IC05 Introduction on Networks &Visualization Nov
|
|
|
- John Crawford
- 9 years ago
- Views:
Transcription
1 IC05 Introduction on Networks &Visualization Nov
2 Overview 1. Networks Introduction Networks across disciplines Properties Models 2. Visualization InfoVis Data exploration and interaction Design Samples 3. Information Systems 4. Conclusion
3 Networks / Introduction
4 Networks / Introduction Where are networks?
5 Networks / Introduction What is a complex system? Complex systems are characterized by global, emergent properties (self organizing) Complicated Complex
6 Networks / Networks across disciplines
7 Networks / Networks across disciplines Internet French Political Blogosphere (2007) RTGI
8 Networks / Networks across disciplines Social networks Global Jihad Terrorist Network
9 Networks / Networks across disciplines Software graphs Codeminer (2008)
10 Networks / Networks across disciplines And more: Biological networks Semantic networks Transportation networks Food webs Bibliography networks Routers Brain cells Hollywood actors Sexual networks They are all around, do they have properties in common?
11 Networks / Properties & Metrics
12 Networks / Properties & Metrics Power law distribution number of nodes with so many edges a few nodes with a very large number of edges Long tail: many nodes with few edges Degree of A is 5 number of edges
13 Networks / Properties & Metrics size of giant component if the largest component encompasses a significant fraction of the graph, it is called the giant component
14 Networks / Properties & Metrics Giant Component video
15 Networks / Properties & Metrics What implications have these properties? Robustness Search Communities Spread of disease Opinion formation Spread of computer viruses Gossip
16 Networks / Properties & Metrics What implications have these properties? Robustness Resistant to random attacks Vulnerable to targeted attacks
17 Networks / Properties & Metrics What implications have these properties? Contagion information rumors viruses
18 Networks / Properties & Metrics What implications have these properties? Communities Communities detection = Classification = Clustering
19 Networks / Models
20 Networks / Models How to explain these properties? How to mathematically define these networks? Try to generate real world network with mathematical model Rules behind the growth and dynamic of networks Predict the future?
21 Networks / Models Duncan Watts and Steven Strogatz (1998) a few random links makes a huge difference my friend s friend is always my friend mostly structured with a few random connections all connections random
22 Networks / Models Barabasi Albert Preferential Attachment (2000) the first model of the web rich get richer phenomenon
23 Networks / Models Current research Jon Kleiberg & al., information cycle Alessandro Vespignani & al., Epidemics H1N1 Spread model Network research needs real dataset. We now have plenty of them (Facebook, Blogs, s, Genes, Mobile phones )
24 Visualization / InfoVis
25 Visualization / InfoVis InfoVis = Information + Visualization Data
26 Visualization / InfoVis Type of data Spatial (1,2,3D) Tabular (Multi dimensional) Network, Tree Text, documents Easy user task Min, max, average, % Exact queries, search Harder Patterns, trends, correlations Changes over time, context Anomalies, data errors Geographical representation Excel can do this Visualization can do this
27 Visualization / InfoVis Jacques Bertin s Semiology of Graphics, 1967 Spatial (1,2,3D)
28 Visualization / InfoVis Samples London Tube Map
29 Visualization / InfoVis Samples Is this InfoVis?
30 Visualization / InfoVis Samples Danny Holten (2006), Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchical Data
31 Visualization / InfoVis Samples Many Eyes
32 Visualization / InfoVis Samples Stream graph
33 Visualization / InfoVis Samples
34 Visualization / Data exploration and interaction
35 Visualization / Data exploration and interaction Data exploration, overview and details Zoomable user interface Interactive, iterative, difficult process Automation difficult Empower the user instead InfoVis vs SciVis InfoVis Abstract Spatialization chosen SciVis Scientific & physically based Spatialization given Data exploration is between
36 Visualization / Design People remember design, design makes everything Personal advice, choose good colors, fonts and so on in your presentation
37 Visualization / Design David McCandless, 2009 Great data visualization tells a story
38 Visualization / Samples
39 Information Systems
40 Information Systems Design is not our job, nor making prototypes Where does Computer scientists come? Systems with huge amount of data and users Urbanization and scalability Fields of study Information retrieval (search text and media) Statistics, data mining Graphics and visualization Example: What could we do with a community detection?
41 Conclusion
42 Conclusion To resume, what kind of competences were shown here, and to what process they belong? Computer Science: acquire and parse data Mathematics, Statistics, & Data Mining: filter and mine Graphic Design: represent and refine Infovis and Human Computer Interaction (HCI): interaction
43 Conclusion The power of networks, what structure means Complexity and systemic behavior Visualization is needed, at the edge between data and users Engineers role Interdisciplinary
44 Questions
Introduction to Data Mining
Introduction to Data Mining Jay Urbain Credits: Nazli Goharian & David Grossman @ IIT Outline Introduction Data Pre-processing Data Mining Algorithms Naïve Bayes Decision Tree Neural Network Association
Introduction to Networks and Business Intelligence
Introduction to Networks and Business Intelligence Prof. Dr. Daning Hu Department of Informatics University of Zurich Sep 17th, 2015 Outline Network Science A Random History Network Analysis Network Topological
Information Management course
Università degli Studi di Milano Master Degree in Computer Science Information Management course Teacher: Alberto Ceselli Lecture 01 : 06/10/2015 Practical informations: Teacher: Alberto Ceselli ([email protected])
Big Data in Pictures: Data Visualization
Big Data in Pictures: Data Visualization Huamin Qu Hong Kong University of Science and Technology What is data visualization? Data visualization is the creation and study of the visual representation of
Search and Data Mining: Techniques. Applications Anya Yarygina Boris Novikov
Search and Data Mining: Techniques Applications Anya Yarygina Boris Novikov Introduction Data mining applications Data mining system products and research prototypes Additional themes on data mining Social
Sanjeev Kumar. contribute
RESEARCH ISSUES IN DATAA MINING Sanjeev Kumar I.A.S.R.I., Library Avenue, Pusa, New Delhi-110012 [email protected] 1. Introduction The field of data mining and knowledgee discovery is emerging as a
An example. Visualization? An example. Scientific Visualization. This talk. Information Visualization & Visual Analytics. 30 items, 30 x 3 values
Information Visualization & Visual Analytics Jack van Wijk Technische Universiteit Eindhoven An example y 30 items, 30 x 3 values I-science for Astronomy, October 13-17, 2008 Lorentz center, Leiden x An
Open Access Research on Application of Neural Network in Computer Network Security Evaluation. Shujuan Jin *
Send Orders for Reprints to [email protected] 766 The Open Electrical & Electronic Engineering Journal, 2014, 8, 766-771 Open Access Research on Application of Neural Network in Computer Network
Statistical and computational challenges in networks and cybersecurity
Statistical and computational challenges in networks and cybersecurity Hugh Chipman Acadia University June 12, 2015 Statistical and computational challenges in networks and cybersecurity May 4-8, 2015,
Complex Networks Analysis: Clustering Methods
Complex Networks Analysis: Clustering Methods Nikolai Nefedov Spring 2013 ISI ETH Zurich [email protected] 1 Outline Purpose to give an overview of modern graph-clustering methods and their applications
Big Data Analytics of Multi-Relationship Online Social Network Based on Multi-Subnet Composited Complex Network
, pp.273-284 http://dx.doi.org/10.14257/ijdta.2015.8.5.24 Big Data Analytics of Multi-Relationship Online Social Network Based on Multi-Subnet Composited Complex Network Gengxin Sun 1, Sheng Bin 2 and
BUZZMONITOR: A TOOL FOR MEASURING WORD OF MOUTH LEVEL IN ON-LINE COMMUNITIES
BUZZMONITOR: A TOOL FOR MEASURING WORD OF MOUTH LEVEL IN ON-LINE COMMUNITIES Alessandro Barbosa Lima Jairson Vitorino Henrique Rebêlo ABSTRACT This paper describes an application to monitor on-line Word
Introduction to Data Mining
Introduction to Data Mining 1 Why Data Mining? Explosive Growth of Data Data collection and data availability Automated data collection tools, Internet, smartphones, Major sources of abundant data Business:
Clustering. Adrian Groza. Department of Computer Science Technical University of Cluj-Napoca
Clustering Adrian Groza Department of Computer Science Technical University of Cluj-Napoca Outline 1 Cluster Analysis What is Datamining? Cluster Analysis 2 K-means 3 Hierarchical Clustering What is Datamining?
Collaborations between Official Statistics and Academia in the Era of Big Data
Collaborations between Official Statistics and Academia in the Era of Big Data World Statistics Day October 20-21, 2015 Budapest Vijay Nair University of Michigan Past-President of ISI [email protected] What
CS171 Visualization. The Visualization Alphabet: Marks and Channels. Alexander Lex [email protected]. [xkcd]
CS171 Visualization Alexander Lex [email protected] The Visualization Alphabet: Marks and Channels [xkcd] This Week Thursday: Task Abstraction, Validation Homework 1 due on Friday! Any more problems
an introduction to VISUALIZING DATA by joel laumans
an introduction to VISUALIZING DATA by joel laumans an introduction to VISUALIZING DATA iii AN INTRODUCTION TO VISUALIZING DATA by Joel Laumans Table of Contents 1 Introduction 1 Definition Purpose 2 Data
MINFS544: Business Network Data Analytics and Applications
MINFS544: Business Network Data Analytics and Applications March 30 th, 2015 Daning Hu, Ph.D., Department of Informatics University of Zurich F Schweitzer et al. Science 2009 Stop Contagious Failures in
CAS CS 565, Data Mining
CAS CS 565, Data Mining Course logistics Course webpage: http://www.cs.bu.edu/~evimaria/cs565-10.html Schedule: Mon Wed, 4-5:30 Instructor: Evimaria Terzi, [email protected] Office hours: Mon 2:30-4pm,
USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS
USING SPECTRAL RADIUS RATIO FOR NODE DEGREE TO ANALYZE THE EVOLUTION OF SCALE- FREE NETWORKS AND SMALL-WORLD NETWORKS Natarajan Meghanathan Jackson State University, 1400 Lynch St, Jackson, MS, USA [email protected]
Hierarchical Data Visualization. Ai Nakatani IAT 814 February 21, 2007
Hierarchical Data Visualization Ai Nakatani IAT 814 February 21, 2007 Introduction Hierarchical Data Directory structure Genealogy trees Biological taxonomy Business structure Project structure Challenges
Big Data and Complex Networks Analytics. Timos Sellis, CSIT Kathy Horadam, MGS
Big Data and Complex Networks Analytics Timos Sellis, CSIT Kathy Horadam, MGS Big Data What is it? Most commonly accepted definition, by Gartner (the 3 Vs) Big data is high-volume, high-velocity and high-variety
Network Theory: 80/20 Rule and Small Worlds Theory
Scott J. Simon / p. 1 Network Theory: 80/20 Rule and Small Worlds Theory Introduction Starting with isolated research in the early twentieth century, and following with significant gaps in research progress,
Graph models for the Web and the Internet. Elias Koutsoupias University of Athens and UCLA. Crete, July 2003
Graph models for the Web and the Internet Elias Koutsoupias University of Athens and UCLA Crete, July 2003 Outline of the lecture Small world phenomenon The shape of the Web graph Searching and navigation
ADVANCED VISUALIZATION
Cyberinfrastructure Technology Integration (CITI) Advanced Visualization Division ADVANCED VISUALIZATION Tech-Talk by Vetria L. Byrd Visualization Scientist November 05, 2013 THIS TECH TALK Will Provide
COMP 150-04 Visualization. Lecture 11 Interacting with Visualizations
COMP 150-04 Visualization Lecture 11 Interacting with Visualizations Assignment 5: Maps Due Wednesday, March 17th Design a thematic map visualization Option 1: Choropleth Map Implementation in Processing
UniGR Workshop: Big Data «The challenge of visualizing big data»
Dept. ISC Informatics, Systems & Collaboration UniGR Workshop: Big Data «The challenge of visualizing big data» Dr Ir Benoît Otjacques Deputy Scientific Director ISC The Future is Data-based Can we help?
Information Visualization WS 2013/14 11 Visual Analytics
1 11.1 Definitions and Motivation Lot of research and papers in this emerging field: Visual Analytics: Scope and Challenges of Keim et al. Illuminating the path of Thomas and Cook 2 11.1 Definitions and
Spatial Data Analysis
14 Spatial Data Analysis OVERVIEW This chapter is the first in a set of three dealing with geographic analysis and modeling methods. The chapter begins with a review of the relevant terms, and an outlines
The Scientific Data Mining Process
Chapter 4 The Scientific Data Mining Process When I use a word, Humpty Dumpty said, in rather a scornful tone, it means just what I choose it to mean neither more nor less. Lewis Carroll [87, p. 214] In
Data, Measurements, Features
Data, Measurements, Features Middle East Technical University Dep. of Computer Engineering 2009 compiled by V. Atalay What do you think of when someone says Data? We might abstract the idea that data are
Exploration and Visualization of Post-Market Data
Exploration and Visualization of Post-Market Data Jianying Hu, PhD Joint work with David Gotz, Shahram Ebadollahi, Jimeng Sun, Fei Wang, Marianthi Markatou Healthcare Analytics Research IBM T.J. Watson
Big Data Text Mining and Visualization. Anton Heijs
Copyright 2007 by Treparel Information Solutions BV. This report nor any part of it may be copied, circulated, quoted without prior written approval from Treparel7 Treparel Information Solutions BV Delftechpark
Dynamic Visualization and Time
Dynamic Visualization and Time Markku Reunanen, [email protected] Introduction Edward Tufte (1997, 23) asked five questions on a visualization in his book Visual Explanations: How many? How often? Where? How
ProteinQuest user guide
ProteinQuest user guide 1. Introduction... 3 1.1 With ProteinQuest you can... 3 1.2 ProteinQuest basic version 4 1.3 ProteinQuest extended version... 5 2. ProteinQuest dictionaries... 6 3. Directions for
Visualization of Software
Visualization of Software Jack van Wijk Plenary Meeting SPIder Den Bosch, March 30, 2010 Overview Software Vis Examples Hierarchies Networks Evolution Visual Analytics Application data Visualization images
1 o Semestre 2007/2008
Departamento de Engenharia Informática Instituto Superior Técnico 1 o Semestre 2007/2008 Outline 1 2 3 4 5 Outline 1 2 3 4 5 Exploiting Text How is text exploited? Two main directions Extraction Extraction
Data Visualization. Principles and Practice. Second Edition. Alexandru Telea
Data Visualization Principles and Practice Second Edition Alexandru Telea First edition published in 2007 by A K Peters, Ltd. Cover image: The cover shows the combination of scientific visualization and
CS 207 - Data Science and Visualization Spring 2016
CS 207 - Data Science and Visualization Spring 2016 Professor: Sorelle Friedler [email protected] An introduction to techniques for the automated and human-assisted analysis of data sets. These
Protein Protein Interaction Networks
Functional Pattern Mining from Genome Scale Protein Protein Interaction Networks Young-Rae Cho, Ph.D. Assistant Professor Department of Computer Science Baylor University it My Definition of Bioinformatics
Social Network Mining
Social Network Mining Data Mining November 11, 2013 Frank Takes ([email protected]) LIACS, Universiteit Leiden Overview Social Network Analysis Graph Mining Online Social Networks Friendship Graph Semantics
Graph Mining and Social Network Analysis
Graph Mining and Social Network Analysis Data Mining and Text Mining (UIC 583 @ Politecnico di Milano) References Jiawei Han and Micheline Kamber, "Data Mining: Concepts and Techniques", The Morgan Kaufmann
COM CO P 5318 Da t Da a t Explora Explor t a ion and Analysis y Chapte Chapt r e 3
COMP 5318 Data Exploration and Analysis Chapter 3 What is data exploration? A preliminary exploration of the data to better understand its characteristics. Key motivations of data exploration include Helping
How To Find Influence Between Two Concepts In A Network
2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation Influence Discovery in Semantic Networks: An Initial Approach Marcello Trovati and Ovidiu Bagdasar School of Computing
1 Copyright 2011, Oracle and/or its affiliates. All rights reserved.
1 Copyright 2011, Oracle and/or its affiliates. All rights Building Visually Appealing Web 2.0 Data Dashboards Frank Nimphius Senior Principal Product Manager, Oracle 2 Copyright 2011, Oracle and/or its
DATA MINING CLUSTER ANALYSIS: BASIC CONCEPTS
DATA MINING CLUSTER ANALYSIS: BASIC CONCEPTS 1 AND ALGORITHMS Chiara Renso KDD-LAB ISTI- CNR, Pisa, Italy WHAT IS CLUSTER ANALYSIS? Finding groups of objects such that the objects in a group will be similar
Graphs over Time Densification Laws, Shrinking Diameters and Possible Explanations
Graphs over Time Densification Laws, Shrinking Diameters and Possible Explanations Jurij Leskovec, CMU Jon Kleinberg, Cornell Christos Faloutsos, CMU 1 Introduction What can we do with graphs? What patterns
Doctor of Philosophy in Computer Science
Doctor of Philosophy in Computer Science Background/Rationale The program aims to develop computer scientists who are armed with methods, tools and techniques from both theoretical and systems aspects
Big Data Mining Services and Knowledge Discovery Applications on Clouds
Big Data Mining Services and Knowledge Discovery Applications on Clouds Domenico Talia DIMES, Università della Calabria & DtoK Lab Italy [email protected] Data Availability or Data Deluge? Some decades
Intrusion Detection: Game Theory, Stochastic Processes and Data Mining
Intrusion Detection: Game Theory, Stochastic Processes and Data Mining Joseph Spring 7COM1028 Secure Systems Programming 1 Discussion Points Introduction Firewalls Intrusion Detection Schemes Models Stochastic
Introduction. A. Bellaachia Page: 1
Introduction 1. Objectives... 3 2. What is Data Mining?... 4 3. Knowledge Discovery Process... 5 4. KD Process Example... 7 5. Typical Data Mining Architecture... 8 6. Database vs. Data Mining... 9 7.
Interactive information visualization in a conference location
Interactive information visualization in a conference location Maria Chiara Caschera, Fernando Ferri, Patrizia Grifoni Istituto di Ricerche sulla Popolazione e Politiche Sociali, CNR, Via Nizza 128, 00198
Bayesian networks - Time-series models - Apache Spark & Scala
Bayesian networks - Time-series models - Apache Spark & Scala Dr John Sandiford, CTO Bayes Server Data Science London Meetup - November 2014 1 Contents Introduction Bayesian networks Latent variables Anomaly
Information Visualisation and Visual Analytics for Governance and Policy Modelling
Information Visualisation and Visual Analytics for Governance and Policy Modelling Jörn Kohlhammer 1, Tobias Ruppert 1, James Davey 1, Florian Mansmann 2, Daniel Keim 2 1 Fraunhofer IGD, Fraunhoferstr.
An Open Framework for Reverse Engineering Graph Data Visualization. Alexandru C. Telea Eindhoven University of Technology The Netherlands.
An Open Framework for Reverse Engineering Graph Data Visualization Alexandru C. Telea Eindhoven University of Technology The Netherlands Overview Reverse engineering (RE) overview Limitations of current
What is Visualization? Information Visualization An Overview. Information Visualization. Definitions
What is Visualization? Information Visualization An Overview Jonathan I. Maletic, Ph.D. Computer Science Kent State University Visualize/Visualization: To form a mental image or vision of [some
Software Engineering for Big Data. CS846 Paulo Alencar David R. Cheriton School of Computer Science University of Waterloo
Software Engineering for Big Data CS846 Paulo Alencar David R. Cheriton School of Computer Science University of Waterloo Big Data Big data technologies describe a new generation of technologies that aim
CrimeFighter: A Toolbox for Counterterrorism. Uffe Kock Wiil
CrimeFighter: A Toolbox for Counterterrorism Uffe Kock Wiil Counterterrorism Research Lab Established in the Spring of 2009 Research goes back to 2003 Research & Development Mathematical models Processes,
Towards Modelling The Internet Topology The Interactive Growth Model
Towards Modelling The Internet Topology The Interactive Growth Model Shi Zhou (member of IEEE & IEE) Department of Electronic Engineering Queen Mary, University of London Mile End Road, London, E1 4NS
Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data
CMPE 59H Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data Term Project Report Fatma Güney, Kübra Kalkan 1/15/2013 Keywords: Non-linear
DATA ANALYSIS IN PUBLIC SOCIAL NETWORKS
International Scientific Conference & International Workshop Present Day Trends of Innovations 2012 28 th 29 th May 2012 Łomża, Poland DATA ANALYSIS IN PUBLIC SOCIAL NETWORKS Lubos Takac 1 Michal Zabovsky
Interactive Visual Data Analysis in the Times of Big Data
Interactive Visual Data Analysis in the Times of Big Data Cagatay Turkay * gicentre, City University London Who? Lecturer (Asst. Prof.) in Applied Data Science Started December 2013 @ the gicentre (gicentre.net)
An Overview of Knowledge Discovery Database and Data mining Techniques
An Overview of Knowledge Discovery Database and Data mining Techniques Priyadharsini.C 1, Dr. Antony Selvadoss Thanamani 2 M.Phil, Department of Computer Science, NGM College, Pollachi, Coimbatore, Tamilnadu,
Search and Information Retrieval
Search and Information Retrieval Search on the Web 1 is a daily activity for many people throughout the world Search and communication are most popular uses of the computer Applications involving search
International Journal of Computer Science Trends and Technology (IJCST) Volume 2 Issue 3, May-Jun 2014
RESEARCH ARTICLE OPEN ACCESS A Survey of Data Mining: Concepts with Applications and its Future Scope Dr. Zubair Khan 1, Ashish Kumar 2, Sunny Kumar 3 M.Tech Research Scholar 2. Department of Computer
Healthcare data analytics. Da-Wei Wang Institute of Information Science [email protected]
Healthcare data analytics Da-Wei Wang Institute of Information Science [email protected] Outline Data Science Enabling technologies Grand goals Issues Google flu trend Privacy Conclusion Analytics
Overview on Graph Datastores and Graph Computing Systems. -- Litao Deng (Cloud Computing Group) 06-08-2012
Overview on Graph Datastores and Graph Computing Systems -- Litao Deng (Cloud Computing Group) 06-08-2012 Graph - Everywhere 1: Friendship Graph 2: Food Graph 3: Internet Graph Most of the relationships
A comparative study of social network analysis tools
Membre de Membre de A comparative study of social network analysis tools David Combe, Christine Largeron, Előd Egyed-Zsigmond and Mathias Géry International Workshop on Web Intelligence and Virtual Enterprises
Adobe Insight, powered by Omniture
Adobe Insight, powered by Omniture Accelerating government intelligence to the speed of thought 1 Challenges that analysts face 2 Analysis tools and functionality 3 Adobe Insight 4 Summary Never before
Asking Hard Graph Questions. Paul Burkhardt. February 3, 2014
Beyond Watson: Predictive Analytics and Big Data U.S. National Security Agency Research Directorate - R6 Technical Report February 3, 2014 300 years before Watson there was Euler! The first (Jeopardy!)
Big Data: Rethinking Text Visualization
Big Data: Rethinking Text Visualization Dr. Anton Heijs [email protected] Treparel April 8, 2013 Abstract In this white paper we discuss text visualization approaches and how these are important
An Introduction to the Use of Bayesian Network to Analyze Gene Expression Data
n Introduction to the Use of ayesian Network to nalyze Gene Expression Data Cristina Manfredotti Dipartimento di Informatica, Sistemistica e Comunicazione (D.I.S.Co. Università degli Studi Milano-icocca
Subgraph Patterns: Network Motifs and Graphlets. Pedro Ribeiro
Subgraph Patterns: Network Motifs and Graphlets Pedro Ribeiro Analyzing Complex Networks We have been talking about extracting information from networks Some possible tasks: General Patterns Ex: scale-free,
Visualizing the Top 400 Universities
Int'l Conf. e-learning, e-bus., EIS, and e-gov. EEE'15 81 Visualizing the Top 400 Universities Salwa Aljehane 1, Reem Alshahrani 1, and Maha Thafar 1 [email protected], [email protected], [email protected]
GLOBAL DATA SPATIALLY INTERRELATE SYSTEM FOR SCIENTIFIC BIG DATA SPATIAL-SEAMLESS SHARING
GLOBAL DATA SPATIALLY INTERRELATE SYSTEM FOR SCIENTIFIC BIG DATA SPATIAL-SEAMLESS SHARING Jieqing Yu a, Lixin WU b, a, c*, Yizhou Yang c, Xie Lei d, Wang He d a School of Environment Science and Spatial
KNOWLEDGE ORGANIZATION
KNOWLEDGE ORGANIZATION Gabi Reinmann Germany [email protected] Synonyms Information organization, information classification, knowledge representation, knowledge structuring Definition The term
High Throughput Network Analysis
High Throughput Network Analysis Sumeet Agarwal 1,2, Gabriel Villar 1,2,3, and Nick S Jones 2,4,5 1 Systems Biology Doctoral Training Centre, University of Oxford, Oxford OX1 3QD, United Kingdom 2 Department
Visual Data Mining. Motivation. Why Visual Data Mining. Integration of visualization and data mining : Chidroop Madhavarapu CSE 591:Visual Analytics
Motivation Visual Data Mining Visualization for Data Mining Huge amounts of information Limited display capacity of output devices Chidroop Madhavarapu CSE 591:Visual Analytics Visual Data Mining (VDM)
Graph Mining Techniques for Social Media Analysis
Graph Mining Techniques for Social Media Analysis Mary McGlohon Christos Faloutsos 1 1-1 What is graph mining? Extracting useful knowledge (patterns, outliers, etc.) from structured data that can be represented
Visualizing a Neo4j Graph Database with KeyLines
Visualizing a Neo4j Graph Database with KeyLines Introduction 2! What is a graph database? 2! What is Neo4j? 2! Why visualize Neo4j? 3! Visualization Architecture 4! Benefits of the KeyLines/Neo4j architecture
Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Oman College of Management and Technology Course 803401 DSS Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization CS/MIS Department Information Sharing
Dmitri Krioukov CAIDA/UCSD
Hyperbolic geometry of complex networks Dmitri Krioukov CAIDA/UCSD [email protected] F. Papadopoulos, M. Boguñá, A. Vahdat, and kc claffy Complex networks Technological Internet Transportation Power grid
Chapter ML:XI. XI. Cluster Analysis
Chapter ML:XI XI. Cluster Analysis Data Mining Overview Cluster Analysis Basics Hierarchical Cluster Analysis Iterative Cluster Analysis Density-Based Cluster Analysis Cluster Evaluation Constrained Cluster
Information & Data Visualization. Yasufumi TAKAMA Tokyo Metropolitan University, JAPAN [email protected]
Information & Data Visualization Yasufumi TAKAMA Tokyo Metropolitan University, JAPAN [email protected] 1 Introduction Contents Self introduction & Research purpose Social Data Analysis Related Works
Visualizing Data: Scalable Interactivity
Visualizing Data: Scalable Interactivity The best data visualizations illustrate hidden information and structure contained in a data set. As access to large data sets has grown, so has the need for interactive
NakeDB: Database Schema Visualization
NAKEDB: DATABASE SCHEMA VISUALIZATION, APRIL 2008 1 NakeDB: Database Schema Visualization Luis Miguel Cortés-Peña, Yi Han, Neil Pradhan, Romain Rigaux Abstract Current database schema visualization tools
