A More Efficient Way to De-shelve 137 Ba +
|
|
|
- Lewis Harper
- 9 years ago
- Views:
Transcription
1 A More Efficient Way to De-shelve 137 Ba + Abstract: Andrea Katz Trinity University UW REU 2010 In order to increase the efficiency and reliability of de-shelving barium ions, an infrared laser beam was doubled in frequency to create a 614 nm beam, which was sent to the ion trap. Part of the infrared beam was double-passed through an acousto-optic modulator and sent to a Fabry-Perot cavity, whose output we used to stabilize the frequency of the laser. Introduction to Quantum Computing: Traditional computing employs the bit in logic operations. Bits are binary systems and can have values of either 0 or 1. Quantum computing improves upon this by using the qubit, which is a quantum mechanical system that may exist in any linear combination of two levels such that its wavefunction φ > is φ >= α 0 > + β 1 >, (1) where α and β are constants. This gives quantum computers several advantages over traditional computers. For example, Shor s algorithm shows that a quantum computer could quickly factor a number too large to be handled by today s computers, which would allow us to break RSA encrypted codes. 1 A quantum computer could also search extensive databases quickly and handle large amounts of information. A good way to physically implement a qubit is to use two energy levels in a trapped ion as the two qubit states. In order to trap the ion, we use a Paul trap, which suspends an ion by using an oscillating quadrupole field. A good way to visualize an ion in a Paul trap is to imagine a ball sitting on a spinning saddle, as shown in Figure 1. 2 The ball starts to roll down the sloping portion of the saddle, but before it gets very far, the saddle has rotated so that the ball is moving up hill and must change directions. If we rotate this saddle-shaped potential very rapidly, the ion stays in the center, feels only the time-averaged effect of zero slope, and has very little motion. 2 We can also laser cool the ion to remove some of its energy. After these two steps, we have a trapped ion on which we can perform qubit operations.
2 Figure 1. A good way to visualize an ion in a Paul trap is a ball in the center of a rotating saddle shape. Barium as a Qubit: In the Trapped Ion Quantum Computing lab at UW, we use the hyperfine levels in the ground state of 137 Ba + as the two states of the qubit. A simplified energy level diagram for Ba + is shown in Figure 2. The only hyperfine splitting shown is that of the ground state, though the other levels are also split. 3 Figure 2. Relevant energy levels for barium ions and their transition wavelengths. It is easy to test whether or not the ion is in one of the two hyperfine ground states by hitting it with a 493 nm laser beam and driving the transition to the P 1/2 state. From here, the electron will either fall back down to its ground state, at which point the ion emits a 493 nm
3 photon and can be seen to fluoresce, or it will fall down to the D 3/2 state. This state has a lifetime of around 80 seconds, but in order detect the ion s fluorescence, we need the electron to transition repeatedly and continuously from P 1/2 to ground, so we must use a 650 nm laser to re-pump the ion into the P 1/2 state. Therefore, if we turn on the blue and red lasers and the ion is seen to fluoresce, we know that the ion is in one of the hyperfine ground states. In order to determine which of these states it is in, we hit the ion with a 1762 nm beam. If the ion is in the higher energy hyperfine state, a transition will occur to D 5/2 and no fluorescence will be observed when we turn on the blue and red lasers. If the ion is in the lower energy hyperfine state, the infrared beam will not cause a transition, and fluorescence will be observed with the blue and red lasers. The shelved state, D 5/2, has an average lifetime of 32 s. The rest of the experiment runs on the order of microseconds, so we would like to speed up the de-shelving process. One way to do this is to hit the shelved ion with an orange beam at 614 nm, driving the transition to P 3/2, from which it quickly decays back to the ground state. Before we began this project, deshelving was accomplished using the 1762 nm laser, but the process was inefficient and did not always work. Using an orange laser beam is expected to speed up the de-shelving process and be more reliable. Producing an Orange Beam: Using an orange laser beam to de-shelve the ion is complicated by the fact that diode lasers do not exist at 614 nm. To create an orange beam, a 1228 nm infrared beam was sent through a PPLN crystal waveguide, which doubled the frequency. A schematic of the setup is shown in Figure 3.
4 Figure 3. A schematic diagram of the frequency doubling setup. Upon leaving the laser, the infrared beam first passed through an acousto-optic modulator. An AOM works by sending an ultrasonic sound wave through a crystal. The incoming light wave interacts with the sound wave, and part of the light is diffracted, with its frequency increased or decreased by the frequency of the sound wave. 4 The minus first order (diffracted) beam was picked off with a mirror and sent to the frequency doubler. This setup is advantageous because the AOM can be turned on and off instantly, with nearly 100% extinction of the diffracted beam. This prevents accidental de-shelving and possible qubit readout errors while leaving the zeroth order beam in place to use for laser stabilization. Two mirrors were used to steer the diffracted beam into a single mode fiber. In order to avoid absorption losses, silver-coated mirrors were used, and the 40 cm lens that focused the light into the fiber for better coupling was specially coated for infrared light. The fiber went through three polarization paddles before entering the PPLN waveguide, which generated 614 nm light. PPLN: PPLN (periodically poled lithium niobate) is a non-linear crystal with a periodic reversal of domain orientation. Nonlinear crystals can be used for second harmonic generation, in which two photons from an incoming laser beam are combined to make a photon with twice the
5 frequency. 5 The ability of nonlinear crystals to efficiently produce frequency-doubled light is due to their χ 2 properties, which mean that the intensity of the doubled frequency beam is proportional to the square of the intensity of the input beam. Because a small gain in the intensity of the infrared light results in a large gain in the intensity of the orange beam, a PPLN waveguide was used instead of a normal PPLN crystal. The infrared beam has a smaller crosssectional area in a waveguide than in a block of crystal, so its intensity is higher and more orange light is generated. In order to take fully utilize the waveguide s frequency doubling advantage, the polarization of the incoming light must be aligned with the axis of the waveguide. This was accomplished with three polarization paddles set along the length of the fiber leading up to the PPLN. When the polarization is set correctly, using a PPLN waveguide instead of a normal PPLN crystal increases the efficiency of SHG by a factor of 100. The advantage of using PPLN for SHG over other nonlinear crystals is that it allows for phase matching, in which the doubled wave interferes partially constructively with the incoming wave. This results in a stronger beam of frequency-doubled photons, as shown in Figure 4 5. Phase matching is achieved by changing the poling period of the PPLN, since photons generated in each domain orientation will be 180 out of phase with those generated in the orientation before, so by picking the appropriate period, we can ensure that newly generated orange light interferes partially constructively with previously generated orange light and with the continuing infrared beam. We can change the poling period by adjusting the temperature of the crystal. Figure 4. PPLN crystals allow for phase matching, which make them more efficient at SHG than other nonlinear crystals. After optimizing the temperature of the PPLN, infrared polarization, and infrared beam alignment, the resulting orange beam had 5 μw of power, about 1% of the original power of the infrared laser. We suspect that the losses are due to attenuation in the fiber and difficulty in coupling.
6 Aligning the orange beam: When the orange beam left the PPLN waveguide, we had to couple it into another single mode fiber to get the light to the room containing the ion trap, resulting in more loss of power. In order to get the orange beam to the ion trap, we used a dichroic mirror that transmits blue light and reflects orange to combine it with the 493 nm beam, which was already aligned to reach the ion. The power of the orange beam by the time it reaches the ion is about 1.5 μw. We have not attempted to de-shelve an ion with the orange beam yet, though we believe that 1.5 μw is enough power for fast de-shelving. Laser Stabilization: Even after careful alignment of the orange beam, we were not ready to use it to deshelve barium ions. De-shelving requires that the orange beam be at the exact transition frequency, and since the laser s frequency can drift, it was important to stabilize it. To enable us to do this, the zeroth order infrared beam was double-passed through a second AOM before entering a Fabry-Perot cavity. The cavity we used is a hollow tube with a curved piece of glass on either end. It has a free spectral range of about 300 MHz and a finesse of around 10. The only frequencies that are resonant in a Fabry-Perot cavity and thus transmit through the other side are those in which an integer number of wavelengths fit within the cavity. If we scan the laser through a range of frequencies and look at the light output from the cavity, we see a series of transmission peaks. After the double-passed AOM, only 3 μw of infrared light entered the cavity. This small amount of input light meant that the output from the cavity was very faint, so in order to increase our signal-to-noise ratio and improve detection, we used the double-passed AOM to put a slight frequency modulation on the light entering the cavity. Then, we could use a lock-in amplifier to pick up the transmitted signal. Using a wavemeter, we determined which resonant frequency was closest to our desired frequency and we adjusted the laser to get maximum transmission at that peak. To prevent the frequency from wandering, we send the output of the lock-in amplifier to a lock box. The lock-in amplifier outputs a value that is either positive or negative depending on whether the laser s wavelength is red or blue of the peak transmission wavelength. At the peak wavelength, the lock-in amplifier s output is zero. The lock box feeds back to the laser, adjusting the piezo voltage to ensure that the lock-in amplifier s output remains at zero and that the transmission is the highest possible value. This keeps the laser at the desired frequency. Future Steps:
7 Due to time constraints and work on the ion trap, the laser stabilization process was unfinished at the time of writing. We hope to finish work on the feedback system and stabilize the laser at the appropriate wavelength. Then, we will attempt to use it to de-shelve barium ions. If there is not enough orange light to de-shelve the ions, changes will have to be made to increase coupling into optical fibers and reduce absorption losses. References: 1. Hayward, Matthew. Quantum Computing and Shor s Algorithm. ~matth/quant/299/paper/ 2. Dietrich, Matthew. Barium Ions for Quantum Computation. qcomp/pdfs/matt_thesis.pdf 3. Initialization and Detection of 137 Ba + Hyperfine Qubit. qcomp/detection.html 4. Acousto-optic Modulators. Encyclopedia of Laser Physics and Technology Periodically Poled Lithium Niobate (PPLN)- Tutorial. catalogpages/693.pdf
A Guide to Acousto-Optic Modulators
A Guide to Acousto-Optic Modulators D. J. McCarron December 7, 2007 1 Introduction Acousto-optic modulators (AOMs) are useful devices which allow the frequency, intensity and direction of a laser beam
PUMPED Nd:YAG LASER. Last Revision: August 21, 2007
PUMPED Nd:YAG LASER Last Revision: August 21, 2007 QUESTION TO BE INVESTIGATED: How can an efficient atomic transition laser be constructed and characterized? INTRODUCTION: This lab exercise will allow
Lab 9: The Acousto-Optic Effect
Lab 9: The Acousto-Optic Effect Incoming Laser Beam Travelling Acoustic Wave (longitudinal wave) O A 1st order diffracted laser beam A 1 Introduction qb d O 2qb rarefractions compressions Refer to Appendix
Specifying Plasma Deposited Hard Coated Optical Thin Film Filters. Alluxa Engineering Staff
Specifying Plasma Deposited Hard Coated Optical Thin Film Filters. Alluxa Engineering Staff December 2012 Specifying Advanced Plasma Deposited Hard Coated Optical Bandpass and Dichroic Filters. Introduction
Experiment 5. Lasers and laser mode structure
Northeastern University, PHYS5318 Spring 2014, 1 1. Introduction Experiment 5. Lasers and laser mode structure The laser is a very important optical tool that has found widespread use in science and industry,
Synthetic Sensing: Proximity / Distance Sensors
Synthetic Sensing: Proximity / Distance Sensors MediaRobotics Lab, February 2010 Proximity detection is dependent on the object of interest. One size does not fit all For non-contact distance measurement,
Blackbody Radiation References INTRODUCTION
Blackbody Radiation References 1) R.A. Serway, R.J. Beichner: Physics for Scientists and Engineers with Modern Physics, 5 th Edition, Vol. 2, Ch.40, Saunders College Publishing (A Division of Harcourt
Optical Fibres. Introduction. Safety precautions. For your safety. For the safety of the apparatus
Please do not remove this manual from from the lab. It is available at www.cm.ph.bham.ac.uk/y2lab Optics Introduction Optical fibres are widely used for transmitting data at high speeds. In this experiment,
The Sonometer The Resonant String and Timbre Change after plucking
The Sonometer The Resonant String and Timbre Change after plucking EQUIPMENT Pasco sonometers (pick up 5 from teaching lab) and 5 kits to go with them BK Precision function generators and Tenma oscilloscopes
Scanning Near-Field Optical Microscopy for Measuring Materials Properties at the Nanoscale
Scanning Near-Field Optical Microscopy for Measuring Materials Properties at the Nanoscale Outline Background Research Design Detection of Near-Field Signal Submonolayer Chemical Sensitivity Conclusions
DIRECTIONAL FIBER OPTIC POWER MONITORS (TAPS/PHOTODIODES)
Features: DIRECTIONAL FIBER OPTIC POWER MONITORS (TAPS/PHOTODIODES) PATENT NUMBERS: CANADA 2,494,133, USA 7095931, 7295731 AND CHINA 1672073 Telcordia GR-468 qualified Available in versions for any wavelength
Introduction to Diode Lasers
Introduction to Diode Lasers Simon L. Cornish (Dated: August 2, 2007) The goal of this document is to guide you through a series of simple experiments and measurements that will help you become familiar
Challenges in DWDM System Spectral Analysis By Laurent Begin and Jim Nerschook
Challenges in DWDM System Spectral Analysis By Laurent Begin and Jim Nerschook TABLE OF CONTENTS: 1.0 Satisfying the Thirst for Bandwidth 02 2.0 The Solution, DWDM 02 3.0 Resolution 04 4.0 Wavelength Accuracy
Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014
Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014 Introduction Following our previous lab exercises, you now have the skills and understanding to control
EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab
EXPERIMENT O-6 Michelson Interferometer Abstract A Michelson interferometer, constructed by the student, is used to measure the wavelength of He-Ne laser light and the index of refraction of a flat transparent
- thus, the total number of atoms per second that absorb a photon is
Stimulated Emission of Radiation - stimulated emission is referring to the emission of radiation (a photon) from one quantum system at its transition frequency induced by the presence of other photons
Polarization of Light
Polarization of Light References Halliday/Resnick/Walker Fundamentals of Physics, Chapter 33, 7 th ed. Wiley 005 PASCO EX997A and EX999 guide sheets (written by Ann Hanks) weight Exercises and weights
Helium-Neon Laser. Figure 1: Diagram of optical and electrical components used in the HeNe laser experiment.
Helium-Neon Laser Experiment objectives: assemble and align a 3-mW HeNe laser from readily available optical components, record photographically the transverse mode structure of the laser output beam,
High-Performance Wavelength-Locked Diode Lasers
Copyright 29 Society of Photo-Optical Instrumentation Engineers. This paper was published in the proceedings of the SPIE Photonics West 29, Vol. 7198-38 (29), High-Power Diode Laser Technology and High-Performance
Alignement of a ring cavity laser
Alignement of a ring cavity laser 1 Introduction This manual describes a procedure to align the cavity of our Ti:Sapphire ring laser and its injection with an Argon-Ion pump laser beam. The setup is shown
Limiting factors in fiber optic transmissions
Limiting factors in fiber optic transmissions Sergiusz Patela, Dr Sc Room I/48, Th. 13:00-16:20, Fri. 9:20-10:50 [email protected] eportal.pwr.wroc.pl Copying and processing permitted for noncommercial
Blackbody radiation derivation of Planck s radiation low
Blackbody radiation derivation of Planck s radiation low 1 Classical theories of Lorentz and Debye: Lorentz (oscillator model): Electrons and ions of matter were treated as a simple harmonic oscillators
GenTech Practice Questions
GenTech Practice Questions Basic Electronics Test: This test will assess your knowledge of and ability to apply the principles of Basic Electronics. This test is comprised of 90 questions in the following
Extended spectral coverage of BWO combined with frequency multipliers
Extended spectral coverage of BWO combined with frequency multipliers Walter C. Hurlbut, Vladimir G. Kozlov, Microtech Instruments, Inc. (United States) Abstract: Solid state frequency multipliers extend
NUCLEAR MAGNETIC RESONANCE. Advanced Laboratory, Physics 407, University of Wisconsin Madison, Wisconsin 53706
(revised 4/21/03) NUCLEAR MAGNETIC RESONANCE Advanced Laboratory, Physics 407, University of Wisconsin Madison, Wisconsin 53706 Abstract This experiment studies the Nuclear Magnetic Resonance of protons
Module 13 : Measurements on Fiber Optic Systems
Module 13 : Measurements on Fiber Optic Systems Lecture : Measurements on Fiber Optic Systems Objectives In this lecture you will learn the following Measurements on Fiber Optic Systems Attenuation (Loss)
Fiber Optics: Fiber Basics
Photonics Technical Note # 21 Fiber Optics Fiber Optics: Fiber Basics Optical fibers are circular dielectric wave-guides that can transport optical energy and information. They have a central core surrounded
INTRODUCTION FIGURE 1 1. Cosmic Rays. Gamma Rays. X-Rays. Ultraviolet Violet Blue Green Yellow Orange Red Infrared. Ultraviolet.
INTRODUCTION Fibre optics behave quite different to metal cables. The concept of information transmission is the same though. We need to take a "carrier" signal, identify a signal parameter we can modulate,
FXA 2008. UNIT G485 Module 4 5.4.3 Ultrasound. Candidates should be able to :
1 Candidates should be able to : ULTRASOUND Describe the properties of ultrasound. ULTRASOUND is any sound wave having a frequency greater than the upper frequency limit of human hearing (20 khz). Describe
From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?
From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly
Preview of Period 3: Electromagnetic Waves Radiant Energy II
Preview of Period 3: Electromagnetic Waves Radiant Energy II 3.1 Radiant Energy from the Sun How is light reflected and transmitted? What is polarized light? 3.2 Energy Transfer with Radiant Energy How
Raman Spectroscopy. 1. Introduction. 2. More on Raman Scattering. " scattered. " incident
February 15, 2006 Advanced Physics Laboratory Raman Spectroscopy 1. Introduction When light is scattered from a molecule or crystal, most photons are elastically scattered. The scattered photons have the
Name Partners Date. Energy Diagrams I
Name Partners Date Visual Quantum Mechanics The Next Generation Energy Diagrams I Goal Changes in energy are a good way to describe an object s motion. Here you will construct energy diagrams for a toy
October 1, 2015. (Press release) Nippon Telegraph and Telephone Corporation
(Press release) October 1, 2015 Nippon Telegraph and Telephone Corporation High-density simultaneous compensation of distortion in wavelength-multiplexed signals using a time-reversal operation: World
article on Finesse, htp://www.rp-photonics.com/finesse.html, one has F 2π/(1 ρ),
Finesse Enhancement Factors Steve Adler, IAS, 2/29/06; expanded /4/08 First, the definition of finesse. From Encyclopedia of Laser Physics and Technology, article on Finesse, htp://www.rp-photonics.com/finesse.html,
Flame Direct Attach UV-VIS Integrated Sampling System Installation and Operation Instructions
Flame Direct Attach UV-VIS Integrated Sampling System Installation and Operation Instructions Description The Flame Integrated Sampling System (FLAME-DA-CUV-UV-VIS) is a snap-on, direct-attach 1 cm cuvette
Raman Spectroscopy Basics
Raman Spectroscopy Basics Introduction Raman spectroscopy is a spectroscopic technique based on inelastic scattering of monochromatic light, usually from a laser source. Inelastic scattering means that
Computer Vision: Machine Vision Filters. Computer Vision. Optical Filters. 25 August 2014
Computer Vision Optical Filters 25 August 2014 Copyright 2001 2014 by NHL Hogeschool, Van de Loosdrecht Machine Vision BV and Klaas Dijkstra All rights reserved [email protected], [email protected],
1. The Slotted Line. ECE 584 Microwave Engineering Laboratory Experiments. Introduction:
ECE 584 Microwave Engineering Laboratory Experiments 1. The Slotted Line Introduction: In this experiment we will use a waveguide slotted line to study the basic behavior of standing waves and to measure
Project 2B Building a Solar Cell (2): Solar Cell Performance
April. 15, 2010 Due April. 29, 2010 Project 2B Building a Solar Cell (2): Solar Cell Performance Objective: In this project we are going to experimentally measure the I-V characteristics, energy conversion
ELECTRON SPIN RESONANCE Last Revised: July 2007
QUESTION TO BE INVESTIGATED ELECTRON SPIN RESONANCE Last Revised: July 2007 How can we measure the Landé g factor for the free electron in DPPH as predicted by quantum mechanics? INTRODUCTION Electron
Fundamentals of modern UV-visible spectroscopy. Presentation Materials
Fundamentals of modern UV-visible spectroscopy Presentation Materials The Electromagnetic Spectrum E = hν ν = c / λ 1 Electronic Transitions in Formaldehyde 2 Electronic Transitions and Spectra of Atoms
RAY TRACING UNIFIED FIELD TRACING
RAY TRACING Start to investigate the performance of your optical system using 3D ray distributions, dot diagrams of ray positions and directions, and optical path length. GEOMETRIC FIELD TRACING Switch
ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block.
1 ATOMIC SPECTRA Objective: To measure the wavelengths of visible light emitted by atomic hydrogen and verify the measured wavelengths against those predicted by quantum theory. To identify an unknown
Experiment #5: Qualitative Absorption Spectroscopy
Experiment #5: Qualitative Absorption Spectroscopy One of the most important areas in the field of analytical chemistry is that of spectroscopy. In general terms, spectroscopy deals with the interactions
FTIR Instrumentation
FTIR Instrumentation Adopted from the FTIR lab instruction by H.-N. Hsieh, New Jersey Institute of Technology: http://www-ec.njit.edu/~hsieh/ene669/ftir.html 1. IR Instrumentation Two types of instrumentation
High-Concentration Submicron Particle Size Distribution by Dynamic Light Scattering
High-Concentration Submicron Particle Size Distribution by Dynamic Light Scattering Power spectrum development with heterodyne technology advances biotechnology and nanotechnology measurements. M. N. Trainer
Recording the Instrument Response Function of a Multiphoton FLIM System
Recording the Instrument Response Function of a Multiphoton FLIM System Abstract. FLIM data analysis in presence of SHG signals or extremely fast decay components requires the correct instrument response
Interference. Physics 102 Workshop #3. General Instructions
Interference Physics 102 Workshop #3 Name: Lab Partner(s): Instructor: Time of Workshop: General Instructions Workshop exercises are to be carried out in groups of three. One report per group is due by
E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE
E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE References for Nuclear Magnetic Resonance 1. Slichter, Principles of Magnetic Resonance, Harper and Row, 1963. chapter
Positive Feedback and Oscillators
Physics 3330 Experiment #6 Fall 1999 Positive Feedback and Oscillators Purpose In this experiment we will study how spontaneous oscillations may be caused by positive feedback. You will construct an active
Proposed experiment to test the non-locality hypothesis in transient light-interference phenomena
Proposed experiment to test the non-locality hypothesis in transient light-interference phenomena Masanori Sato Honda Electronics Co., Ltd., 20 Oyamazuka, Oiwa-cho, Toyohashi, Aichi 441-3193, Japan Abstract
Drive circuit basics + V. τ e. Industrial Circuits Application Note. Winding resistance and inductance
ndustrial Circuits Application Note Drive circuit basics For a given size of a stepper motor, a limited space is available for the windings. n the process of optimizing a stepper motor drive system, an
Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications
Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications Saulius Marcinkevičius Optics, ICT, KTH 1 Outline Optical near field. Principle of scanning near field optical microscope
PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.
PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the
Four Wave Mixing in Closely Spaced DWDM Optical Channels
544 VOL. 1, NO. 2, AUGUST 2006 Four Wave Mixing in Closely Spaced DWDM Optical Channels Moncef Tayahi *, Sivakumar Lanka, and Banmali Rawat Advanced Photonics Research lab, Department of Electrical Engineering
Radiant Dyes Laser Accessories GmbH
New NarrowScan New Resonator Design Improved Sine Drive Unit Autotracking Frequency doubling, tripling and mixing Wavelength Separation Unit Frequency Stabilization Temperature Stabilization Wavelength
Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs
Spectroscopy Biogeochemical Methods OCN 633 Rebecca Briggs Definitions of Spectrometry Defined by the method used to prepare the sample 1. Optical spectrometry Elements are converted to gaseous atoms or
Scalable Frequency Generation from Single Optical Wave
Scalable Frequency Generation from Single Optical Wave S. Radic Jacobs School Of Engineering Qualcomm Institute University of California San Diego - Motivation - Bandwidth Engineering - Noise Inhibition
High Brightness Fiber Coupled Pump Laser Development
High Brightness Fiber Coupled Pump Laser Development Kirk Price, Scott Karlsen, Paul Leisher, Robert Martinsen nlight, 548 NE 88 th Street, Bldg. E, Vancouver, WA 98665 ABSTRACT We report on the continued
TESTS OF 1 MHZ SIGNAL SOURCE FOR SPECTRUM ANALYZER CALIBRATION 7/8/08 Sam Wetterlin
TESTS OF 1 MHZ SIGNAL SOURCE FOR SPECTRUM ANALYZER CALIBRATION 7/8/08 Sam Wetterlin (Updated 7/19/08 to delete sine wave output) I constructed the 1 MHz square wave generator shown in the Appendix. This
explain your reasoning
I. A mechanical device shakes a ball-spring system vertically at its natural frequency. The ball is attached to a string, sending a harmonic wave in the positive x-direction. +x a) The ball, of mass M,
Acousto-optic modulator
1 of 3 Acousto-optic modulator F An acousto-optic modulator (AOM), also called a Bragg cell, uses the acousto-optic effect to diffract and shift the frequency of light using sound waves (usually at radio-frequency).
Lecture - 4 Diode Rectifier Circuits
Basic Electronics (Module 1 Semiconductor Diodes) Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Lecture - 4 Diode Rectifier Circuits
It has long been a goal to achieve higher spatial resolution in optical imaging and
Nano-optical Imaging using Scattering Scanning Near-field Optical Microscopy Fehmi Yasin, Advisor: Dr. Markus Raschke, Post-doc: Dr. Gregory Andreev, Graduate Student: Benjamin Pollard Department of Physics,
PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS
PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.
Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction
Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals Modified from the lecture slides of Lami Kaya ([email protected]) for use CECS 474, Fall 2008. 2009 Pearson Education Inc., Upper
AM TRANSMITTERS & RECEIVERS
Reading 30 Ron Bertrand VK2DQ http://www.radioelectronicschool.com AM TRANSMITTERS & RECEIVERS Revision: our definition of amplitude modulation. Amplitude modulation is when the modulating audio is combined
Interferometers. OBJECTIVES To examine the operation of several kinds of interferometers. d sin = n (1)
Interferometers The true worth of an experimenter consists in his pursuing not only what he seeks in his experiment, but also what he did not seek. Claude Bernard (1813-1878) OBJECTIVES To examine the
T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p
Data Transmission Concepts and terminology Transmission terminology Transmission from transmitter to receiver goes over some transmission medium using electromagnetic waves Guided media. Waves are guided
Zeiss 780 Training Notes
Zeiss 780 Training Notes 780 Start Up Sequence Do you need the argon laser, 458,488,514nm lines? No Turn on the Systems PC Switch Turn on Main Power Switch Yes Turn on the laser main power switch and turn
2, 8, 20, 28, 50, 82, 126.
Chapter 5 Nuclear Shell Model 5.1 Magic Numbers The binding energies predicted by the Liquid Drop Model underestimate the actual binding energies of magic nuclei for which either the number of neutrons
THE BASICS OF PLL FREQUENCY SYNTHESIS
Supplementary Reading for 27 - Oscillators Ron Bertrand VK2DQ http://www.radioelectronicschool.com THE BASICS OF PLL FREQUENCY SYNTHESIS The phase locked loop (PLL) method of frequency synthesis is now
Digital vs. Analogue Control Systems
Digital vs. Analogue Control Systems Presented at the 2011 Annual Meeting of the American College of Medical Physics, Chattanooga, TN, May 1, 2011 Ivan A. Brezovich, PhD, Dept. of Rad Onc, Univ of Alabama
Self-Mixing Laser Diode Vibrometer with Wide Dynamic Range
Self-Mixing Laser Diode Vibrometer with Wide Dynamic Range G. Giuliani,, S. Donati, L. Monti -, Italy Outline Conventional Laser vibrometry (LDV) Self-mixing interferometry Self-mixing vibrometer Principle:
Finite Difference Time Domain and BPM: Flexible Algorithm Selection Technology
Finite Difference Time Domain and BPM: Flexible Algorithm Selection Technology 1. Introduction This application note shows the use of the Finite Difference Time Domain (FDTD) module in the calculation
USB-ISS-UV/VIS Integrated Sampling System Installation and Operation Instructions
USB-ISS-UV/VIS Integrated Sampling System Installation and Operation Instructions Description The USB-ISS-UV/VIS Integrated Sampling System is a snap-on, direct-attach 1 cm cuvette holder and UV/VIS/NIR
Physics 30 Worksheet # 14: Michelson Experiment
Physics 30 Worksheet # 14: Michelson Experiment 1. The speed of light found by a Michelson experiment was found to be 2.90 x 10 8 m/s. If the two hills were 20.0 km apart, what was the frequency of the
AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light
AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,
Zecotek S Light Projection Network Marketing
White Paper Zecotek Visible Fiber Laser Platform Enabling the future of laser technology Zecotek Photonics Inc. (TSX- V: ZMS; Frankfurt: W1I) www.zecotek.com is a Canadian photonics technology company
Molecular Spectroscopy
Molecular Spectroscopy UV-Vis Spectroscopy Absorption Characteristics of Some Common Chromophores UV-Vis Spectroscopy Absorption Characteristics of Aromatic Compounds UV-Vis Spectroscopy Effect of extended
The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD
TN-100 The Fundamentals of Infrared Spectroscopy The Principles of Infrared Spectroscopy Joe Van Gompel, PhD Spectroscopy is the study of the interaction of electromagnetic radiation with matter. The electromagnetic
Rate Equations and Detailed Balance
Rate Equations and Detailed Balance Initial question: Last time we mentioned astrophysical masers. Why can they exist spontaneously? Could there be astrophysical lasers, i.e., ones that emit in the optical?
Components for Infrared Spectroscopy. Dispersive IR Spectroscopy
Components for Infrared Spectroscopy Mid-IR light: 00-000 cm - (5.5 m wavelength) Sources: Blackbody emitters Globar metal oxides Nernst Glower: Silicon Carbide Detectors: Not enough energy for photoelectric
Designing Fiber Optic Systems David Strachan
Designing Fiber Optic Systems David Strachan Everyone knows that fiber optics can carry a huge amount of data. There are more benefits to using fiber optics in broadcast applications than you might realize.
INTERFERENCE OF SOUND WAVES
1/2016 Sound 1/8 INTERFERENCE OF SOUND WAVES PURPOSE: To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves and to observe interference phenomena with ultrasonic sound waves.
Signal to Noise Instrumental Excel Assignment
Signal to Noise Instrumental Excel Assignment Instrumental methods, as all techniques involved in physical measurements, are limited by both the precision and accuracy. The precision and accuracy of a
v = fλ PROGRESSIVE WAVES 1 Candidates should be able to :
PROGRESSIVE WAVES 1 Candidates should be able to : Describe and distinguish between progressive longitudinal and transverse waves. With the exception of electromagnetic waves, which do not need a material
LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.
LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus
Crystal Optics of Visible Light
Crystal Optics of Visible Light This can be a very helpful aspect of minerals in understanding the petrographic history of a rock. The manner by which light is transferred through a mineral is a means
Robert G. Hunsperger. Integrated Optics. Theory and Technology. Fourth Edition. With 195 Figures and 17 Tables. Springer
Robert G. Hunsperger Integrated Optics Theory and Technology Fourth Edition With 195 Figures and 17 Tables Springer Contents 1. Introduction 1 1.1 Advantages of Integrated Optics 2 1.1.1 Comparison of
Projects. Objective To gain hands-on design and measurement experience with real-world applications. Contents
Projects Contents 9-1 INTRODUCTION...................... 43 9-2 PROJECTS......................... 43 9-2.1 Alarm Radar Sensor................ 43 9-2.2 Microwave FM Communication Link....... 46 9-2.3 Optical
product overview pco.edge family the most versatile scmos camera portfolio on the market pioneer in scmos image sensor technology
product overview family the most versatile scmos camera portfolio on the market pioneer in scmos image sensor technology scmos knowledge base scmos General Information PCO scmos cameras are a breakthrough
E/M Experiment: Electrons in a Magnetic Field.
E/M Experiment: Electrons in a Magnetic Field. PRE-LAB You will be doing this experiment before we cover the relevant material in class. But there are only two fundamental concepts that you need to understand.
Integrated optics Er-Yb amplifier with potassium ion-exchanged glass waveguides
Integrated optics Er-Yb amplifier with potassium ion-exchanged glass waveguides P. Meshkinfam 1, P. Fournier', M.A. Fardad 2, M. P. Andrews 2, and S. I. Najafl' 1 Photonics Research Group, Ecole Polytechnique,
Fiber optic communication
Fiber optic communication Fiber optic communication Outline Introduction Properties of single- and multi-mode fiber Optical fiber manufacture Optical network concepts Robert R. McLeod, University of Colorado
DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b
DIODE CIRCUITS LABORATORY A solid state diode consists of a junction of either dissimilar semiconductors (pn junction diode) or a metal and a semiconductor (Schottky barrier diode). Regardless of the type,
APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS
APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS Selection and use of Ultrasonic Ceramic Transducers The purpose of this application note is to aid the user in the selection and application of the Ultrasonic
