High Pressure X ray Imaging Techniques
|
|
|
- Morgan Pearson
- 9 years ago
- Views:
Transcription
1 High Pressure X ray Imaging Techniques Wenge Yang HPSynC, Geophysical Laboratory, Carnegie Institution of Washington Advanced d Photon Source, Argonne National Nti llb Laboratory Financial Support from Depart of Energy Basic Energy Sciences Short course on High Pressure Synchrotron Techniques, September 17, 2010
2 Medical X ray Imaging Bone X ray (radiography) An x ray radiograph is a noninvasive medical test that helps physicians diagnose and treat medical conditions. Imaging with x rays involves exposing a part of the body to a small dose of ionizing radiation to produce pictures of the inside of the body. X rays are the oldest and most frequently used form of medical imaging. (RadiologyInfo.org)
3 Computed tomography (CT) An example of a single slice li CT image of the brain. Description Computed tomography (CT) scanning, also called computerized axial tomography (CAT) scanning, is a medical imaging procedure that uses x rays to show cross sectional sectional images of the body. A CT imaging system produces cross sectional images or "slices" of areas of the body, like the slices in a loaf of bread. These cross sectional images are used for a variety of diagnostic and therapeutic purposes. Uses CT can help diagnose or rule out a disease or condition. CT has become recognized as a valuable medical tool, for: Diagnosis of disease, trauma, or abnormality; Planning, guiding, and monitoring therapy.
4 Synchrotron radiation What can we benefit from synchrotron radiation? High brilliance Coherence Polarization fast data acquisition coherent diffraction differential polarize enhance imaging Broad energy spectrum soft x ray imaging nanoscopes, interior of biologic, soft matter hard x ray imaging g nondestructive, internal or hidden components Time resolved High energy resolution High spatial resolution dynamic study, evolution spectroscopy push the spatial resolution to nanometer region
5 Hard X ray Imaging Nondestructive, phase contrast, scanning probe, diffraction contrast, tomography, topography Basically there are two experimental approaches: Full field imaging and scanning probe Full field imaging needs homogeneous illumination, while the scanning probe uses focusing devices to illuminate small area point by point In both cases, there must be a physical property to give contrast. They could be magnetic domain, electric domain, phase, orientation, i density, chemical composition, strain, etc.
6 Example 1 Orientation percolation map between substrate and film (2d scan) 2d raster scan on film and substrate, both crystals diffract simultaneously. Indexing of the individual grain orientation gives the orientation maps and percolative region by small angle grain boundries. CeO 2 Ni (001) CeO 2 Film CCD Ni CeO 2 Ni X rays Orientation maps produced by X ray microdiffraction. Black lines indicate boundaries between pixels where the total misorientation (including both in plane and out of plane components) is greater than 5.Each coloured area shows a percolative region connected by boundaries of less than 5. J.D. Budai et al., X ray microdiffraction study of growth modes and crystallographic tilts in oxide films on metal substrates, Nat. Mater. 2, 487 (2003).
7 X ray Imaging of Shock Waves Generated by High Pressure Fuel Sprays Example 2 Time resolved full field imaging gives the x ray absorption contrast from the compressed SF 6 gas Time resolved radiographic images of fuel sprays and the shock waves generated by the sprays for time instances of 38, 77, 115, 154, and 192 ms after the start of the injection. A.G. MacPhee et al. Science 295, 1261 (2002)
8 Soft X ray Imaging Example 3,4 Mostly used for biologic i materials, soft matter, nanomagnetism Cryo X ray tomography of whole yeast, S. cerevisiae, viewed using several processing algorithms after reconstruction. C.A. Larabell and M.A LeGros, X ray Tomography Generates 3 D Reconstructions of the Yeast, Saccharomyces cerevisiae, ii at 60 nm Resolution Molecular Bio. Cell 15, 957 (04) Vortex core driven magnetization dynamics Time resolved x ray imaging shows that the magnetization dynamics of a micronsized pattern containing a ferromagnetic vortex is determined by its chirality Time resolved x ray Photoemission electron microscope (PEEM) Was used to resolve the motion of magnetic vortices of micro pattern in response to an excitation filed pulse. Choe et al. Science 304, 420 (2004)
9 What do we learn from these imaging techniques and how to apply to high pressure? Diamond anvil cells Large volume press 16BM B 13BM D Only hard x ray can be used to penetrate gasket, surrounding materials and sample
10 In situ melting observation under pressure in Paris Edinburg Cell (hard x ray radiography) Example 5 Sample SeTe alloy 1 mm Pressure calibrator Au block RT and 1895 PSI Sample environment X ray 503 C and 2660 Psi 1192C and 3836 Psi Sample starts to melt Au starts to melt
11 Synchrotron x-ray DAC 3d microtomography 2 BM, Advanced Photon Source, Argonne National Laboratory
12 0 deg 45 deg Example deg 180 deg Sample: a ZrPd/Ag Goal: achieving the mass density / volume measurement of amorphous materials vs. pressure using a known crystalline phase as the internal reference
13 First success EoS measurement of a Se under pressure Pressure volume relations for Se. (A) The atomic volume change of amorphous Se under pressure determined from microtomography. (B) The time dependence of the volume change during crystallization. Snapshot from the 3D imaging Haozhe Liu et al. Anomalous high pressure movie of a Se sample in a DAC at behavior of amorphous selenium from 10.7 GPa at various viewing angles. synchrotron x ray diffraction and microtomography, PNAS, 105, (2008)
14 3d nanoscale tomography for EoS and in situ structure evolution studies Example 7 Transmission x ray microscopy (TXM) setup at 32ID C and 16ID E CCD Nano focusing zone plate Sample stage condenser Beamline capabilities: Beamline capabilities: Full field imaging with 180 degrees data collection; 3d reconstruction with FOV 25 microns and 30 nm resolution at energy 10 kev
15 Schematic of the TXM setup at 32ID C, 16ID E 30 nm feature
16 3d tomography study of recovered sample from High P T condition Separation of Fe from (Mg,Fe)SiO3 under high P T Fes-10%.mpg
17 Sample studied: single crystal Sn under pressure 2d projection view 4.7 GPa 5.7 GPa 10.6 GPa 13.7 GPa 22.2 GPa 37.7 GPa 48.0 GPa
18 3d shape change vs. phase transition and texturing (from diffraction data) 5g72.mpg 10g61.mpg 13g72.mpg Phase transition Beta tin > BCT around 11 GPa
19 22g2.mpg 37g.mpg 48g.mpg Stay at BCT phase, but more randomly oriented
20 Example 8 Coherent X ray diffraction imaging of strain at the nanoscale (Bragg geometry) Visualization of strain inside a Pb nanocrystal Ian Robinson and Ross Harder, Nature materials, 8, 291 (2009)
21 Coherent diffraction imaging (CDI) on single crystal under high pressure Experimental setup at 34ID C C, APS CCD Online Ruby Panoramic DAC on a kinematical mount K B Mirrors
22 Example 9 Sample: ~ 300 nm diameter gold single crystal on 15 um thick Si wafer Gold nanoparticles on Si wafer 10 um Average 300 nm size Au single crystals grown on Si wafer
23 CCD 0.05 degree/step rotation of sample Online Ruby system DAC Single crystal internal strain evolution vs. Pressure in DAC with 20 nm resolution in 3d Data collected on July 14, 2010 at APS 34ID C
24 Example 10 Coherent X ray diffraction Microscopy for nanoscience and biology(small angle geometry) Schematic layout of coherent diffraction microscopy. The oversampled diffraction intensities are measured from a finite specimens, and then directly phased to obtain a high resolution image. Limitation: missing data at the center of diffraction pattern Advantage: single shot imaging for 3d (could be used in x ray free electron lasers), non crystalline specimens From John Miao, UCLS
25 Lensless imaging using coherent soft x ray laser beams at 47 nm. (a) SEM image of a waving stick figure sample (scale bar = 1 micron). (b) Coherent soft x ray diffraction pattern after curvature correction. (c) Reconstructed image with curvature correction. (d) Line out ofthe image along the legs (shownin the inset), verifying a resolution of 71 nm. R. L. Sandberg, et al., High Numerical Aperture Tabletop Soft X ray Diffraction Microscopy with 70 nm Resolution, Proc. Natl. Acad. Sci. USA 105, (2008). Iso surface renderings of the reconstructed image from a GaN quantum dot nanoparticle, showing (a) the front view, (b) the back and (c) the side view. (d) 3D internal structures of the nanoparticle. J. Miao, et al., Three Dimensional GaN Ga2O3 Core Shell Structure Revealed by X ray Diffraction Microscopy, Phys. Rev. Lett. 97, (2006).
26 Other ongoing developing imaging i techniques could be applied to high h pressure research Full field near edge absorption contrast imaging Magnetic probe (XMCD, XMLD, RIXS) Emission spectroscopy mapping Dynamic XPCS
27 Summary For in situ it high h pressure research, traditionally the x ray diffraction and spectroscopy are the two major tools. The promising developed x ray imaging gtechniques will provide many ways to view the evolution of sample in terms of the local microstructure, phase separation, chemical bonding, strain, magnetic domain etc., which iscomplementaryto to other in situ techniques.
28 Acknowledgements APS: Wenjun Liu Ross Harder Junyue Wang Steve Wang Xianghui Xiao Francesco De Carlo Deming Shu Ian McNulty NSLS II: Qun Shen Young Chu Diamond: Ian Robinson Stanford: Wendy Mao CIW: David Mao Guoyin Shen Lin Wang Yang Ding Malcolm Guthrie Changyong Park Curtis Kenney Benson Financial Supported by: EFree Energy Frontier Research Center DOE BES (Basic Energy Sciences) DOE NNSA (National Nuclear Security Administration)
X-Rays and Magnetism From Fundamentals to Nanoscale Dynamics
X-Rays and Magnetism From Fundamentals to Nanoscale Dynamics Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-rays have come a long way 1895 1993 10 cm 10 µm 100 nm Collaborators: SSRL Stanford:
Polarization Dependence in X-ray Spectroscopy and Scattering. S P Collins et al Diamond Light Source UK
Polarization Dependence in X-ray Spectroscopy and Scattering S P Collins et al Diamond Light Source UK Overview of talk 1. Experimental techniques at Diamond: why we care about x-ray polarization 2. How
ORIENTATION CHARACTERISTICS OF THE MICROSTRUCTURE OF MATERIALS
ORIENTATION CHARACTERISTICS OF THE MICROSTRUCTURE OF MATERIALS K. Sztwiertnia Polish Academy of Sciences, Institute of Metallurgy and Materials Science, 25 Reymonta St., 30-059 Krakow, Poland MMN 2009
Micro-CT for SEM Non-destructive Measurement and Volume Visualization of Specimens Internal Microstructure in SEM Micro-CT Innovation with Integrity
Micro-CT for SEM Non-destructive Measurement and Volume Visualization of Specimens Internal Microstructure in SEM Innovation with Integrity Micro-CT 3D Microscopy Using Micro-CT for SEM Micro-CT for SEM
Physics 441/2: Transmission Electron Microscope
Physics 441/2: Transmission Electron Microscope Introduction In this experiment we will explore the use of transmission electron microscopy (TEM) to take us into the world of ultrasmall structures. This
Ion Beam Sputtering: Practical Applications to Electron Microscopy
Ion Beam Sputtering: Practical Applications to Electron Microscopy Applications Laboratory Report Introduction Electron microscope specimens, both scanning (SEM) and transmission (TEM), often require a
Nanoelectronics 09. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture
Nanoelectronics 09 Atsufumi Hirohata Department of Electronics 12:00 Wednesday, 4/February/2015 (P/L 006) Quick Review over the Last Lecture ( Field effect transistor (FET) ): ( Drain ) current increases
Basic principles and mechanisms of NSOM; Different scanning modes and systems of NSOM; General applications and advantages of NSOM.
Lecture 16: Near-field Scanning Optical Microscopy (NSOM) Background of NSOM; Basic principles and mechanisms of NSOM; Basic components of a NSOM; Different scanning modes and systems of NSOM; General
The Focused Ion Beam Scanning Electron Microscope: A tool for sample preparation, two and three dimensional imaging. Jacob R.
The Focused Ion Beam Scanning Electron Microscope: A tool for sample preparation, two and three dimensional imaging Jacob R. Bowen Contents Components of a FIB-SEM Ion interactions Deposition & patterns
Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications
Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications Saulius Marcinkevičius Optics, ICT, KTH 1 Outline Optical near field. Principle of scanning near field optical microscope
Nanoscience Course Descriptions
Nanoscience Course Descriptions NANO*1000 Introduction to Nanoscience This course introduces students to the emerging field of nanoscience. Its representation in popular culture and journalism will be
Near-field scanning optical microscopy (SNOM)
Adviser: dr. Maja Remškar Institut Jožef Stefan January 2010 1 2 3 4 5 6 Fluorescence Raman and surface enhanced Raman 7 Conventional optical microscopy-limited resolution Two broad classes of techniques
Coating Thickness and Composition Analysis by Micro-EDXRF
Application Note: XRF Coating Thickness and Composition Analysis by Micro-EDXRF www.edax.com Coating Thickness and Composition Analysis by Micro-EDXRF Introduction: The use of coatings in the modern manufacturing
Atomic Force Microscope and Magnetic Force Microscope Background Information
Atomic Force Microscope and Magnetic Force Microscope Background Information Lego Building Instructions There are several places to find the building instructions for building the Lego models of atomic
X-ray diffraction techniques for thin films
X-ray diffraction techniques for thin films Rigaku Corporation Application Laboratory Takayuki Konya 1 Today s contents (PM) Introduction X-ray diffraction method Out-of-Plane In-Plane Pole figure Reciprocal
Lecture 20: Scanning Confocal Microscopy (SCM) Rationale for SCM. Principles and major components of SCM. Advantages and major applications of SCM.
Lecture 20: Scanning Confocal Microscopy (SCM) Rationale for SCM. Principles and major components of SCM. Advantages and major applications of SCM. Some limitations (disadvantages) of NSOM A trade-off
Nanometer-scale imaging and metrology, nano-fabrication with the Orion Helium Ion Microscope
[email protected] Nanometer-scale imaging and metrology, nano-fabrication with the Orion Helium Ion Microscope Bin Ming, András E. Vladár and Michael T. Postek National Institute of Standards and Technology
Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied
Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Stress and strain fracture or engineering point of view: allows to predict the
Wir schaffen Wissen heute für morgen
Diffractive optics for photon beam diagnostics at hard XFELs Wir schaffen Wissen heute für morgen PSI: SLAC: ESRF: SOLEIL: APS: SACLA: EuroXFEL C. David, S. Rutishauser, P. Karvinen, Y. Kayser, U. Flechsig,
Types of Epitaxy. Homoepitaxy. Heteroepitaxy
Epitaxy Epitaxial Growth Epitaxy means the growth of a single crystal film on top of a crystalline substrate. For most thin film applications (hard and soft coatings, optical coatings, protective coatings)
Reflection Electron Microscopy and Spectroscopy for Surface Analysis
Reflection Electron Microscopy and Spectroscopy for Surface Analysis by Zhong Lin Wang 1 Introduction In 1986, E. Ruska was awarded the Nobel Physics Prize for his pioneering work of building the world's
X-ray Diffraction and EBSD
X-ray Diffraction and EBSD Jonathan Cowen Swagelok Center for the Surface Analysis of Materials Case School of Engineering Case Western Reserve University October 27, 2014 Outline X-ray Diffraction (XRD)
NEAR FIELD OPTICAL MICROSCOPY AND SPECTROSCOPY WITH STM AND AFM PROBES
Vol. 93 (1997) A CTA PHYSICA POLONICA A No. 2 Proceedings of the 1st International Symposium on Scanning Probe Spectroscopy and Related Methods, Poznań 1997 NEAR FIELD OPTICAL MICROSCOPY AND SPECTROSCOPY
Chapter 8. Low energy ion scattering study of Fe 4 N on Cu(100)
Low energy ion scattering study of 4 on Cu(1) Chapter 8. Low energy ion scattering study of 4 on Cu(1) 8.1. Introduction For a better understanding of the reconstructed 4 surfaces one would like to know
Upcoming APS Summer Schools
Upcoming APS Summer Schools 9th U.S. National School on Neutron & X-Ray Scattering August 12 25, 2007 Argonne Division of Educational Programs 3rd APS XAFS Summer School July 23 27, 2007 APS XAFS Scientific
Usage of Carbon Nanotubes in Scanning Probe Microscopes as Probe. Keywords: Carbon Nanotube, Scanning Probe Microscope
International Journal of Arts and Sciences 3(1): 18-26 (2009) CD-ROM. ISSN: 1944-6934 InternationalJournal.org Usage of Carbon Nanotubes in Scanning Probe Microscopes as Probe Bedri Onur Kucukyildirim,
Basics of Image and data analysis in 3D
Basics of Image and data analysis in 3D outline Why image processing, and how? Image processing in 2D What is an ideal image? Histogram tells stories! Before taking the image: the right imaging conditions!
Microscopy and Nanoindentation. Combining Orientation Imaging. to investigate localized. deformation behaviour. Felix Reinauer
Combining Orientation Imaging Microscopy and Nanoindentation to investigate localized deformation behaviour Felix Reinauer René de Kloe Matt Nowell Introduction Anisotropy in crystalline materials Presentation
Modification of Pd-H 2 and Pd-D 2 thin films processed by He-Ne laser
Modification of Pd-H 2 and Pd-D 2 thin films processed by He-Ne laser V.Nassisi #, G.Caretto #, A. Lorusso #, D.Manno %, L.Famà %, G.Buccolieri %, A.Buccolieri %, U.Mastromatteo* # Laboratory of Applied
- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier
Tunnel Effect: - particle with kinetic energy E strikes a barrier with height U 0 > E and width L - classically the particle cannot overcome the barrier - quantum mechanically the particle can penetrated
APPLICATION OF X-RAY COMPUTED TOMOGRAPHY IN SILICON SOLAR CELLS
APPLICATION OF X-RAY COMPUTED TOMOGRAPHY IN SILICON SOLAR CELLS V.A. Popovich 1, W. Verwaal 2, M. Janssen 1, I. J. Bennett 3, I.M.Richardson 1, 1. Delft University of Technology, Department of Materials
Electron Microscopy 3. SEM. Image formation, detection, resolution, signal to noise ratio, interaction volume, contrasts
Electron Microscopy 3. SEM Image formation, detection, resolution, signal to noise ratio, interaction volume, contrasts 3-1 SEM is easy! Just focus and shoot "Photo"!!! Please comment this picture... Any
It has long been a goal to achieve higher spatial resolution in optical imaging and
Nano-optical Imaging using Scattering Scanning Near-field Optical Microscopy Fehmi Yasin, Advisor: Dr. Markus Raschke, Post-doc: Dr. Gregory Andreev, Graduate Student: Benjamin Pollard Department of Physics,
Lectures about XRF (X-Ray Fluorescence)
1 / 38 Lectures about XRF (X-Ray Fluorescence) Advanced Physics Laboratory Laurea Magistrale in Fisica year 2013 - Camerino 2 / 38 X-ray Fluorescence XRF is an acronym for X-Ray Fluorescence. The XRF technique
h e l p s y o u C O N T R O L
contamination analysis for compound semiconductors ANALYTICAL SERVICES B u r i e d d e f e c t s, E v a n s A n a l y t i c a l g r o u p h e l p s y o u C O N T R O L C O N T A M I N A T I O N Contamination
Preface Light Microscopy X-ray Diffraction Methods
Preface xi 1 Light Microscopy 1 1.1 Optical Principles 1 1.1.1 Image Formation 1 1.1.2 Resolution 3 1.1.3 Depth of Field 5 1.1.4 Aberrations 6 1.2 Instrumentation 8 1.2.1 Illumination System 9 1.2.2 Objective
This is an author-deposited version published in: http://sam.ensam.eu Handle ID:.http://hdl.handle.net/10985/10324
Science Arts & Métiers (SAM) is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible. This is an author-deposited
Lecture 6 Scanning Tunneling Microscopy (STM) General components of STM; Tunneling current; Feedback system; Tip --- the probe.
Lecture 6 Scanning Tunneling Microscopy (STM) General components of STM; Tunneling current; Feedback system; Tip --- the probe. Brief Overview of STM Inventors of STM The Nobel Prize in Physics 1986 Nobel
PHYSICAL METHODS, INSTRUMENTS AND MEASUREMENTS Vol. IV Femtosecond Measurements Combined With Near-Field Optical Microscopy - Artyom A.
FEMTOSECOND MEASUREMENTS COMBINED WITH NEAR FIELD OPTICAL MICROSCOPY Artyom A. Astafiev, Semyonov Institute of Chemical Physics, Moscow, Russian Federation. Keywords: diffraction limit nearfield scanning
PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS
PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.
Size effects. Lecture 6 OUTLINE
Size effects 1 MTX9100 Nanomaterials Lecture 6 OUTLINE -Why does size influence the material s properties? -How does size influence the material s performance? -Why are properties of nanoscale objects
Photoinduced volume change in chalcogenide glasses
Photoinduced volume change in chalcogenide glasses (Ph.D. thesis points) Rozália Lukács Budapest University of Technology and Economics Department of Theoretical Physics Supervisor: Dr. Sándor Kugler 2010
Microscopy: Principles and Advances
Microscopy: Principles and Advances Chandrashekhar V. Kulkarni University of Central Lancashire, Preston, United kingdom May, 2014 University of Ljubljana Academic Background 2005-2008: PhD-Chemical Biology
CHEM 1411 Chapter 5 Homework Answers
1 CHEM 1411 Chapter 5 Homework Answers 1. Which statement regarding the gold foil experiment is false? (a) It was performed by Rutherford and his research group early in the 20 th century. (b) Most of
5. Scanning Near-Field Optical Microscopy 5.1. Resolution of conventional optical microscopy
5. Scanning Near-Field Optical Microscopy 5.1. Resolution of conventional optical microscopy Resolution of optical microscope is limited by diffraction. Light going through an aperture makes diffraction
Radiation therapy involves using many terms you may have never heard before. Below is a list of words you could hear during your treatment.
Dictionary Radiation therapy involves using many terms you may have never heard before. Below is a list of words you could hear during your treatment. Applicator A device used to hold a radioactive source
Scanning Electron Microscopy: an overview on application and perspective
Scanning Electron Microscopy: an overview on application and perspective Elvio Carlino Center for Electron Microscopy - IOM-CNR Laboratorio Nazionale TASC - Trieste, Italy Location of the Center for Electron
Applications of confocal fluorescence microscopy in biological sciences
Applications of confocal fluorescence microscopy in biological sciences B R Boruah Department of Physics IIT Guwahati Email: [email protected] Page 1 Contents Introduction Optical resolution Optical
We know how to write nanometer. extreme lithography. extreme lithography. xlith Gesellschaft für Hochauflösende Lithografie Support & Consulting mbh
extreme lithography extreme lithography xlith Gesellschaft für Hochauflösende Lithografie Support & Consulting mbh Wilhelm-Runge-Str. 11 89081 Ulm Germany phone +49 731 505 59 00 fax +49 731 505 59 05
Luminescence study of structural changes induced by laser cutting in diamond films
Luminescence study of structural changes induced by laser cutting in diamond films A. Cremades and J. Piqueras Departamento de Fisica de Materiales, Facultad de Fisicas, Universidad Complutense, 28040
Laser Based Micro and Nanoscale Manufacturing and Materials Processing
Laser Based Micro and Nanoscale Manufacturing and Materials Processing Faculty: Prof. Xianfan Xu Email: [email protected] Phone: (765) 494-5639 http://widget.ecn.purdue.edu/~xxu Research Areas: Development
Proper Implementation of Industrial CT Scanning to Reduce Inspection Costs & Get to Production Faster. Jesse Garant, JG&A Metrology Center
Proper Implementation of Industrial CT Scanning to Reduce Inspection Costs & Get to Production Faster Jesse Garant, JG&A Metrology Center Traditional Metrology and Inspection Tactile Devices (Touch Probe)
Scanning Near-Field Optical Microscopy for Measuring Materials Properties at the Nanoscale
Scanning Near-Field Optical Microscopy for Measuring Materials Properties at the Nanoscale Outline Background Research Design Detection of Near-Field Signal Submonolayer Chemical Sensitivity Conclusions
STAR: State of the art
i n v e s t i a m o n e l v o s t r o f u t u r o STAR: State of the art Raffaele G. Agostino PON MaTeRiA Materials and Technologies for Advanced Research MaTeRiA EU/National Funding PON Ricerca e Competititvità
Physical Properties and Functionalization of Low-Dimensional Materials
Physical Properties and Functionalization of Low-Dimensional Materials Physics Department, University of Trieste Graduate School of Physics, XXVI cycle Supervisor: Co-supervisor: Prof. Alessandro BARALDI
Etudes in situ et ex situ de multicouches C/FePt
Etudes in situ et ex situ de multicouches C/FePt : influence de la température sur la structure et les propriétés s magnétiques D. Babonneau, G. Abadias, F. Pailloux Laboratoire de Physique des Matériaux
X-ray thin-film measurement techniques
Technical articles X-ray thin-film measurement techniques II. Out-of-plane diffraction measurements Toru Mitsunaga* 1. Introduction A thin-film sample is two-dimensionally formed on the surface of a substrate,
Neuro imaging: looking with lasers in the brain
Neuro imaging: looking with lasers in the brain Aim: To image life cells, label free, with cellular resolution in deep tissue Marloes Groot Vrije Universiteit Amsterdam Faculteit Exacte Wetenschappen Natuurkunde
Raman spectroscopy Lecture
Raman spectroscopy Lecture Licentiate course in measurement science and technology Spring 2008 10.04.2008 Antti Kivioja Contents - Introduction - What is Raman spectroscopy? - The theory of Raman spectroscopy
UNIT I: INTRFERENCE & DIFFRACTION Div. B Div. D Div. F INTRFERENCE
107002: EngineeringPhysics Teaching Scheme: Lectures: 4 Hrs/week Practicals-2 Hrs./week T.W.-25 marks Examination Scheme: Paper-50 marks (2 hrs) Online -50marks Prerequisite: Basics till 12 th Standard
7. advanced SEM. Latest generation of SEM SEM
7. advanced SEM SEM Low voltage SE imaging Condition of the surface, coatings, plasma cleaning Low voltage BSE imaging Polishing for BSE, EDX and EBSD, effect of ion beam etching/polishing 1 Latest generation
proper way. Therefore operator training and certification is key in every inspection program to ensure compliance and improve quality and integrity.
SGS NDT Training & Examination Centre Professional Services for Your Safety and Reputation ABOUT NON DESTRUCTIVE TESTING (NDT) About NDT NDT plays a key role in assessing conformity and reliability of
RAY TRACING UNIFIED FIELD TRACING
RAY TRACING Start to investigate the performance of your optical system using 3D ray distributions, dot diagrams of ray positions and directions, and optical path length. GEOMETRIC FIELD TRACING Switch
ESRF Upgrade Phase II: le nuove opportunitá per le linee da magnete curvante
LUCI DI SINCROTRONE CNR, ROMA 22 APRILE 2014 ESRF Upgrade Phase II: le nuove opportunitá per le linee da magnete curvante Sakura Pascarelli [email protected] Page 2 INCREASE IN BRILLIANCE H emittance V emittance
CREOL, College of Optics & Photonics, University of Central Florida
OSE6650 - Optical Properties of Nanostructured Materials Optical Properties of Nanostructured Materials Fall 2013 Class 3 slide 1 Challenge: excite and detect the near field Thus far: Nanostructured materials
EDS system. CRF Oxford Instruments INCA CRF EDAX Genesis EVEX- NanoAnalysis Table top system
EDS system Most common X-Ray measurement system in the SEM lab. Major elements (10 wt% or greater) identified in ~10 secs. Minor elements identifiable in ~100 secs. Rapid qualitative and accurate quantitative
Acousto-optic modulator
1 of 3 Acousto-optic modulator F An acousto-optic modulator (AOM), also called a Bragg cell, uses the acousto-optic effect to diffract and shift the frequency of light using sound waves (usually at radio-frequency).
Crystal Optics of Visible Light
Crystal Optics of Visible Light This can be a very helpful aspect of minerals in understanding the petrographic history of a rock. The manner by which light is transferred through a mineral is a means
New Portable X-Ray Diffraction/X-Ray Fluorescence Instrument (XRD/XRF)
1 New Portable X-Ray Diffraction/X-Ray Fluorescence Instrument (XRD/XRF) Introduction The primary goal of most analyses of art objects is to identify the material composition of the object. This may lead
CALCULATION METHODS OF X-RAY SPECTRA: A COMPARATIVE STUDY
243 CALCULATION METHODS OF X-RAY SPECTRA: A COMPARATIVE STUDY B. Chyba, M. Mantler, H. Ebel, R. Svagera Technische Universit Vienna, Austria ABSTRACT The accurate characterization of the spectral distribution
Secondary Ion Mass Spectrometry
Secondary Ion Mass Spectrometry A PRACTICAL HANDBOOK FOR DEPTH PROFILING AND BULK IMPURITY ANALYSIS R. G. Wilson Hughes Research Laboratories Malibu, California F. A. Stevie AT&T Bell Laboratories Allentown,
An Overview of Digital Imaging Systems for Radiography and Fluoroscopy
An Overview of Digital Imaging Systems for Radiography and Fluoroscopy Michael Yester, Ph.D. University of Alabama at Birmingham Outline Introduction Imaging Considerations Receptor Properties General
Acoustic GHz-Microscopy: Potential, Challenges and Applications
Acoustic GHz-Microscopy: Potential, Challenges and Applications A Joint Development of PVA TePLa Analytical Systems GmbH and Fraunhofer IWM-Halle Dr. Sebastian Brand (Ph.D.) Fraunhofer CAM Fraunhofer Institute
Single Defect Center Scanning Near-Field Optical Microscopy on Graphene
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Single Defect Center Scanning Near-Field Optical Microscopy on Graphene J. Tisler, T. Oeckinghaus, R. Stöhr, R. Kolesov, F. Reinhard and J. Wrachtrup 3. Institute
QUANTITATIVE IMAGING IN MULTICENTER CLINICAL TRIALS: PET
Centers for Quantitative Imaging Excellence (CQIE) LEARNING MODULE QUANTITATIVE IMAGING IN MULTICENTER CLINICAL TRIALS: PET American College of Radiology Clinical Research Center v.1 Centers for Quantitative
Sputtered AlN Thin Films on Si and Electrodes for MEMS Resonators: Relationship Between Surface Quality Microstructure and Film Properties
Sputtered AlN Thin Films on and Electrodes for MEMS Resonators: Relationship Between Surface Quality Microstructure and Film Properties S. Mishin, D. R. Marx and B. Sylvia, Advanced Modular Sputtering,
Phase Characterization of TiO 2 Powder by XRD and TEM
Kasetsart J. (Nat. Sci.) 42 : 357-361 (28) Phase Characterization of TiO 2 Powder by XRD and TEM Kheamrutai Thamaphat 1 *, Pichet Limsuwan 1 and Boonlaer Ngotawornchai 2 ABSTRACT In this study, the commercial
Department of Aerospace Engineering Indian Institute of Science Bangalore
Department of Aerospace Engineering Indian Institute of Science Bangalore Brief Outline of Department The department of Aerospace Engineering is one of the oldest departments in the country encompassing
Ultra-High Density Phase-Change Storage and Memory
Ultra-High Density Phase-Change Storage and Memory by Egill Skúlason Heated AFM Probe used to Change the Phase Presentation for Oral Examination 30 th of May 2006 Modern Physics, DTU Phase-Change Material
The study of structural and optical properties of TiO 2 :Tb thin films
Optica Applicata, Vol. XXXVII, No. 4, 2007 The study of structural and optical properties of TiO 2 :Tb thin films AGNIESZKA BORKOWSKA, JAROSLAW DOMARADZKI, DANUTA KACZMAREK, DAMIAN WOJCIESZAK Faculty of
Scanning Electron Microscopy tools for material characterization
5th International Workshop on Mechanisms of Vacuum Arcs 02-04/09/2015 Scanning Electron Microscopy tools for material characterization Focus on EBSD for characterisation of dislocation structures Floriane
COMPARISON OF TEXTURE IN COPPER AND ALUMINUM THIN FILMS DETERMINED BY XRD AND EBSD *
201 COMPARISON OF TEXTURE IN COPPER AND ALUMINUM THIN FILMS DETERMINED BY XRD AND EBSD * J. Müller 1, D. Balzar 1,2, R.H. Geiss 1, D.T. Read 1, and R.R. Keller 1 1 Materials Reliability Division, National
From apertureless near-field optical microscopy to infrared near-field night vision
From apertureless near-field optical microscopy to infrared near-field night vision Yannick DE WILDE ESPCI Laboratoire d Optique Physique UPR A0005-CNRS, PARIS [email protected] From apertureless
1. Photon Beam Damage and Charging at Solid Surfaces John H. Thomas III
1. Photon Beam Damage and Charging at Solid Surfaces John H. Thomas III 1. Introduction............................. 2. Electrostatic Charging of Samples in Photoemission Experiments............................
BIG data big problems big opportunities Rudolf Dimper Head of Technical Infrastructure Division ESRF
BIG data big problems big opportunities Rudolf Dimper Head of Technical Infrastructure Division ESRF Slide: 1 ! 6 GeV, 850m circonference Storage Ring! 42 public and CRG beamlines! 6000+ user visits/y!
Introduction to X-Ray Powder Diffraction Data Analysis
Introduction to X-Ray Powder Diffraction Data Analysis Center for Materials Science and Engineering at MIT http://prism.mit.edu/xray An X-ray diffraction pattern is a plot of the intensity of X-rays scattered
Demonstration of sub-4 nm nanoimprint lithography using a template fabricated by helium ion beam lithography
Demonstration of sub-4 nm nanoimprint lithography using a template fabricated by helium ion beam lithography Wen-Di Li*, Wei Wu** and R. Stanley Williams Hewlett-Packard Labs *Current address: University
Chemical Synthesis. Overview. Chemical Synthesis of Nanocrystals. Self-Assembly of Nanocrystals. Example: Cu 146 Se 73 (PPh 3 ) 30
Chemical Synthesis Spontaneous organization of molecules into stable, structurally well-defined aggregates at the nanometer length scale. Overview The 1-100 nm nanoscale length is in between traditional
Lenses and Apertures of A TEM
Instructor: Dr. C.Wang EMA 6518 Course Presentation Lenses and Apertures of A TEM Group Member: Anup Kr. Keshri Srikanth Korla Sushma Amruthaluri Venkata Pasumarthi Xudong Chen Outline Electron Optics
Fluorescence Microscopy for an NMR- Biosensor Project
Fluorescence Microscopy for an NMR- Biosensor Project Ole Hirsch Physikalisch-Technische Bundesanstalt Medical Optics Abbestr. -1, 10587 Berlin, Germany Overview NMR Sensor Project Dimensions in biological
Using the PDF for material identification using elemental data. from XRF and SEM EDS.
XRF and SEM EDS Using the PDF for material identification using elemental data from XRF and SEM EDS. XRF and SEM EDS What? The Powder Diffraction File contains data on pure solid state compounds of well
Application Note #503 Comparing 3D Optical Microscopy Techniques for Metrology Applications
Screw thread image generated by WLI Steep PSS angles WLI color imaging Application Note #503 Comparing 3D Optical Microscopy Techniques for Metrology Applications 3D optical microscopy is a mainstay metrology
Optical Methods of Surface Measurement
Optical Methods of Surface Measurement Ted Vorburger, Guest Researcher National Institute of Standards and Technology (NIST) Measurement Science and Standards in Forensic Firearms Analysis 2012 NIST, Gaithersburg,
X-Ray Diffraction HOW IT WORKS WHAT IT CAN AND WHAT IT CANNOT TELL US. Hanno zur Loye
X-Ray Diffraction HOW IT WORKS WHAT IT CAN AND WHAT IT CANNOT TELL US Hanno zur Loye X-rays are electromagnetic radiation of wavelength about 1 Å (10-10 m), which is about the same size as an atom. The
bulk 5. Surface Analysis Why surface Analysis? Introduction Methods: XPS, AES, RBS
5. Surface Analysis Introduction Methods: XPS, AES, RBS Autumn 2011 Experimental Methods in Physics Marco Cantoni Why surface Analysis? Bulk: structural function Electrical/thermal conduction Volume increases
Chapter Outline. Diffusion - how do atoms move through solids?
Chapter Outline iffusion - how do atoms move through solids? iffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities The mathematics of diffusion Steady-state diffusion (Fick s first law)
Defects Introduction. Bonding + Structure + Defects. Properties
Defects Introduction Bonding + Structure + Defects Properties The processing determines the defects Composition Bonding type Structure of Crystalline Processing factors Defects Microstructure Types of
