CS171 Visualization. The Visualization Alphabet: Marks and Channels. Alexander Lex [xkcd]
|
|
|
- Philip Barton
- 9 years ago
- Views:
Transcription
1 CS171 Visualization Alexander Lex The Visualization Alphabet: Marks and Channels [xkcd]
2 This Week Thursday: Task Abstraction, Validation Homework 1 due on Friday! Any more problems with private GitHub repositories? Later today: Introduction to HW 2 Reading: D3, Chapter 12; VAD, Chapters 3&4
3 Next Week Lecture 7: Homework 2 Design Studio Lecture 8: Interaction Guest Lecture, Jean-Daniel Fekete (INRIA) Sections: D3 & JS: Data Structures, Layouts
4 No Device Policy No Computers, Tablets, Phones in lecture hall except when used for exercises Switch off, mute, flight mode Why? It s better to take notes by hand Notifications are designed to grab your attention
5 Last Week
6 Terms Dataset Types Tables Networks Fields (Continuous) Geometry (Spatial) Attributes (columns) Grid of positions Dataset Types Items (rows) Cell containing value Link Node (item) Cell Attributes (columns) Position what can be visualized? Multidimensional Table Trees Value in cell Value in cell Data Types fundamental units Data Types Items Attributes Links Positions Grids combinations make up Dataset Types
7 Tables Keys Attributes Values Flat Table Item one item per row each column is attribute unique (implicit) key no duplicates Multidimensional Table indexing based on multiple keys
8 Multidimensional Tables Keys: Patients Keys: Genes
9 Graphs/Networks A graph G(V,E) consists of a set of vertices (nodes) V and a set of edges (links) E connecting these vertices. A tree is a graph with no cycles
10 Fields Attribute values associated with cells Cell contains data from continuous domain Temperature, pressure, wind velocity Measured or simulated Sampling & Interpolation Signal processing & stats
11 Other Collections Sets Unique items, unordered Lists Ordered, duplicates allowed Clusters Groups of similar items
12 Data Types Categorical/Nominal (labels) Operations: =, Ordinal (ordered) Operations: =,, >, < Interval (location of zero arbitrary) Operations: =,, >, <, +, (distance) Ratio (zero fixed) Operations: =,, >, <, +,,, (proportions) On the theory of scales and measurements [S. Stevens, 46]
13 Item/Element/ (Independent) Variable
14 Attribute/ Dimension/ (Dependent) Variable/ Feature
15 Semantics
16 Keys?
17 Attribute Types?
18 Categorical Ordinal Quantitative
19 Design Critique
20 Recalled Cars NY Times
21 The Visualization Alphabet: Marks and Channels
22 How can I visually represent two numbers, e.g., 4 and 8
23 Marks & Channels Marks: represent items or links Channels: change appearance based on attribute Channel = Visual Variable
24 Example: Homework 2
25 Marks for Items Basic geometric elements 0D 1D 2D 3D mark: Volume, but rarely used
26 Marks for Links Containment Connection
27 Containment can be nested [Riche & Dwyer, 2010]
28 Channels (aka Visual Variables) Control appearance proportional to or based on attributes
29 Jacques Bertin French cartographer [ ] Semiology of Graphics [1967] Theoretical principles for visual encodings
30 Bertin s Visual Variables Marks: Points Lines Areas Position Size (Grey)Value Texture Color Orientation Shape Semiology of Graphics [J. Bertin, 67]
31 Using Marks and Channels Mark: Line Mark: Point Adding Hue Adding Size Channel: Length/Position Channel: Position +1 categorical attr. +1 quantitative attr. 1 quantitative attribute 2 quantitative attr. 1 categorical attribute
32 Redundant encoding Length, Position and Value
33 Good bar chart? Rule: Use channel proportional to data!
34 Types of Channels Magnitude Channels How much? Position Length Saturation Identity Channels What? Where? Shape Color (hue) Spatial region Ordinal & Quantitative Data Categorical Data
35 Channels: Expressiveness Types and Effectiveness Ranks Magnitude Channels: Ordered Attributes Position on common scale Position on unaligned scale Length (1D size) Tilt/angle Identity Channels: Categorical Attributes Spatial region Color hue Motion Shape Area (2D size) Depth (3D position) Color luminance Color saturation Curvature Volume (3D size)
36 What visual variables are used?
37 What visual variables are used?
38 Characteristics of Channels Selective Is a mark distinct from other marks? Can we make out the difference between two marks? Associative Does it support grouping? Quantitative (Magnitude vs Identity Channels) Can we quantify the difference between two marks?
39 Characteristics of Channels Order (Magnitude vs Identity) Can we see a change in order? Length How many unique marks can we make?
40 Position Strongest visual variable Suitable for all data types Problems: Sometimes not available (spatial data) Cluttering Selective: yes Associative: yes Quantitative: yes Order: yes Length: fairly big
41 Example: Scatterplot
42 Position in 3D? [Spotfire]
43 Length & Size Good for 1D, OK for 2D, Bad for 3D Easy to see whether one is bigger Aligned bars use position redundantly For 1D length: Selective: yes Associative: yes Quantitative: yes Order: yes Length: high
44 Example 2D Size: Bubbles
45 Value/Luminance/Saturation OK for quantitative data when length & size are used. Not very many shades recognizable Selective: yes Associative: yes Quantitative: somewhat (with problems) Order: yes Length: limited
46 Example: Diverging Value-Scale
47 Color????? < < Good for qualitative data (identity channel) Limited number of classes/length (~7-10!) Does not work for quantitative data! Lots of pitfalls! Be careful! Selective: yes Associative: yes Quantitative: no Order: no Length: limited My rule: minimize color use for encoding data use for brushing
48 Color: Bad Example Cliff Mass
49 Color: Good Example
50 Shape????? < < Great to recognize many classes. No grouping, ordering. Selective: yes Associative: limited Quantitative: no Order: no Length: vast
51
52 Chernoff Faces Idea: use facial parameters to map quantitative data Does it work? Not really! Critique:
53 More Channels
54 Why are quantitative channels different? S = sensation I = intensity
55 Steven s Power Law, 1961 Electric From Wilkinson 99, based on Stevens 61
56 How much longer? A 2x B
57 How much longer? A 4x B
58 How much steeper? ~4x A B
59 How much larger (area)? 5x A B
60 How much larger (area)? 3x A B
61 How much larger (diameter)? 2x A B
62 How much darker? 2x A B
63 Position, Length & Angle
64 Other Factors Affecting Accuracy Alignment Distractors Distance A B A B A B Common scale Unframed Unaligned Framed Unaligned Unframed Aligned VS VS VS
65 Cleveland / McGill, 1984 William S. Cleveland; Robert McGill, Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods. 1984
66 Heer & Bostock, 2010
67 Cleveland & McGill s Results Positions Log Error Crowdsourced Results Angles Circular areas Rectangular areas (aligned or in a treemap) Log Error
68 Jock Mackinlay, 1986 Decreasing [Mackinlay, Automating the Design of Graphical Presentations of Relational Information, 1986]
69 Channels: Expressiveness Types and Effectiveness Ranks Magnitude Channels: Ordered Attributes Position on common scale Position on unaligned scale Length (1D size) Tilt/angle Identity Channels: Categorical Attributes Spatial region Color hue Motion Shape Area (2D size) Depth (3D position) Color luminance Color saturation Curvature Volume (3D size)
70 Separability of Attributes Can we combine multiple visual variables? T. Munzner, Visualization Analysis and Design, 2014
Visualization Software
Visualization Software Maneesh Agrawala CS 294-10: Visualization Fall 2007 Assignment 1b: Deconstruction & Redesign Due before class on Sep 12, 2007 1 Assignment 2: Creating Visualizations Use existing
Choosing a successful structure for your visualization
IBM Software Business Analytics Visualization Choosing a successful structure for your visualization By Noah Iliinsky, IBM Visualization Expert 2 Choosing a successful structure for your visualization
Hierarchical Data Visualization
Hierarchical Data Visualization 1 Hierarchical Data Hierarchical data emphasize the subordinate or membership relations between data items. Organizational Chart Classifications / Taxonomies (Species and
Information visualization examples
Information visualization examples 350102: GenICT II 37 Information visualization examples 350102: GenICT II 38 Information visualization examples 350102: GenICT II 39 Information visualization examples
What is Visualization? Information Visualization An Overview. Information Visualization. Definitions
What is Visualization? Information Visualization An Overview Jonathan I. Maletic, Ph.D. Computer Science Kent State University Visualize/Visualization: To form a mental image or vision of [some
Multi-Dimensional Data Visualization. Slides courtesy of Chris North
Multi-Dimensional Data Visualization Slides courtesy of Chris North What is the Cleveland s ranking for quantitative data among the visual variables: Angle, area, length, position, color Where are we?!
Principles of Data Visualization for Exploratory Data Analysis. Renee M. P. Teate. SYS 6023 Cognitive Systems Engineering April 28, 2015
Principles of Data Visualization for Exploratory Data Analysis Renee M. P. Teate SYS 6023 Cognitive Systems Engineering April 28, 2015 Introduction Exploratory Data Analysis (EDA) is the phase of analysis
Lecture 2: Descriptive Statistics and Exploratory Data Analysis
Lecture 2: Descriptive Statistics and Exploratory Data Analysis Further Thoughts on Experimental Design 16 Individuals (8 each from two populations) with replicates Pop 1 Pop 2 Randomly sample 4 individuals
Quantitative vs. Categorical Data: A Difference Worth Knowing Stephen Few April 2005
Quantitative vs. Categorical Data: A Difference Worth Knowing Stephen Few April 2005 When you create a graph, you step through a series of choices, including which type of graph you should use and several
Creating Bar Charts and Pie Charts Excel 2010 Tutorial (small revisions 1/20/14)
Creating Bar Charts and Pie Charts Excel 2010 Tutorial (small revisions 1/20/14) Excel file for use with this tutorial GraphTutorData.xlsx File Location http://faculty.ung.edu/kmelton/data/graphtutordata.xlsx
Information Visualization Multivariate Data Visualization Krešimir Matković
Information Visualization Multivariate Data Visualization Krešimir Matković Vienna University of Technology, VRVis Research Center, Vienna Multivariable >3D Data Tables have so many variables that orthogonal
Data Visualization. Scientific Principles, Design Choices and Implementation in LabKey. Cory Nathe Software Engineer, LabKey cnathe@labkey.
Data Visualization Scientific Principles, Design Choices and Implementation in LabKey Catherine Richards, PhD, MPH Staff Scientist, HICOR [email protected] Cory Nathe Software Engineer, LabKey [email protected]
FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5
Physics 161 FREE FALL Introduction This experiment is designed to study the motion of an object that is accelerated by the force of gravity. It also serves as an introduction to the data analysis capabilities
Data Visualization. or Graphical Data Presentation. Jerzy Stefanowski Instytut Informatyki
Data Visualization or Graphical Data Presentation Jerzy Stefanowski Instytut Informatyki Data mining for SE -- 2013 Ack. Inspirations are coming from: G.Piatetsky Schapiro lectures on KDD J.Han on Data
3D Interactive Information Visualization: Guidelines from experience and analysis of applications
3D Interactive Information Visualization: Guidelines from experience and analysis of applications Richard Brath Visible Decisions Inc., 200 Front St. W. #2203, Toronto, Canada, [email protected] 1. EXPERT
Choosing Colors for Data Visualization Maureen Stone January 17, 2006
Choosing Colors for Data Visualization Maureen Stone January 17, 2006 The problem of choosing colors for data visualization is expressed by this quote from information visualization guru Edward Tufte:
Expert Color Choices for Presenting Data
Expert Color Choices for Presenting Data Maureen Stone, StoneSoup Consulting The problem of choosing colors for data visualization is expressed by this quote from information visualization guru Edward
CIS 467/602-01: Data Visualization
CIS 467/602-01: Data Visualization Maps Dr. David Koop Assignment 3 http://www.cis.umassd.edu/ ~dkoop/cis467/assignment3.html Networks and Maps Little East Women's Basketball data Network of games with
Exploratory data analysis (Chapter 2) Fall 2011
Exploratory data analysis (Chapter 2) Fall 2011 Data Examples Example 1: Survey Data 1 Data collected from a Stat 371 class in Fall 2005 2 They answered questions about their: gender, major, year in school,
3 hours One paper 70 Marks. Areas of Learning Theory
GRAPHIC DESIGN CODE NO. 071 Class XII DESIGN OF THE QUESTION PAPER 3 hours One paper 70 Marks Section-wise Weightage of the Theory Areas of Learning Theory Section A (Reader) Section B Application of Design
Agenda. TreeMaps. What is a Treemap? Basics
Agenda TreeMaps What is a Treemap? Treemap Basics Original Treemap Algorithm (Slice-and-dice layout) Issues for Treemaps Cushion Treemaps Squarified Treemaps Ordered Treemaps Quantum Treemaps Other Treemaps
Diagrams and Graphs of Statistical Data
Diagrams and Graphs of Statistical Data One of the most effective and interesting alternative way in which a statistical data may be presented is through diagrams and graphs. There are several ways in
Excel -- Creating Charts
Excel -- Creating Charts The saying goes, A picture is worth a thousand words, and so true. Professional looking charts give visual enhancement to your statistics, fiscal reports or presentation. Excel
Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization. Learning Goals. GENOME 560, Spring 2012
Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization GENOME 560, Spring 2012 Data are interesting because they help us understand the world Genomics: Massive Amounts
Intro to GIS Winter 2011. Data Visualization Part I
Intro to GIS Winter 2011 Data Visualization Part I Cartographer Code of Ethics Always have a straightforward agenda and have a defining purpose or goal for each map Always strive to know your audience
All Visualizations Documentation
All Visualizations Documentation All Visualizations Documentation 2 Copyright and Trademarks Licensed Materials - Property of IBM. Copyright IBM Corp. 2013 IBM, the IBM logo, and Cognos are trademarks
Everyday Mathematics CCSS EDITION CCSS EDITION. Content Strand: Number and Numeration
CCSS EDITION Overview of -6 Grade-Level Goals CCSS EDITION Content Strand: Number and Numeration Program Goal: Understand the Meanings, Uses, and Representations of Numbers Content Thread: Rote Counting
Perception of Light and Color
Perception of Light and Color Theory and Practice Trichromacy Three cones types in retina a b G+B +R Cone sensitivity functions 100 80 60 40 20 400 500 600 700 Wavelength (nm) Short wavelength sensitive
Visualization of Multivariate Data. Dr. Yan Liu Department of Biomedical, Industrial and Human Factors Engineering Wright State University
Visualization of Multivariate Data Dr. Yan Liu Department of Biomedical, Industrial and Human Factors Engineering Wright State University Introduction Multivariate (Multidimensional) Visualization Visualization
Everyday Mathematics GOALS
Copyright Wright Group/McGraw-Hill GOALS The following tables list the Grade-Level Goals organized by Content Strand and Program Goal. Content Strand: NUMBER AND NUMERATION Program Goal: Understand the
Interactive Data Mining and Visualization
Interactive Data Mining and Visualization Zhitao Qiu Abstract: Interactive analysis introduces dynamic changes in Visualization. On another hand, advanced visualization can provide different perspectives
Hierarchy and Tree Visualization
Hierarchy and Tree Visualization Definition Hierarchies An ordering of groups in which larger groups encompass sets of smaller groups. Data repository in which cases are related to subcases Hierarchical
Good Scientific Visualization Practices + Python
Good Scientific Visualization Practices + Python Kristen Thyng Python in Geosciences September 19, 2013 Kristen Thyng (Texas A&M) Visualization September 19, 2013 1 / 29 Outline Overview of Bad Plotting
Summarizing and Displaying Categorical Data
Summarizing and Displaying Categorical Data Categorical data can be summarized in a frequency distribution which counts the number of cases, or frequency, that fall into each category, or a relative frequency
IC05 Introduction on Networks &Visualization Nov. 2009. <[email protected]>
IC05 Introduction on Networks &Visualization Nov. 2009 Overview 1. Networks Introduction Networks across disciplines Properties Models 2. Visualization InfoVis Data exploration
Hierarchical Clustering Analysis
Hierarchical Clustering Analysis What is Hierarchical Clustering? Hierarchical clustering is used to group similar objects into clusters. In the beginning, each row and/or column is considered a cluster.
Voronoi Treemaps in D3
Voronoi Treemaps in D3 Peter Henry University of Washington [email protected] Paul Vines University of Washington [email protected] ABSTRACT Voronoi treemaps are an alternative to traditional rectangular
DATA VISUALIZATION GABRIEL PARODI STUDY MATERIAL: PRINCIPLES OF GEOGRAPHIC INFORMATION SYSTEMS AN INTRODUCTORY TEXTBOOK CHAPTER 7
DATA VISUALIZATION GABRIEL PARODI STUDY MATERIAL: PRINCIPLES OF GEOGRAPHIC INFORMATION SYSTEMS AN INTRODUCTORY TEXTBOOK CHAPTER 7 Contents GIS and maps The visualization process Visualization and strategies
Visualization Quick Guide
Visualization Quick Guide A best practice guide to help you find the right visualization for your data WHAT IS DOMO? Domo is a new form of business intelligence (BI) unlike anything before an executive
Data Mining Techniques Chapter 6: Decision Trees
Data Mining Techniques Chapter 6: Decision Trees What is a classification decision tree?.......................................... 2 Visualizing decision trees...................................................
"Excel with Excel 2013: Pivoting with Pivot Tables" by Venu Gopalakrishna Remani. October 28, 2014
Teaching Excellence and Innovation 1 Pivot table Pivot table does calculations with criteria Data should be arranged as : Field names in the first rows, records in rows No blank rows or blank columns should
The Forgotten JMP Visualizations (Plus Some New Views in JMP 9) Sam Gardner, SAS Institute, Lafayette, IN, USA
Paper 156-2010 The Forgotten JMP Visualizations (Plus Some New Views in JMP 9) Sam Gardner, SAS Institute, Lafayette, IN, USA Abstract JMP has a rich set of visual displays that can help you see the information
Variable: characteristic that varies from one individual to another in the population
Goals: Recognize variables as: Qualitative or Quantitative Discrete Continuous Study Ch. 2.1, # 1 13 : Prof. G. Battaly, Westchester Community College, NY Study Ch. 2.1, # 1 13 Variable: characteristic
Tutorial 3: Graphics and Exploratory Data Analysis in R Jason Pienaar and Tom Miller
Tutorial 3: Graphics and Exploratory Data Analysis in R Jason Pienaar and Tom Miller Getting to know the data An important first step before performing any kind of statistical analysis is to familiarize
MetroBoston DataCommon Training
MetroBoston DataCommon Training Whether you are a data novice or an expert researcher, the MetroBoston DataCommon can help you get the information you need to learn more about your community, understand
MicroStrategy Desktop
MicroStrategy Desktop Quick Start Guide MicroStrategy Desktop is designed to enable business professionals like you to explore data, simply and without needing direct support from IT. 1 Import data from
Data Visualization Handbook
SAP Lumira Data Visualization Handbook www.saplumira.com 1 Table of Content 3 Introduction 20 Ranking 4 Know Your Purpose 23 Part-to-Whole 5 Know Your Data 25 Distribution 9 Crafting Your Message 29 Correlation
Iris Sample Data Set. Basic Visualization Techniques: Charts, Graphs and Maps. Summary Statistics. Frequency and Mode
Iris Sample Data Set Basic Visualization Techniques: Charts, Graphs and Maps CS598 Information Visualization Spring 2010 Many of the exploratory data techniques are illustrated with the Iris Plant data
an introduction to VISUALIZING DATA by joel laumans
an introduction to VISUALIZING DATA by joel laumans an introduction to VISUALIZING DATA iii AN INTRODUCTION TO VISUALIZING DATA by Joel Laumans Table of Contents 1 Introduction 1 Definition Purpose 2 Data
Support Materials for Core Content for Assessment. Mathematics
Support Materials for Core Content for Assessment Version 4.1 Mathematics August 2007 Kentucky Department of Education Introduction to Depth of Knowledge (DOK) - Based on Norman Webb s Model (Karin Hess,
Cours de Visualisation d'information InfoVis Lecture. Multivariate Data Sets
Cours de Visualisation d'information InfoVis Lecture Multivariate Data Sets Frédéric Vernier Maître de conférence / Lecturer Univ. Paris Sud Inspired from CS 7450 - John Stasko CS 5764 - Chris North Data
Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9
Glencoe correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 STANDARDS 6-8 Number and Operations (NO) Standard I. Understand numbers, ways of representing numbers, relationships among numbers,
Data Visualization. Prepared by Francisco Olivera, Ph.D., Srikanth Koka Department of Civil Engineering Texas A&M University February 2004
Data Visualization Prepared by Francisco Olivera, Ph.D., Srikanth Koka Department of Civil Engineering Texas A&M University February 2004 Contents Brief Overview of ArcMap Goals of the Exercise Computer
NEW MEXICO Grade 6 MATHEMATICS STANDARDS
PROCESS STANDARDS To help New Mexico students achieve the Content Standards enumerated below, teachers are encouraged to base instruction on the following Process Standards: Problem Solving Build new mathematical
GEOGRAPHIC INFORMATION SYSTEMS CERTIFICATION
GEOGRAPHIC INFORMATION SYSTEMS CERTIFICATION GIS Syllabus - Version 1.2 January 2007 Copyright AICA-CEPIS 2009 1 Version 1 January 2007 GIS Certification Programme 1. Target The GIS certification is aimed
Info425, UW ischool 10/11/2007
Today s lecture Info 424 Channeling Few Projects Schedules & grades Intro to Perception Vis Critiques Projects & Grading Introduction to Perception Show Me the Numbers (ch 6) Sit near the front: some demos
GRAPHING DATA FOR DECISION-MAKING
GRAPHING DATA FOR DECISION-MAKING Tibor Tóth, Ph.D. Center for Applied Demography and Survey Research (CADSR) University of Delaware Fall, 2006 TABLE OF CONTENTS Introduction... 3 Use High Information
A Short Introduction on Data Visualization. Guoning Chen
A Short Introduction on Data Visualization Guoning Chen Data is generated everywhere and everyday Age of Big Data Data in ever increasing sizes need an effective way to understand them History of Visualization
Multivariate data visualization using shadow
Proceedings of the IIEEJ Ima and Visual Computing Wor Kuching, Malaysia, Novembe Multivariate data visualization using shadow Zhongxiang ZHENG Suguru SAITO Tokyo Institute of Technology ABSTRACT When visualizing
Utilizing Microsoft Access Forms and Reports
Utilizing Microsoft Access Forms and Reports The 2014 SAIR Conference Workshop #3 October 4 th, 2014 Presented by: Nathan Pitts (Sr. Research Analyst The University of North Alabama) Molly Vaughn (Associate
How To Run Statistical Tests in Excel
How To Run Statistical Tests in Excel Microsoft Excel is your best tool for storing and manipulating data, calculating basic descriptive statistics such as means and standard deviations, and conducting
NakeDB: Database Schema Visualization
NAKEDB: DATABASE SCHEMA VISUALIZATION, APRIL 2008 1 NakeDB: Database Schema Visualization Luis Miguel Cortés-Peña, Yi Han, Neil Pradhan, Romain Rigaux Abstract Current database schema visualization tools
Creating a Poster Presentation using PowerPoint
Creating a Poster Presentation using PowerPoint Course Description: This course is designed to assist you in creating eye-catching effective posters for presentation of research findings at scientific
Principles of Data Visualization
Principles of Data Visualization by James Bernhard Spring 2012 We begin with some basic ideas about data visualization from Edward Tufte (The Visual Display of Quantitative Information (2nd ed.)) He gives
Scope and Sequence KA KB 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B
Scope and Sequence Earlybird Kindergarten, Standards Edition Primary Mathematics, Standards Edition Copyright 2008 [SingaporeMath.com Inc.] The check mark indicates where the topic is first introduced
AN INVESTIGATION INTO THE USEFULNESS OF THE ISOCS MATHEMATICAL EFFICIENCY CALIBRATION FOR LARGE RECTANGULAR 3 x5 x16 NAI DETECTORS
AN INVESTIGATION INTO THE USEFULNESS OF THE ISOCS MATHEMATICAL EFFICIENCY CALIBRATION FOR LARGE RECTANGULAR 3 x5 x16 NAI DETECTORS Frazier L. Bronson CHP Canberra Industries, Inc. 800 Research Parkway,
Assignment 2: Animated Transitions Due: Oct 12 Mon, 11:59pm, 2015 (midnight)
1 Assignment 2: Animated Transitions Due: Oct 12 Mon, 11:59pm, 2015 (midnight) Overview One of the things that make a visualization look polished is to add animation (animated transition) between each
An Open Framework for Reverse Engineering Graph Data Visualization. Alexandru C. Telea Eindhoven University of Technology The Netherlands.
An Open Framework for Reverse Engineering Graph Data Visualization Alexandru C. Telea Eindhoven University of Technology The Netherlands Overview Reverse engineering (RE) overview Limitations of current
Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard
Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express
WEEK #3, Lecture 1: Sparse Systems, MATLAB Graphics
WEEK #3, Lecture 1: Sparse Systems, MATLAB Graphics Visualization of Matrices Good visuals anchor any presentation. MATLAB has a wide variety of ways to display data and calculation results that can be
Data, Measurements, Features
Data, Measurements, Features Middle East Technical University Dep. of Computer Engineering 2009 compiled by V. Atalay What do you think of when someone says Data? We might abstract the idea that data are
Data Visualization Best Practice. Sophie Sparkes Data Analyst
Data Visualization Best Practice Sophie Sparkes Data Analyst http://graphics.wsj.com/infectious-diseases-and-vaccines/ http://blogs.sas.com/content/jmp/2015/03/05/graph-makeover-measles-heat-map/ http://graphics.wsj.com/infectious-diseases-and-vaccines/
Information Literacy Program
Information Literacy Program Excel (2013) Advanced Charts 2015 ANU Library anulib.anu.edu.au/training [email protected] Table of Contents Excel (2013) Advanced Charts Overview of charts... 1 Create a chart...
Analyzing Research Data Using Excel
Analyzing Research Data Using Excel Fraser Health Authority, 2012 The Fraser Health Authority ( FH ) authorizes the use, reproduction and/or modification of this publication for purposes other than commercial
Get The Picture: Visualizing Financial Data part 1
Get The Picture: Visualizing Financial Data part 1 by Jeremy Walton Turning numbers into pictures is usually the easiest way of finding out what they mean. We're all familiar with the display of for example
Topic Maps Visualization
Topic Maps Visualization Bénédicte Le Grand, Laboratoire d'informatique de Paris 6 Introduction Topic maps provide a bridge between the domains of knowledge representation and information management. Topics
The Value of Visualization 2
The Value of Visualization 2 G Janacek -0.69 1.11-3.1 4.0 GJJ () Visualization 1 / 21 Parallel coordinates Parallel coordinates is a common way of visualising high-dimensional geometry and analysing multivariate
CSU, Fresno - Institutional Research, Assessment and Planning - Dmitri Rogulkin
My presentation is about data visualization. How to use visual graphs and charts in order to explore data, discover meaning and report findings. The goal is to show that visual displays can be very effective
Data Visualization. Brief Overview of ArcMap
Data Visualization Prepared by Francisco Olivera, Ph.D., P.E., Srikanth Koka and Lauren Walker Department of Civil Engineering September 13, 2006 Contents: Brief Overview of ArcMap Goals of the Exercise
MARS STUDENT IMAGING PROJECT
MARS STUDENT IMAGING PROJECT Data Analysis Practice Guide Mars Education Program Arizona State University Data Analysis Practice Guide This set of activities is designed to help you organize data you collect
Best Practices in Data Visualizations. Vihao Pham 2014
Best Practices in Data Visualizations Vihao Pham 2014 Agenda Best Practices in Data Visualizations Why We Visualize Understanding Data Visualizations Enhancing Visualizations Visualization Considerations
How To Use Statgraphics Centurion Xvii (Version 17) On A Computer Or A Computer (For Free)
Statgraphics Centurion XVII (currently in beta test) is a major upgrade to Statpoint's flagship data analysis and visualization product. It contains 32 new statistical procedures and significant upgrades
A Correlation of. to the. South Carolina Data Analysis and Probability Standards
A Correlation of to the South Carolina Data Analysis and Probability Standards INTRODUCTION This document demonstrates how Stats in Your World 2012 meets the indicators of the South Carolina Academic Standards
Best Practices in Data Visualizations. Vihao Pham January 29, 2014
Best Practices in Data Visualizations Vihao Pham January 29, 2014 Agenda Best Practices in Data Visualizations Why We Visualize Understanding Data Visualizations Enhancing Visualizations Visualization
MET 306. Activity 8a. Mechanism Design Creo 2.0 Level 7 POINT A GROUND LINK LINK 1 LINK 2 LINK 3 POINT B 10/15/2010 1
Mechanism Design Creo 2.0 Level 7 POINT A LINK 1 GROUND LINK LINK 2 LINK 3 POINT B 10/15/2010 1 Download parts ground, key, link_1, link_2, link_3 and pulley from the V:/MET_306/Activity_8_Creo drive.
CS 325 Computer Graphics
CS 325 Computer Graphics 01 / 25 / 2016 Instructor: Michael Eckmann Today s Topics Review the syllabus Review course policies Color CIE system chromaticity diagram color gamut, complementary colors, dominant
MultiExperiment Viewer Quickstart Guide
MultiExperiment Viewer Quickstart Guide Table of Contents: I. Preface - 2 II. Installing MeV - 2 III. Opening a Data Set - 2 IV. Filtering - 6 V. Clustering a. HCL - 8 b. K-means - 11 VI. Modules a. T-test
IBM SPSS Direct Marketing 23
IBM SPSS Direct Marketing 23 Note Before using this information and the product it supports, read the information in Notices on page 25. Product Information This edition applies to version 23, release
ACE: After Effects CS6
Adobe Training Services Exam Guide ACE: After Effects CS6 Adobe Training Services provides this exam guide to help prepare partners, customers, and consultants who are actively seeking accreditation as
Microsoft Excel 2010 Charts and Graphs
Microsoft Excel 2010 Charts and Graphs Email: [email protected] Web Page: http://training.health.ufl.edu Microsoft Excel 2010: Charts and Graphs 2.0 hours Topics include data groupings; creating
Engineering Problem Solving and Excel. EGN 1006 Introduction to Engineering
Engineering Problem Solving and Excel EGN 1006 Introduction to Engineering Mathematical Solution Procedures Commonly Used in Engineering Analysis Data Analysis Techniques (Statistics) Curve Fitting techniques
VISUALIZING HIERARCHICAL DATA. Graham Wills SPSS Inc., http://willsfamily.org/gwills
VISUALIZING HIERARCHICAL DATA Graham Wills SPSS Inc., http://willsfamily.org/gwills SYNONYMS Hierarchical Graph Layout, Visualizing Trees, Tree Drawing, Information Visualization on Hierarchies; Hierarchical
TABLE OF CONTENTS. INTRODUCTION... 5 Advance Concrete... 5 Where to find information?... 6 INSTALLATION... 7 STARTING ADVANCE CONCRETE...
Starting Guide TABLE OF CONTENTS INTRODUCTION... 5 Advance Concrete... 5 Where to find information?... 6 INSTALLATION... 7 STARTING ADVANCE CONCRETE... 7 ADVANCE CONCRETE USER INTERFACE... 7 Other important
1 of 7 9/5/2009 6:12 PM
1 of 7 9/5/2009 6:12 PM Chapter 2 Homework Due: 9:00am on Tuesday, September 8, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]
Excel Unit 4. Data files needed to complete these exercises will be found on the S: drive>410>student>computer Technology>Excel>Unit 4
Excel Unit 4 Data files needed to complete these exercises will be found on the S: drive>410>student>computer Technology>Excel>Unit 4 Step by Step 4.1 Creating and Positioning Charts GET READY. Before
Charlesworth School Year Group Maths Targets
Charlesworth School Year Group Maths Targets Year One Maths Target Sheet Key Statement KS1 Maths Targets (Expected) These skills must be secure to move beyond expected. I can compare, describe and solve
