Lecture 2: Descriptive Statistics and Exploratory Data Analysis
|
|
|
- Olivia Day
- 10 years ago
- Views:
Transcription
1 Lecture 2: Descriptive Statistics and Exploratory Data Analysis
2 Further Thoughts on Experimental Design 16 Individuals (8 each from two populations) with replicates Pop 1 Pop 2 Randomly sample 4 individuals from each pop Tissue culture and RNA extraction Labeling and array hybridization Slide scanning and data acquisition Repeat 2 times processing 16 samples in total Repeat entire process producing 2 technical replicates for all 16 samples
3 Other Business Course web-site: Homework due on Thursday not Tuesday Make sure you look at HW1 soon and see either Shameek or myself with questions
4 Today What is descriptive statistics and exploratory data analysis? Basic numerical summaries of data Basic graphical summaries of data How to use R for calculating descriptive statistics and making graphs
5 Central Dogma of Statistics Population Probability Descriptive Statistics Sample Inferential Statistics
6 EDA Before making inferences from data it is essential to examine all your variables. Why? To listen to the data: - to catch mistakes - to see patterns in the data - to find violations of statistical assumptions - to generate hypotheses and because if you don t, you will have trouble later
7 Types of Data Categorical Quantitative binary nominal ordinal discrete continuous 2 categories more categories order matters numerical uninterrupted
8 Dimensionality of Data Sets Univariate: Measurement made on one variable per subject Bivariate: Measurement made on two variables per subject Multivariate: Measurement made on many variables per subject
9 Numerical Summaries of Data Central Tendency measures. They are computed to give a center around which the measurements in the data are distributed. Variation or Variability measures. They describe data spread or how far away the measurements are from the center. Relative Standing measures. They describe the relative position of specific measurements in the data.
10 Location: Mean 1. The Mean x To calculate the average of a set of observations, add their value and divide by the number of observations: x = x 1 + x 2 + x x n n = 1 n n " x i i=1!
11 Other Types of Means Weighted means: x = n " i=1 n " i=1 w i x i w i Trimmed: x = "! Geometric: # x = % $ n " i=1 x i & ( ' 1 n! Harmonic: x = n n 1 " i=1 x i!!
12 Location: Median Median the exact middle value Calculation: - If there are an odd number of observations, find the middle value - If there are an even number of observations, find the middle two values and average them Example Some data: Age of participants: Median = (22+23)/2 = 22.5
13 Which Location Measure Is Best? Mean is best for symmetric distributions without outliers Median is useful for skewed distributions or data with outliers Mean = 3 Mean = 4 Median = 3 Median = 3
14 Scale: Variance Average of squared deviations of values from the mean " ˆ 2 = n $ i (x i # x ) 2 n #1!
15 Why Squared Deviations? Adding deviations will yield a sum of? Absolute values do not have nice mathematical properties Squares eliminate the negatives Result: Increasing contribution to the variance as you go farther from the mean.
16 Scale: Standard Deviation Variance is somewhat arbitrary What does it mean to have a variance of 10.8? Or 2.2? Or ? Or ? Nothing. But if you could standardize that value, you could talk about any variance (i.e. deviation) in equivalent terms Standard deviations are simply the square root of the variance
17 Scale: Standard Deviation ˆ " = n $ i (x i # x ) 2 n #1 1. Score (in the units that are meaningful) 2. Mean! 3. Each score s s deviation from the mean 4. Square that deviation 5. Sum all the squared deviations (Sum of Squares) 6. Divide by n-1 7. Square root now the value is in the units we started with!!!
18 Interesting Theoretical Result Regardless of how the data are distributed, a certain percentage of values must fall within k standard deviations from the mean: Note use of µ (mu) to represent mean. At least Note use of σ (sigma) to represent standard deviation. within (1-1/1 2 ) = 0%... k=1 (μ ± 1σ) (1-1/2 2 ) = 75%... k=2 (μ ± 2σ) (1-1/3 2 ) = 89%...k=3 (μ ± 3σ)
19 Often We Can Do Better For many lists of observations especially if their histogram is bell-shaped 1. Roughly 68% of the observations in the list lie within 1 standard deviation of the average 2. 95% of the observations lie within 2 standard deviations of the average Ave-2s.d. Ave-s.d. Average Ave+s.d. Ave+2s.d. 68% 95%
20 Scale: Quartiles and IQR IQR 25% 25% 25% 25% Q 1 Q 2 Q 3 The first quartile, Q 1, is the value for which 25% of the observations are smaller and 75% are larger Q 2 is the same as the median (50% are smaller, 50% are larger) Only 25% of the observations are greater than the third quartile
21 Percentiles (aka Quantiles) In general the n th percentile is a value such that n% of the observations fall at or below or it n% Q 1 = 25 th percentile Median = 50 th percentile Q 2 = 75 th percentile
22 Graphical Summaries of Data A (Good) Picture Is Worth A 1,000 Words
23 Univariate Data: Histograms and Bar Plots What s the difference between a histogram and bar plot? Bar plot Used for categorical variables to show frequency or proportion in each category. Translate the data from frequency tables into a pictorial representation Histogram Used to visualize distribution (shape, center, range, variation) of continuous variables Bin size important
24 Effect of Bin Size on Histogram Simulated 1000 N(0,1) and 500 N(1,1) Frequency Frequency Frequency
25 More on Histograms What s the difference between a frequency histogram and a density histogram?
26 More on Histograms What s the difference between a frequency histogram and a density histogram? Frequency Histogram Density Histogram
27 100.0 Box Plots maximum 66.7 Q 3 Years 33.3 IQR Q 1 median minimum 0.0 AGE Variables
28 Bivariate Data Variable 1 Variable 2 Display Categorical Categorical Crosstabs Stacked Box Plot Categorical Continuous Boxplot Continuous Continuous Scatterplot Stacked Box Plot
29 Clustering Multivariate Data Organize units into clusters Descriptive, not inferential Many approaches Clusters always produced Data Reduction Approaches (PCA) Reduce n-dimensional dataset into much smaller number Finds a new (smaller) set of variables that retains most of the information in the total sample Effective way to visualize multivariate data
30 How to Make a Bad Graph The aim of good data graphics: Display data accurately and clearly Some rules for displaying data badly: Display as little information as possible Obscure what you do show (with chart junk) Use pseudo-3d and color gratuitously Make a pie chart (preferably in color and 3d) Use a poorly chosen scale From Karl Broman:
31 Example 1
32 Example 2
33 Example 3
34 Example 4
35 Example 5
36 R Tutorial Calculating descriptive statistics in R Useful R commands for working with multivariate data (apply and its derivatives) Creating graphs for different types of data (histograms, boxplots, scatterplots) Basic clustering and PCA analysis
Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization. Learning Goals. GENOME 560, Spring 2012
Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization GENOME 560, Spring 2012 Data are interesting because they help us understand the world Genomics: Massive Amounts
BNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I
BNG 202 Biomechanics Lab Descriptive statistics and probability distributions I Overview The overall goal of this short course in statistics is to provide an introduction to descriptive and inferential
Exploratory data analysis (Chapter 2) Fall 2011
Exploratory data analysis (Chapter 2) Fall 2011 Data Examples Example 1: Survey Data 1 Data collected from a Stat 371 class in Fall 2005 2 They answered questions about their: gender, major, year in school,
Lecture 1: Review and Exploratory Data Analysis (EDA)
Lecture 1: Review and Exploratory Data Analysis (EDA) Sandy Eckel [email protected] Department of Biostatistics, The Johns Hopkins University, Baltimore USA 21 April 2008 1 / 40 Course Information I Course
STATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI
STATS8: Introduction to Biostatistics Data Exploration Babak Shahbaba Department of Statistics, UCI Introduction After clearly defining the scientific problem, selecting a set of representative members
Lecture 2. Summarizing the Sample
Lecture 2 Summarizing the Sample WARNING: Today s lecture may bore some of you It s (sort of) not my fault I m required to teach you about what we re going to cover today. I ll try to make it as exciting
A Correlation of. to the. South Carolina Data Analysis and Probability Standards
A Correlation of to the South Carolina Data Analysis and Probability Standards INTRODUCTION This document demonstrates how Stats in Your World 2012 meets the indicators of the South Carolina Academic Standards
Variables. Exploratory Data Analysis
Exploratory Data Analysis Exploratory Data Analysis involves both graphical displays of data and numerical summaries of data. A common situation is for a data set to be represented as a matrix. There is
Exploratory Data Analysis. Psychology 3256
Exploratory Data Analysis Psychology 3256 1 Introduction If you are going to find out anything about a data set you must first understand the data Basically getting a feel for you numbers Easier to find
Data Exploration Data Visualization
Data Exploration Data Visualization What is data exploration? A preliminary exploration of the data to better understand its characteristics. Key motivations of data exploration include Helping to select
Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics
Descriptive statistics is the discipline of quantitatively describing the main features of a collection of data. Descriptive statistics are distinguished from inferential statistics (or inductive statistics),
Week 1. Exploratory Data Analysis
Week 1 Exploratory Data Analysis Practicalities This course ST903 has students from both the MSc in Financial Mathematics and the MSc in Statistics. Two lectures and one seminar/tutorial per week. Exam
Geostatistics Exploratory Analysis
Instituto Superior de Estatística e Gestão de Informação Universidade Nova de Lisboa Master of Science in Geospatial Technologies Geostatistics Exploratory Analysis Carlos Alberto Felgueiras [email protected]
How To Write A Data Analysis
Mathematics Probability and Statistics Curriculum Guide Revised 2010 This page is intentionally left blank. Introduction The Mathematics Curriculum Guide serves as a guide for teachers when planning instruction
Diagrams and Graphs of Statistical Data
Diagrams and Graphs of Statistical Data One of the most effective and interesting alternative way in which a statistical data may be presented is through diagrams and graphs. There are several ways in
3: Summary Statistics
3: Summary Statistics Notation Let s start by introducing some notation. Consider the following small data set: 4 5 30 50 8 7 4 5 The symbol n represents the sample size (n = 0). The capital letter X denotes
Exploratory Data Analysis
Exploratory Data Analysis Johannes Schauer [email protected] Institute of Statistics Graz University of Technology Steyrergasse 17/IV, 8010 Graz www.statistics.tugraz.at February 12, 2008 Introduction
1.3 Measuring Center & Spread, The Five Number Summary & Boxplots. Describing Quantitative Data with Numbers
1.3 Measuring Center & Spread, The Five Number Summary & Boxplots Describing Quantitative Data with Numbers 1.3 I can n Calculate and interpret measures of center (mean, median) in context. n Calculate
Exercise 1.12 (Pg. 22-23)
Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.
Fairfield Public Schools
Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity
Foundation of Quantitative Data Analysis
Foundation of Quantitative Data Analysis Part 1: Data manipulation and descriptive statistics with SPSS/Excel HSRS #10 - October 17, 2013 Reference : A. Aczel, Complete Business Statistics. Chapters 1
determining relationships among the explanatory variables, and
Chapter 4 Exploratory Data Analysis A first look at the data. As mentioned in Chapter 1, exploratory data analysis or EDA is a critical first step in analyzing the data from an experiment. Here are the
Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs
Types of Variables Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs Quantitative (numerical)variables: take numerical values for which arithmetic operations make sense (addition/averaging)
BASIC STATISTICAL METHODS FOR GENOMIC DATA ANALYSIS
BASIC STATISTICAL METHODS FOR GENOMIC DATA ANALYSIS SEEMA JAGGI Indian Agricultural Statistics Research Institute Library Avenue, New Delhi-110 012 [email protected] Genomics A genome is an organism s
MTH 140 Statistics Videos
MTH 140 Statistics Videos Chapter 1 Picturing Distributions with Graphs Individuals and Variables Categorical Variables: Pie Charts and Bar Graphs Categorical Variables: Pie Charts and Bar Graphs Quantitative
Center: Finding the Median. Median. Spread: Home on the Range. Center: Finding the Median (cont.)
Center: Finding the Median When we think of a typical value, we usually look for the center of the distribution. For a unimodal, symmetric distribution, it s easy to find the center it s just the center
Using SPSS, Chapter 2: Descriptive Statistics
1 Using SPSS, Chapter 2: Descriptive Statistics Chapters 2.1 & 2.2 Descriptive Statistics 2 Mean, Standard Deviation, Variance, Range, Minimum, Maximum 2 Mean, Median, Mode, Standard Deviation, Variance,
4.1 Exploratory Analysis: Once the data is collected and entered, the first question is: "What do the data look like?"
Data Analysis Plan The appropriate methods of data analysis are determined by your data types and variables of interest, the actual distribution of the variables, and the number of cases. Different analyses
Introduction to Statistics for Psychology. Quantitative Methods for Human Sciences
Introduction to Statistics for Psychology and Quantitative Methods for Human Sciences Jonathan Marchini Course Information There is website devoted to the course at http://www.stats.ox.ac.uk/ marchini/phs.html
Summarizing and Displaying Categorical Data
Summarizing and Displaying Categorical Data Categorical data can be summarized in a frequency distribution which counts the number of cases, or frequency, that fall into each category, or a relative frequency
Northumberland Knowledge
Northumberland Knowledge Know Guide How to Analyse Data - November 2012 - This page has been left blank 2 About this guide The Know Guides are a suite of documents that provide useful information about
Quantitative Methods for Finance
Quantitative Methods for Finance Module 1: The Time Value of Money 1 Learning how to interpret interest rates as required rates of return, discount rates, or opportunity costs. 2 Learning how to explain
The right edge of the box is the third quartile, Q 3, which is the median of the data values above the median. Maximum Median
CONDENSED LESSON 2.1 Box Plots In this lesson you will create and interpret box plots for sets of data use the interquartile range (IQR) to identify potential outliers and graph them on a modified box
Probability and Statistics Vocabulary List (Definitions for Middle School Teachers)
Probability and Statistics Vocabulary List (Definitions for Middle School Teachers) B Bar graph a diagram representing the frequency distribution for nominal or discrete data. It consists of a sequence
Exploratory Data Analysis
Exploratory Data Analysis Learning Objectives: 1. After completion of this module, the student will be able to explore data graphically in Excel using histogram boxplot bar chart scatter plot 2. After
MEASURES OF VARIATION
NORMAL DISTRIBTIONS MEASURES OF VARIATION In statistics, it is important to measure the spread of data. A simple way to measure spread is to find the range. But statisticians want to know if the data are
II. DISTRIBUTIONS distribution normal distribution. standard scores
Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,
MBA 611 STATISTICS AND QUANTITATIVE METHODS
MBA 611 STATISTICS AND QUANTITATIVE METHODS Part I. Review of Basic Statistics (Chapters 1-11) A. Introduction (Chapter 1) Uncertainty: Decisions are often based on incomplete information from uncertain
Data Mining: Exploring Data. Lecture Notes for Chapter 3. Slides by Tan, Steinbach, Kumar adapted by Michael Hahsler
Data Mining: Exploring Data Lecture Notes for Chapter 3 Slides by Tan, Steinbach, Kumar adapted by Michael Hahsler Topics Exploratory Data Analysis Summary Statistics Visualization What is data exploration?
STAT355 - Probability & Statistics
STAT355 - Probability & Statistics Instructor: Kofi Placid Adragni Fall 2011 Chap 1 - Overview and Descriptive Statistics 1.1 Populations, Samples, and Processes 1.2 Pictorial and Tabular Methods in Descriptive
Implications of Big Data for Statistics Instruction 17 Nov 2013
Implications of Big Data for Statistics Instruction 17 Nov 2013 Implications of Big Data for Statistics Instruction Mark L. Berenson Montclair State University MSMESB Mini Conference DSI Baltimore November
Statistics I for QBIC. Contents and Objectives. Chapters 1 7. Revised: August 2013
Statistics I for QBIC Text Book: Biostatistics, 10 th edition, by Daniel & Cross Contents and Objectives Chapters 1 7 Revised: August 2013 Chapter 1: Nature of Statistics (sections 1.1-1.6) Objectives
Iris Sample Data Set. Basic Visualization Techniques: Charts, Graphs and Maps. Summary Statistics. Frequency and Mode
Iris Sample Data Set Basic Visualization Techniques: Charts, Graphs and Maps CS598 Information Visualization Spring 2010 Many of the exploratory data techniques are illustrated with the Iris Plant data
Descriptive Statistics. Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion
Descriptive Statistics Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion Statistics as a Tool for LIS Research Importance of statistics in research
EXPLORING SPATIAL PATTERNS IN YOUR DATA
EXPLORING SPATIAL PATTERNS IN YOUR DATA OBJECTIVES Learn how to examine your data using the Geostatistical Analysis tools in ArcMap. Learn how to use descriptive statistics in ArcMap and Geoda to analyze
DESCRIPTIVE STATISTICS AND EXPLORATORY DATA ANALYSIS
DESCRIPTIVE STATISTICS AND EXPLORATORY DATA ANALYSIS SEEMA JAGGI Indian Agricultural Statistics Research Institute Library Avenue, New Delhi - 110 012 [email protected] 1. Descriptive Statistics Statistics
Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.
Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGraw-Hill/Irwin, 2008, ISBN: 978-0-07-331988-9. Required Computing
Description. Textbook. Grading. Objective
EC151.02 Statistics for Business and Economics (MWF 8:00-8:50) Instructor: Chiu Yu Ko Office: 462D, 21 Campenalla Way Phone: 2-6093 Email: [email protected] Office Hours: by appointment Description This course
AP Statistics: Syllabus 1
AP Statistics: Syllabus 1 Scoring Components SC1 The course provides instruction in exploring data. 4 SC2 The course provides instruction in sampling. 5 SC3 The course provides instruction in experimentation.
The Big Picture. Describing Data: Categorical and Quantitative Variables Population. Descriptive Statistics. Community Coalitions (n = 175)
Describing Data: Categorical and Quantitative Variables Population The Big Picture Sampling Statistical Inference Sample Exploratory Data Analysis Descriptive Statistics In order to make sense of data,
Algebra 1 Course Information
Course Information Course Description: Students will study patterns, relations, and functions, and focus on the use of mathematical models to understand and analyze quantitative relationships. Through
Descriptive statistics parameters: Measures of centrality
Descriptive statistics parameters: Measures of centrality Contents Definitions... 3 Classification of descriptive statistics parameters... 4 More about central tendency estimators... 5 Relationship between
430 Statistics and Financial Mathematics for Business
Prescription: 430 Statistics and Financial Mathematics for Business Elective prescription Level 4 Credit 20 Version 2 Aim Students will be able to summarise, analyse, interpret and present data, make predictions
Introduction to Environmental Statistics. The Big Picture. Populations and Samples. Sample Data. Examples of sample data
A Few Sources for Data Examples Used Introduction to Environmental Statistics Professor Jessica Utts University of California, Irvine [email protected] 1. Statistical Methods in Water Resources by D.R. Helsel
Descriptive Statistics and Measurement Scales
Descriptive Statistics 1 Descriptive Statistics and Measurement Scales Descriptive statistics are used to describe the basic features of the data in a study. They provide simple summaries about the sample
Introduction to Quantitative Methods
Introduction to Quantitative Methods October 15, 2009 Contents 1 Definition of Key Terms 2 2 Descriptive Statistics 3 2.1 Frequency Tables......................... 4 2.2 Measures of Central Tendencies.................
business statistics using Excel OXFORD UNIVERSITY PRESS Glyn Davis & Branko Pecar
business statistics using Excel Glyn Davis & Branko Pecar OXFORD UNIVERSITY PRESS Detailed contents Introduction to Microsoft Excel 2003 Overview Learning Objectives 1.1 Introduction to Microsoft Excel
Descriptive Statistics
Y520 Robert S Michael Goal: Learn to calculate indicators and construct graphs that summarize and describe a large quantity of values. Using the textbook readings and other resources listed on the web
Topic 9 ~ Measures of Spread
AP Statistics Topic 9 ~ Measures of Spread Activity 9 : Baseball Lineups The table to the right contains data on the ages of the two teams involved in game of the 200 National League Division Series. Is
Module 4: Data Exploration
Module 4: Data Exploration Now that you have your data downloaded from the Streams Project database, the detective work can begin! Before computing any advanced statistics, we will first use descriptive
Course Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics
Course Text Business Statistics Lind, Douglas A., Marchal, William A. and Samuel A. Wathen. Basic Statistics for Business and Economics, 7th edition, McGraw-Hill/Irwin, 2010, ISBN: 9780077384470 [This
Data Mining: Exploring Data. Lecture Notes for Chapter 3. Introduction to Data Mining
Data Mining: Exploring Data Lecture Notes for Chapter 3 Introduction to Data Mining by Tan, Steinbach, Kumar What is data exploration? A preliminary exploration of the data to better understand its characteristics.
Data exploration with Microsoft Excel: analysing more than one variable
Data exploration with Microsoft Excel: analysing more than one variable Contents 1 Introduction... 1 2 Comparing different groups or different variables... 2 3 Exploring the association between categorical
AP STATISTICS REVIEW (YMS Chapters 1-8)
AP STATISTICS REVIEW (YMS Chapters 1-8) Exploring Data (Chapter 1) Categorical Data nominal scale, names e.g. male/female or eye color or breeds of dogs Quantitative Data rational scale (can +,,, with
Section Format Day Begin End Building Rm# Instructor. 001 Lecture Tue 6:45 PM 8:40 PM Silver 401 Ballerini
NEW YORK UNIVERSITY ROBERT F. WAGNER GRADUATE SCHOOL OF PUBLIC SERVICE Course Syllabus Spring 2016 Statistical Methods for Public, Nonprofit, and Health Management Section Format Day Begin End Building
List of Examples. Examples 319
Examples 319 List of Examples DiMaggio and Mantle. 6 Weed seeds. 6, 23, 37, 38 Vole reproduction. 7, 24, 37 Wooly bear caterpillar cocoons. 7 Homophone confusion and Alzheimer s disease. 8 Gear tooth strength.
Pie Charts. proportion of ice-cream flavors sold annually by a given brand. AMS-5: Statistics. Cherry. Cherry. Blueberry. Blueberry. Apple.
Graphical Representations of Data, Mean, Median and Standard Deviation In this class we will consider graphical representations of the distribution of a set of data. The goal is to identify the range of
DESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses.
DESCRIPTIVE STATISTICS The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses. DESCRIPTIVE VS. INFERENTIAL STATISTICS Descriptive To organize,
DESCRIPTIVE STATISTICS - CHAPTERS 1 & 2 1
DESCRIPTIVE STATISTICS - CHAPTERS 1 & 2 1 OVERVIEW STATISTICS PANIK...THE THEORY AND METHODS OF COLLECTING, ORGANIZING, PRESENTING, ANALYZING, AND INTERPRETING DATA SETS SO AS TO DETERMINE THEIR ESSENTIAL
Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard
Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express
The Forgotten JMP Visualizations (Plus Some New Views in JMP 9) Sam Gardner, SAS Institute, Lafayette, IN, USA
Paper 156-2010 The Forgotten JMP Visualizations (Plus Some New Views in JMP 9) Sam Gardner, SAS Institute, Lafayette, IN, USA Abstract JMP has a rich set of visual displays that can help you see the information
What is Data Analysis. Kerala School of MathematicsCourse in Statistics for Scientis. Introduction to Data Analysis. Steps in a Statistical Study
Kerala School of Mathematics Course in Statistics for Scientists Introduction to Data Analysis T.Krishnan Strand Life Sciences, Bangalore What is Data Analysis Statistics is a body of methods how to use
T O P I C 1 2 Techniques and tools for data analysis Preview Introduction In chapter 3 of Statistics In A Day different combinations of numbers and types of variables are presented. We go through these
Practice#1(chapter1,2) Name
Practice#1(chapter1,2) Name Solve the problem. 1) The average age of the students in a statistics class is 22 years. Does this statement describe descriptive or inferential statistics? A) inferential statistics
Basics of Statistics
Basics of Statistics Jarkko Isotalo 30 20 10 Std. Dev = 486.32 Mean = 3553.8 0 N = 120.00 2400.0 2800.0 3200.0 3600.0 4000.0 4400.0 4800.0 2600.0 3000.0 3400.0 3800.0 4200.0 4600.0 5000.0 Birthweights
Manhattan Center for Science and Math High School Mathematics Department Curriculum
Content/Discipline Algebra 1 Semester 2: Marking Period 1 - Unit 8 Polynomials and Factoring Topic and Essential Question How do perform operations on polynomial functions How to factor different types
Dongfeng Li. Autumn 2010
Autumn 2010 Chapter Contents Some statistics background; ; Comparing means and proportions; variance. Students should master the basic concepts, descriptive statistics measures and graphs, basic hypothesis
Data Mining: Exploring Data. Lecture Notes for Chapter 3. Introduction to Data Mining
Data Mining: Exploring Data Lecture Notes for Chapter 3 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 8/05/2005 1 What is data exploration? A preliminary
Exploratory Data Analysis
Exploratory Data Analysis Paul Cohen ISTA 370 Spring, 2012 Paul Cohen ISTA 370 () Exploratory Data Analysis Spring, 2012 1 / 46 Outline Data, revisited The purpose of exploratory data analysis Learning
Statistics Review PSY379
Statistics Review PSY379 Basic concepts Measurement scales Populations vs. samples Continuous vs. discrete variable Independent vs. dependent variable Descriptive vs. inferential stats Common analyses
Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm
Mgt 540 Research Methods Data Analysis 1 Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm http://web.utk.edu/~dap/random/order/start.htm
UNIT 1: COLLECTING DATA
Core Probability and Statistics Probability and Statistics provides a curriculum focused on understanding key data analysis and probabilistic concepts, calculations, and relevance to real-world applications.
Local outlier detection in data forensics: data mining approach to flag unusual schools
Local outlier detection in data forensics: data mining approach to flag unusual schools Mayuko Simon Data Recognition Corporation Paper presented at the 2012 Conference on Statistical Detection of Potential
AMS 7L LAB #2 Spring, 2009. Exploratory Data Analysis
AMS 7L LAB #2 Spring, 2009 Exploratory Data Analysis Name: Lab Section: Instructions: The TAs/lab assistants are available to help you if you have any questions about this lab exercise. If you have any
Classify the data as either discrete or continuous. 2) An athlete runs 100 meters in 10.5 seconds. 2) A) Discrete B) Continuous
Chapter 2 Overview Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Classify as categorical or qualitative data. 1) A survey of autos parked in
Section 1.3 Exercises (Solutions)
Section 1.3 Exercises (s) 1.109, 1.110, 1.111, 1.114*, 1.115, 1.119*, 1.122, 1.125, 1.127*, 1.128*, 1.131*, 1.133*, 1.135*, 1.137*, 1.139*, 1.145*, 1.146-148. 1.109 Sketch some normal curves. (a) Sketch
South Carolina College- and Career-Ready (SCCCR) Probability and Statistics
South Carolina College- and Career-Ready (SCCCR) Probability and Statistics South Carolina College- and Career-Ready Mathematical Process Standards The South Carolina College- and Career-Ready (SCCCR)
Describing Data: Measures of Central Tendency and Dispersion
100 Part 2 / Basic Tools of Research: Sampling, Measurement, Distributions, and Descriptive Statistics Chapter 8 Describing Data: Measures of Central Tendency and Dispersion In the previous chapter we
COM CO P 5318 Da t Da a t Explora Explor t a ion and Analysis y Chapte Chapt r e 3
COMP 5318 Data Exploration and Analysis Chapter 3 What is data exploration? A preliminary exploration of the data to better understand its characteristics. Key motivations of data exploration include Helping
4 Other useful features on the course web page. 5 Accessing SAS
1 Using SAS outside of ITCs Statistical Methods and Computing, 22S:30/105 Instructor: Cowles Lab 1 Jan 31, 2014 You can access SAS from off campus by using the ITC Virtual Desktop Go to https://virtualdesktopuiowaedu
Density Curve. A density curve is the graph of a continuous probability distribution. It must satisfy the following properties:
Density Curve A density curve is the graph of a continuous probability distribution. It must satisfy the following properties: 1. The total area under the curve must equal 1. 2. Every point on the curve
consider the number of math classes taken by math 150 students. how can we represent the results in one number?
ch 3: numerically summarizing data - center, spread, shape 3.1 measure of central tendency or, give me one number that represents all the data consider the number of math classes taken by math 150 students.
Interpreting Data in Normal Distributions
Interpreting Data in Normal Distributions This curve is kind of a big deal. It shows the distribution of a set of test scores, the results of rolling a die a million times, the heights of people on Earth,
Chapter 7. One-way ANOVA
Chapter 7 One-way ANOVA One-way ANOVA examines equality of population means for a quantitative outcome and a single categorical explanatory variable with any number of levels. The t-test of Chapter 6 looks
Visualizing Data. Contents. 1 Visualizing Data. Anthony Tanbakuchi Department of Mathematics Pima Community College. Introductory Statistics Lectures
Introductory Statistics Lectures Visualizing Data Descriptive Statistics I Department of Mathematics Pima Community College Redistribution of this material is prohibited without written permission of the
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name 1) A recent report stated ʺBased on a sample of 90 truck drivers, there is evidence to indicate that, on average, independent truck drivers earn more than company -hired truck drivers.ʺ Does
