ratio m p magnetogyric ratio m dipole moment p angular momentum Magnetogyric ratio = gyromagnetic ratio: It s different for each type of nucleus. The bigger the better. Eqn. 19-1, slightly modified to be a ratio
17 In a magnetic field, the spin has two quantized energy states called high and low E mh 2 B o m = spin quantum number m = - ½ for high energy; opposed m = + ½ for low energy; aligned E E 1/ 2 1/ 2 h 4 B o h 4 B o High E; opposed Low E; aligned h E 2 E = high - low B o B o in Tesla (T) and E in Joules (J) B o is the static field.
18 In a magnetic field, the spin has two quantized energy states called high and low m = spin quantum number m = - ½ for high energy; opposed m = + ½ for low energy; aligned Fig E 1/ 2 h 4 Low E; aligned B o
19 In a magnetic field, the spin has two quantized energy states called high and low High E; opposed High E; opposed Low E; aligned Low E; aligned Fig. 19-1
20 E depends on the applied B o E 1/ 2 h 4 B o h Slope 4 E 1/ 2 h 4 B o Slope h 4 The stronger the magnet, the larger the E
21 So, where does the NMR signal come from? Transverse pulse transmitted by the probe Fast : msec Fig Low E; aligned Slow : sec Relaxation energy received by the probe High E; opposed The NMR probe coil both transmits and receives: it s a transceiver. The spin is pulsed by the NMR probe, then the spin relaxation produces the signal.
22 At equilibrium, the low spin state is slightly favored otherwise, no NMR signal Everything else cancels. N N Hi Lo e B 2 kt h o Boltzmann Distribution Equation for quantum spin states in a magnetic field In Example 19-2 (p. 501), for 1,000,000 atoms of hydrogen, 1 H, in the high energy state: B o = 4.69 Tesla T = 20 C = x 10 8 T -1 sec -1 N Hi / N Lo = For N Hi = 1,000,000 then N Lo = 1,000,033 N = 33 or just 33 ppm of all the spins present are available for NMR because all the rest of the spins are in a dynamic equilibrium This is why NMR is a relatively insensitive technique unfortunate. Thus, big $$$ magnets.
23 Signal area proportional to amount of proton Spin Relaxation Signal What does NMR data look like? This is the acquired signal from the spin relaxation. Time (a few sec of relaxation for 1 pulse) Fourier Transform A signal is seen for each type of proton and each has its own frequency depending on its own electronic environment This is what you look at and analyze: An NMR spectrum reference zero x (1x 10 6 ) shift in ppm, Same normalized scale for all magnet strengths
24 Understanding NMR Spectra Deshielded protons absorb more energy* Si is not electron withdrawing *The e- are pulled away from H and do a poor job of blocking the magnetic field Oxygen is electron withdrawing zero set by TMS (tetramethyl silane)
25 Understanding NMR Spectra
26 Understanding NMR Spectra Small magnet Large magnet ppm
27 Understanding NMR Spectra ppm These ppm are for ALL magnets
28 NMR Spectral Nomenclature Left side of spectrum Deshielded High frequency Downfield Low field Right side of spectrum Shielded Low frequency Upfield High field *The e- are pulled away and do a poor job of blocking the magnetic field ppm
29 But, the spins couple - they interact For 2 protons: Each proton has its own spin The spin can be +½ or ½ We can draw all the combinations: Degenerate: both cases have the same energy Skoog, Page 515 High E; opposed Low E; aligned Relative spin population 1 2 1
30 But, the spins couple - they interact For 3 protons: Each proton has its own spin The spin can be +½ or ½ We can draw all the combinations: Degenerate: all 3 cases have the same energy Page 517 High E; opposed Low E; aligned Relative spin population
31 The principle of multiplicity: the n + 1 rule and peak splitting n is the number of adjacent (neighboring) protons that are in a different chemical environment Multiplicity, m = n + 1 Pattern follows Pascal s triangle
32 The principle of multiplicity: a signal gets split based on what it s next to m n = 0 H H 1 n = 1 2 n = 2 3 n = 3 4 The splitting is called J coupling Proximity is important
33 Do they split or not? This will yield a spectrum with one NMR singlet. Protons are not split by identical neighbors.
34 Do they split or not? Propane: a b a See next panel for spectrum of propane
35 1 H-NMR Spectrum of Propane CH 3 CH 2 CH 3 a b a a (triplet) b (septet) Area ratios??
36 NMR Data Interpretation Example 1 Relative total areas: C:B:A 2:3:3 Most deshielded protons? Splitting relative areas 1:2:1 Splitting relative areas 1:3:3:1 90-MHz Magnet
37 NMR Data Interpretation Example 2 Most shielded protons? See if you can work out the spectral details yourself! (areas in green) 90-MHz Magnet
38 NMR Chemical Shifts helps interpret data
39 NMR data interpretation watch the video!
40 Other Things NMR Can Mean
Nuclear Magnetic Resonance
Nuclear Magnetic Resonance NMR is probably the most useful and powerful technique for identifying and characterizing organic compounds. Felix Bloch and Edward Mills Purcell were awarded the 1952 Nobel
Proton Nuclear Magnetic Resonance Spectroscopy
CHEM 334L Organic Chemistry Laboratory Revision 2.0 Proton Nuclear Magnetic Resonance Spectroscopy In this laboratory exercise we will learn how to use the Chemistry Department's Nuclear Magnetic Resonance
Used to determine relative location of atoms within a molecule Most helpful spectroscopic technique in organic chemistry Related to MRI in medicine
Structure Determination: Nuclear Magnetic Resonance CHEM 241 UNIT 5C 1 The Use of NMR Spectroscopy Used to determine relative location of atoms within a molecule Most helpful spectroscopic technique in
Nuclear Magnetic Resonance Spectroscopy
Nuclear Magnetic Resonance Spectroscopy Nuclear magnetic resonance spectroscopy is a powerful analytical technique used to characterize organic molecules by identifying carbonhydrogen frameworks within
Nuclear Magnetic Resonance Spectroscopy
Nuclear Magnetic Resonance Spectroscopy Introduction NMR is the most powerful tool available for organic structure determination. It is used to study a wide variety of nuclei: 1 H 13 C 15 N 19 F 31 P 2
4. It is possible to excite, or flip the nuclear magnetic vector from the α-state to the β-state by bridging the energy gap between the two. This is a
BASIC PRINCIPLES INTRODUCTION TO NUCLEAR MAGNETIC RESONANCE (NMR) 1. The nuclei of certain atoms with odd atomic number, and/or odd mass behave as spinning charges. The nucleus is the center of positive
Organic Chemistry Tenth Edition
Organic Chemistry Tenth Edition T. W. Graham Solomons Craig B. Fryhle Welcome to CHM 22 Organic Chemisty II Chapters 2 (IR), 9, 3-20. Chapter 2 and Chapter 9 Spectroscopy (interaction of molecule with
13C NMR Spectroscopy
13 C NMR Spectroscopy Introduction Nuclear magnetic resonance spectroscopy (NMR) is the most powerful tool available for structural determination. A nucleus with an odd number of protons, an odd number
Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis
Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis Main points of the chapter 1. Hydrogen Nuclear Magnetic Resonance a. Splitting or coupling (what s next to what) b. Chemical shifts (what type is it) c. Integration
Proton Nuclear Magnetic Resonance Spectroscopy
Proton Nuclear Magnetic Resonance Spectroscopy Introduction: The NMR Spectrum serves as a great resource in determining the structure of an organic compound by revealing the hydrogen and carbon skeleton.
Nuclear Magnetic Resonance (NMR) Spectroscopy cont... Recommended Reading:
Applied Spectroscopy Nuclear Magnetic Resonance (NMR) Spectroscopy cont... Recommended Reading: Banwell and McCash Chapter 7 Skoog, Holler Nieman Chapter 19 Atkins, Chapter 18 Relaxation processes We need
Nuclear Magnetic Resonance Spectroscopy
Chapter 8 Nuclear Magnetic Resonance Spectroscopy http://www.yteach.co.uk/page.php/resources/view_all?id=nuclear_magnetic _resonance_nmr_spectroscopy_spin_spectrometer_spectrum_proton_t_pag e_5&from=search
PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (H-NMR)
PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (H-NMR) WHAT IS H-NMR SPECTROSCOPY? References: Bruice 14.1, 14.2 Introduction NMR or nuclear magnetic resonance spectroscopy is a technique used to determine
Proton Nuclear Magnetic Resonance ( 1 H-NMR) Spectroscopy
Proton Nuclear Magnetic Resonance ( 1 H-NMR) Spectroscopy Theory behind NMR: In the late 1940 s, physical chemists originally developed NMR spectroscopy to study different properties of atomic nuclei,
Chemistry 307 Chapter 10 Nuclear Magnetic Resonance
Chemistry 307 Chapter 10 Nuclear Magnetic Resonance Nuclear magnetic resonance (NMR) spectroscopy is one of three spectroscopic techniques that are useful tools for determining the structures of organic
Nuclear Magnetic Resonance (NMR) Spectroscopy
April 28, 2016 Exam #3: Graded exams on Tuesday! Final Exam Tuesday, May 10 th, 10:30 a.m. Room: Votey 207 (tentative) Review Session: Sunday, May 8 th, 4 pm, Kalkin 325 (tentative) Office Hours Next week:
NMR - Basic principles
NMR - Basic principles Subatomic particles like electrons, protons and neutrons are associated with spin - a fundamental property like charge or mass. In the case of nuclei with even number of protons
Nuclear Magnetic Resonance (NMR) Wade Textbook
Nuclear Magnetic Resonance (NMR) Wade Textbook Background Is a nondestructive structural analysis technique Has the same theoretical basis as magnetic resonance imaging (MRI) Referring to MRI as nuclear
The Four Questions to Ask While Interpreting Spectra. 1. How many different environments are there?
1 H NMR Spectroscopy (#1c) The technique of 1 H NMR spectroscopy is central to organic chemistry and other fields involving analysis of organic chemicals, such as forensics and environmental science. It
NMR SPECTROSCOPY A N I N T R O D U C T I O N T O... Self-study booklet NUCLEAR MAGNETIC RESONANCE. 4 3 2 1 0 δ PUBLISHING
A N I N T R O D U T I O N T O... NMR SPETROSOPY NULEAR MAGNETI RESONANE 4 3 1 0 δ Self-study booklet PUBLISING NMR Spectroscopy NULEAR MAGNETI RESONANE SPETROSOPY Origin of Spectra Theory All nuclei possess
The Hydrogen Atom Is a Magnet. http://www.seed.slb.com/en/scictr/watch/gashydrates/detecting.htm
The Hydrogen Atom Is a Magnet Nuclear Magnetic Resonance Spectroscopy (NMR) Proton NMR A hydrogen nucleus can be viewed as a proton, which can be viewed as a spinning charge. As with any spinning charge,
Nuclear Magnetic Resonance notes
Reminder: These notes are meant to supplement, not replace, the laboratory manual. Nuclear Magnetic Resonance notes Nuclear Magnetic Resonance (NMR) is a spectrometric technique which provides information
Nuclear Magnetic Resonance Spectroscopy
Most spinning nuclei behave like magnets. Nuclear Magnetic Resonance Spectroscopy asics owever, as opposed to the behavior of a classical magnet the nuclear spin magnetic moment does not always align with
Chapter 11 Structure Determination: Nuclear Magnetic Resonance Spectroscopy. Nuclear Magnetic Resonance Spectroscopy. 11.1 Nuclear Magnetic Resonance
John E. McMurry http://www.cengage.com/chemistry/mcmurry Chapter 11 Structure Determination: Nuclear Magnetic Resonance Spectroscopy 11.1 Nuclear Magnetic Resonance Spectroscopy Many atomic nuclei behave
Background A nucleus with an odd atomic number or an odd mass number has a nuclear spin that can be observed by NMR spectrometers.
NMR Spectroscopy I Reading: Wade chapter, sections -- -7 Study Problems: -, -7 Key oncepts and Skills: Given an structure, determine which protons are equivalent and which are nonequivalent, predict the
NMR Nuclear Magnetic Resonance
NMR Nuclear Magnetic Resonance Nuclear magnetic resonance (NMR) is an effect whereby magnetic nuclei in a magnetic field absorb and re-emit electromagnetic (EM) energy. This energy is at a specific resonance
Nuclear Shielding and 1. H Chemical Shifts. 1 H NMR Spectroscopy Nuclear Magnetic Resonance
NMR Spectroscopy Nuclear Magnetic Resonance Nuclear Shielding and hemical Shifts What do we mean by "shielding?" What do we mean by "chemical shift?" The electrons surrounding a nucleus affect the effective
Chapter 19 Nuclear Magnetic Resonance Spectroscopy (NMR)
Chapter 19 Nuclear Magnetic Resonance Spectroscopy (NMR) 23 pages 2 weeks worth! Problems : 1, 2, 3, 4, 7, 10, 11, 19, 20, 22, 24, 27, 30, 34, 35 Absorption of radio-frequency E from 4-900 MHz (wavelengths
How To Understand The Measurement Process
April 24, 2015 Exam #3: Solution Key online now! Graded exams by Monday! Final Exam Monday, May 4 th, 10:30 a.m. Room: Perkins 107 1 A Classical Perspective A classical view will help us understand the
Determination of Molecular Structure by MOLECULAR SPECTROSCOPY
Determination of Molecular Structure by MOLEULAR SPETROSOPY hemistry 3 B.Z. Shakhashiri Fall 29 Much of what we know about molecular structure has been learned by observing and analyzing how electromagnetic
Nuclear Magnetic Resonance and Its Application in Condensed Matter Physics
Nuclear Magnetic Resonance and Its Application in Condensed Matter Physics Kangbo Hao 1. Introduction Nuclear Magnetic Resonance (NMR) is a physics phenomenon first observed by Isidor Rabi in 1938. [1]
What is NMR? Innovation with Integrity. Nuclear Magnetic Resonance NMR
What is NMR? Nuclear Magnetic Resonance Innovation with Integrity NMR Nuclear Magnetic Resonance You may have heard the term NMR nuclear magnetic resonance but how much do you actually know about it? NMR
E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE
E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE References for Nuclear Magnetic Resonance 1. Slichter, Principles of Magnetic Resonance, Harper and Row, 1963. chapter
NMR SPECTROSCOPY. Basic Principles, Concepts, and Applications in Chemistry. Harald Günther University of Siegen, Siegen, Germany.
NMR SPECTROSCOPY Basic Principles, Concepts, and Applications in Chemistry Harald Günther University of Siegen, Siegen, Germany Second Edition Translated by Harald Günther JOHN WILEY & SONS Chichester
Trans Fats. What is a trans fat? Trans fatty acids, or trans fats as they are known, are certain
Trans Fats What is a trans fat? Trans fatty acids, or trans fats as they are known, are certain fats found in such foodstuffs as vegetable shortenings, margarines, crackers, candies baked goods and many
Examination of Proton NMR Spectra
Examination of Proton NMR Spectra What to Look For 1) Number of Signals --- indicates how many "different kinds" of protons are present. 2) Positions of the Signals --- indicates something about magnetic
Spin-Lattice Relaxation Times
Spin-Lattice Relaxation Times Reading Assignment: T. D. W. Claridge, High Resolution NMR Techniques in Organic Chemistry, Chapter 2; E. Breitmaier, W. Voelter, Carbon 13 NMR Spectroscopy,3rd Ed., 3.3.2.
Basic Principles of Magnetic Resonance
Basic Principles of Magnetic Resonance Contents: Jorge Jovicich [email protected] I) Historical Background II) An MR experiment - Overview - Can we scan the subject? - The subject goes into the magnet -
Signal Manipulation. time domain NMR signal in MHz range is converted to khz (audio) range by mixing with the reference ( carrier ) frequency
NMR Spectroscopy: 3 Signal Manipulation time domain NMR signal in MHz range is converted to khz (audio) range by mixing with the reference ( carrier ) frequency Ref in (MHz) mixer Signal in (MHz) Signal
Solving Spectroscopy Problems
Solving Spectroscopy Problems The following is a detailed summary on how to solve spectroscopy problems, key terms are highlighted in bold and the definitions are from the illustrated glossary on Dr. Hardinger
NUCLEAR MAGNETIC RESONANCE. Advanced Laboratory, Physics 407, University of Wisconsin Madison, Wisconsin 53706
(revised 4/21/03) NUCLEAR MAGNETIC RESONANCE Advanced Laboratory, Physics 407, University of Wisconsin Madison, Wisconsin 53706 Abstract This experiment studies the Nuclear Magnetic Resonance of protons
Generation and Detection of NMR Signals
Generation and Detection of NMR Signals Hanudatta S. Atreya NMR Research Centre Indian Institute of Science NMR Spectroscopy Spin (I)=1/2h B 0 Energy 0 = B 0 Classical picture (B 0 ) Quantum Mechanical
Experiment #2 NUCLEAR MAGNETIC RESONANCE
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry 5.311 Introductory Chemical Experimentation Experiment #2 NUCLEAR MAGNETIC RESONANCE I. Purpose This experiment is designed to introduce the
NMR and IR spectra & vibrational analysis
Lab 5: NMR and IR spectra & vibrational analysis A brief theoretical background 1 Some of the available chemical quantum methods for calculating NMR chemical shifts are based on the Hartree-Fock self-consistent
Chemistry Department
Chemistry Department NMR/Instrumentation Facility Users Guide - Rules, safety and system information Prepared by Leila Maurmann The NMR/Instrumentation facility at the Chemistry Department at Kansas State
Shielding vs. Deshielding:
Shielding vs. Deshielding: Pre-tutorial: Things we need to know before we start the topic: What does the NMR Chemical shift do? The chemical shift is telling us the strength of the magnetic field that
Determination of Equilibrium Constants using NMR Spectrscopy
CHEM 331L Physical Chemistry Laboratory Revision 1.0 Determination of Equilibrium Constants using NMR Spectrscopy In this laboratory exercise we will measure a chemical equilibrium constant using key proton
For example: (Example is from page 50 of the Thinkbook)
SOLVING COMBINED SPECTROSCOPY PROBLEMS: Lecture Supplement: page 50-53 in Thinkbook CFQ s and PP s: page 216 241 in Thinkbook Introduction: The structure of an unknown molecule can be determined using
Tetramethylsilane (TMS) Trimethylsilyl d 4. -propionic acid (TMSP) Dioxane. O - Na + Dimethylfura n. Potassium Hydrogen Phthalate. Sodium Maleate CH 3
Practical Aspects of Quantitative NMR Experiments This discussion presumes that you already have an understanding of the basic theory of NMR. There are a number of issues that should be considered when
Introduction to Nuclear Magnetic Resonance (NMR) And. NMR Metabolomics
Introduction to Nuclear Magnetic Resonance (NMR) And NMR Metabolomics Acknowledgment: Some slides from talks by Natalia Serkova, Wimal Pathmasiri, and from many internet sources (e.g., U of Oxford, Florida
Atomic and Nuclear Physics
Atomic and Nuclear Physics Nuclear Physics Nuclear Magnetic Resonance LD Physics Leaflets P6.5.3.1 Nuclear magnetic resonance in polystyrene, glycerine and teflon Objects g Nuclear Magnetic Resonance on
Prof.M.Perucca CORSO DI APPROFONDIMENTO DI FISICA ATOMICA: (III-INCONTRO) RISONANZA MAGNETICA NUCLEARE
Prof.M.Perucca CORSO DI APPROFONDIMENTO DI FISICA ATOMICA: (III-INCONTRO) RISONANZA MAGNETICA NUCLEARE SUMMARY (I/II) Angular momentum and the spinning gyroscope stationary state equation Magnetic dipole
NMR Spectroscopy in Notre Dame
NMR Spectroscopy in Notre Dame University of Notre Dame College of Science Department of Chemistry and Biochemistry Nuclear Magnetic Resonance Facility http://www.nd.edu/~nmr Reservation system for spectrometers
Atomic Structure: Chapter Problems
Atomic Structure: Chapter Problems Bohr Model Class Work 1. Describe the nuclear model of the atom. 2. Explain the problems with the nuclear model of the atom. 3. According to Niels Bohr, what does n stand
The Experiment Some nuclei have nuclear magnetic moments; just as importantly, some do not
Chemistry 2600 Lecture Notes Chapter 15 Nuclear Magnetic Resonance Spectroscopy Page 1 of 23 Structure Determination in Organic Chemistry: NMR Spectroscopy Three main techniques are used to determine the
NMR and MRI. Seppo Vahasalo Philips Medical Systems MR Finland 2008-06-17
NMR and MRI Seppo Vahasalo Philips Medical Systems MR Finland 2008-06-17 Contents Some local MRI history NMR and MRI Physics Magnet technology and electronics Recent trends in MRI and magnet technology
Nuclear Magnetic Resonance Spectroscopy Notes adapted by Audrey Dell Hammerich, October 3, 2013
Nuclear Magnetic Resonance Spectroscopy Notes adapted by Audrey Dell Hammerich, October 3, 2013 Nuclear magnetic resonance (NMR), as all spectroscopic methods, relies upon the interaction of the sample
INFRARED SPECTROSCOPY (IR)
INFRARED SPECTROSCOPY (IR) Theory and Interpretation of IR spectra ASSIGNED READINGS Introduction to technique 25 (p. 833-834 in lab textbook) Uses of the Infrared Spectrum (p. 847-853) Look over pages
Nuclear Magnetic Resonance and the Measurement of Relaxation Times of Acetone with Gadolinium
Nuclear Magnetic Resonance and the Measurement of Relaxation Times of Acetone with Gadolinium Xia Lee and Albert Tsai June 15, 2006 1 1 Introduction Nuclear magnetic resonance (NMR) is a spectroscopic
Ph 3504 Nuclear Magnetic Resonance and Electron Spin Resonance
Ph 3504 Nuclear Magnetic Resonance and Electron Spin Resonance Required background reading Tipler, Llewellyn, section 12-3 (you only need to read the part labeled Nuclear Magnetic Resonance on pages 596-597
Infrared Spectroscopy: Theory
u Chapter 15 Infrared Spectroscopy: Theory An important tool of the organic chemist is Infrared Spectroscopy, or IR. IR spectra are acquired on a special instrument, called an IR spectrometer. IR is used
Proton NMR. One Dimensional H-NMR. Cl S. Common types of NMR experiments: 1-H NMR
Common types of NMR experiments: 1- NMR Proton NMR ne Dimensional -NMR a. Experiment igh field proton NMR (400Mz). single-pulse experiment. b. Spectral nterpretation i. Number of multiplets gives the different
ELECTRON SPIN RESONANCE Last Revised: July 2007
QUESTION TO BE INVESTIGATED ELECTRON SPIN RESONANCE Last Revised: July 2007 How can we measure the Landé g factor for the free electron in DPPH as predicted by quantum mechanics? INTRODUCTION Electron
INTRODUCTION TO CHEMICAL EXCHANGE WITH THE MEXICO PROGRAM
ITRODUCTIO TO CEMICAL EXCAGE WIT TE MEXICO PROGRAM TE PEOMEO May, 2001 C 3 C 3 C 3 C 3 C 3 C 3 Figure 1 Consider the molecule in figure 1: 3-dimethylamino-7-methyl-1,2,4- benzotriazine. As it is drawn,
A look at the utility of pulsed NMR
1 A look at the utility of pulsed NMR Katherine Magat and Vasudev Mandyam Physics 173, Spring 2004, Prof. Kleinfeld Introduction Pulsed nuclear magnetic resonance (NMR) was first introduced in the 1940
Nuclear Magnetic Resonance
Nuclear Magnetic Resonance Author: James Dragan Lab Partner: Stefan Evans Physics Department, Stony Brook University, Stony Brook, NY 794. (Dated: December 5, 23) We study the principles behind Nuclear
Application of Nuclear Magnetic Resonance in Petroleum Exploration
Application of Nuclear Magnetic Resonance in Petroleum Exploration Introduction Darko Tufekcic, consultant email: [email protected] Electro-magnetic resonance method (GEO-EMR) is emerging as the
EXPERIMENT Aspirin: Synthesis and NMR Analysis
EXPERIMENT Aspirin: Synthesis and NMR Analysis Introduction: When salicylic acid reacts with acetic anhydride in the presence of an acid catalyst, acetylsalicylic acid, or aspirin, is produced according
NMR Spectroscopy of Aromatic Compounds (#1e)
NMR Spectroscopy of Aromatic Compounds (#1e) 1 H NMR Spectroscopy of Aromatic Compounds Erich Hückel s study of aromaticity in the 1930s produced a set of rules for determining whether a compound is aromatic.
Nuclear Structure. particle relative charge relative mass proton +1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass
Protons, neutrons and electrons Nuclear Structure particle relative charge relative mass proton 1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass Protons and neutrons make up
Multi-electron atoms
Multi-electron atoms Today: Using hydrogen as a model. The Periodic Table HWK 13 available online. Please fill out the online participation survey. Worth 10points on HWK 13. Final Exam is Monday, Dec.
COURSE#1022: Biochemical Applications of NMR Spectroscopy. http://www.bioc.aecom.yu.edu/labs/girvlab/nmr/course/ Basic Principles
COURSE#1022: Biochemical Applications of NMR Spectroscopy http://www.bioc.aecom.yu.edu/labs/girvlab/nmr/course/ Basic Principles LAST UPDATE: 1/11/2012 Reading Selected Readings for Basic Principles of
CHEM 51LB EXP 1 SPECTROSCOPIC METHODS: INFRARED AND NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY
CHEM 51LB EXP 1 SPECTRSCPIC METHDS: INFRARED AND NUCLEAR MAGNETIC RESNANCE SPECTRSCPY REACTINS: None TECHNIQUES: IR Spectroscopy, NMR Spectroscopy Infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy
Pulsed Fourier Transform NMR The rotating frame of reference. The NMR Experiment. The Rotating Frame of Reference.
Pulsed Fourier Transform NR The rotating frame of reference The NR Eperiment. The Rotating Frame of Reference. When we perform a NR eperiment we disturb the equilibrium state of the sstem and then monitor
NMR for Physical and Biological Scientists Thomas C. Pochapsky and Susan Sondej Pochapsky Table of Contents
Preface Symbols and fundamental constants 1. What is spectroscopy? A semiclassical description of spectroscopy Damped harmonics Quantum oscillators The spectroscopic experiment Ensembles and coherence
Lecture #7 (2D NMR) Utility of Resonance Assignments
Lecture #7 (2D NMR) Basics of multidimensional NMR (2D NMR) 2D NOESY, COSY and TOCSY 2/23/15 Utility of Resonance Assignments Resonance Assignments: Assignment of frequency positions of resonances (peaks)
Nuclear Physics. Nuclear Physics comprises the study of:
Nuclear Physics Nuclear Physics comprises the study of: The general properties of nuclei The particles contained in the nucleus The interaction between these particles Radioactivity and nuclear reactions
CHE334 Identification of an Unknown Compound By NMR/IR/MS
CHE334 Identification of an Unknown Compound By NMR/IR/MS Purpose The object of this experiment is to determine the structure of an unknown compound using IR, 1 H-NMR, 13 C-NMR and Mass spectroscopy. Infrared
Precession of spin and Precession of a top
6. Classical Precession of the Angular Momentum Vector A classical bar magnet (Figure 11) may lie motionless at a certain orientation in a magnetic field. However, if the bar magnet possesses angular momentum,
Physics of Imaging Systems Basic Principles of Magnetic Resonance Imaging II
1 10/30/2015 Page 1 Master s Program in Medical Physics Physics of Imaging Systems Basic Principles of Magnetic Resonance Imaging II Chair in Faculty of Medicine Mannheim University of Heidelberg Theodor-Kutzer-Ufer
The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD
TN-100 The Fundamentals of Infrared Spectroscopy The Principles of Infrared Spectroscopy Joe Van Gompel, PhD Spectroscopy is the study of the interaction of electromagnetic radiation with matter. The electromagnetic
5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves
5. The Nature of Light Light travels in vacuum at 3.0. 10 8 m/s Light is one form of electromagnetic radiation Continuous radiation: Based on temperature Wien s Law & the Stefan-Boltzmann Law Light has
Spin-lattice and spin-spin relaxation
Spin-lattice and spin-spin relaation Sequence of events in the NMR eperiment: (i) application of a 90 pulse alters the population ratios, and creates transverse magnetic field components (M () ); (ii)
where h = 6.62 10-34 J s
Electromagnetic Spectrum: Refer to Figure 12.1 Molecular Spectroscopy: Absorption of electromagnetic radiation: The absorptions and emissions of electromagnetic radiation are related molecular-level phenomena
The Unified Scale for Referencing in NMR: New IUPAC Recommendations revised (cgf): 26 July 2010
The Unified Scale for Referencing in NMR: New IUPAC Recommendations revised (cgf): 26 July 2010 In 2001, IUPAC set new definitions and standards for NMR referencing, 1 and updated these in 2008. 2 A significant
Using Nuclear Magnetic Resonance Spectroscopy to Identify an Unknown Compound prepared by Joseph W. LeFevre, SUNY Oswego
m o d u l a r l a b o r a t o r y p r o g r a m i n c h e m i s t r y publisher:. A. Neidig organic editor: Joe Jeffers TE 711 Using Nuclear Magnetic Resonance Spectroscopy to Identify an Unknown ompound
NMR and other Instrumental Techniques in Chemistry and the proposed National Curriculum.
NMR and other Instrumental Techniques in Chemistry and the proposed National Curriculum. Dr. John Jackowski Chair of Science, Head of Chemistry Scotch College Melbourne [email protected]
Determination of Equilibrium Constants using NMR Spectroscopy
CHEM 331L Physical Chemistry Laboratory Revision 2.1 Determination of Equilibrium Constants using NMR Spectroscopy In this laboratory exercise we will measure the equilibrium constant for the cis-trans
Functional neuroimaging. Imaging brain function in real time (not just the structure of the brain).
Functional neuroimaging Imaging brain function in real time (not just the structure of the brain). The brain is bloody & electric Blood increase in neuronal activity increase in metabolic demand for glucose
Question: Do all electrons in the same level have the same energy?
Question: Do all electrons in the same level have the same energy? From the Shells Activity, one important conclusion we reached based on the first ionization energy experimental data is that electrons
Practical guide for quantitative 1D NMR integration Eugenio Alvarado, University of Michigan, 05/10/10
Practical guide for quantitative 1D NMR integration Eugenio Alvarado, University of Michigan, 05/10/10 The purpose of this manuscript is not to present a discussion about quantitative NMR, but to offer
Chapter 1. Fundamentals of NMR THOMAS L. JAMES. Department of Pharmaceutical Chemistry University of California San Francisco, CA 94143-0446 U.S.A.
Chapter 1 Fundamentals of NMR THOMAS L. JAMES Department of Pharmaceutical Chemistry University of California San Francisco, CA 94143-0446 U.S.A. 1.1 INTRODUCTION 1.2 MAGNETIC RESONANCE Nuclear Spins The
Atomic Calculations. 2.1 Composition of the Atom. number of protons + number of neutrons = mass number
2.1 Composition of the Atom Atomic Calculations number of protons + number of neutrons = mass number number of neutrons = mass number - number of protons number of protons = number of electrons IF positive
Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.
.1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations
SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) Calculate the magnetic field that corresponds to the proton resonance frequency of 300.00
0 10 20 30 40 50 60 70 m/z
Mass spectrum for the ionization of acetone MS of Acetone + Relative Abundance CH 3 H 3 C O + M 15 (loss of methyl) + O H 3 C CH 3 43 58 0 10 20 30 40 50 60 70 m/z It is difficult to identify the ions
Symmetric Stretch: allows molecule to move through space
BACKGROUND INFORMATION Infrared Spectroscopy Before introducing the subject of IR spectroscopy, we must first review some aspects of the electromagnetic spectrum. The electromagnetic spectrum is composed
8.1 Relaxation in NMR Spectroscopy
8.1 Relaxation in NMR Spectroscopy Copyright ans J. Reich 2010 All Rights Reserved University of Wisconsin An understanding of relaxation processes is important for the proper measurement and interpretation
