Rotational Inertia Demonstrator

Size: px
Start display at page:

Transcription

1 Rotational Inertia Demonstrator P BACKGROUND: The Rotational Inertia Demonstrator provides an engaging way to investigate many of the principles of angular motion and is intended for use high school physics classes and university introductory physics courses. Whether demonstrating how changes in the moment of inertia effect acceleration in a lecture or making quantitative measurements in the lab the Rotational Inertia Demonstrator impressively accomplishes both. The apparatus easily attaches to a ring stand. When clamped to the edge of a lab table, it will allow a falling mass to produce a uniform angular acceleration. Hang a mass from a string in which one end is wrapped around one of the three pulleys; this allows the mass to accelerate to the floor spinning the Rotational Inertia Demonstrator above. To investigate the effects of changes in torque and inertia, simply move the rope to a pulley of different radius, change the amount of hanging mass, or move the masses on the spokes to change the moment of inertia. Qualitative observations are a snap, and students can easily see the dramatic effects of their adjustments. The apparatus lends itself to accurate quantitative experimentation as well, with two ways of finding the moment of inertia: theoretically, according to the component masses and their dimensions, and experimentally, by measuring the angular acceleration for a given torque. REQUIRED EQUIPMENT: Rotational Inertia Demonstrator Stop watch Mass set

2 EXPERIMENTS IN ROTATIONAL MOTION: In three experiments you will study kinematics and dynamics of rotational motion using the Rotational Inertia Demonstrator. In the first experiment, angular acceleration will be determined by two methods and their values compared. Likewise, in the second experiment, comparisons of the calculated value of the moment of inertia by two methods will be made. In the final experiment you will apply the law of conservation of energy. Since there is very little friction, a good approximation of the conservation of mechanical energy can be obtained. INSTRUCTIONS FOR ASSEMBLY: When you receive your Rotation Inertia demonstrator, you will need to assembly the radial arms and the pulley gear. Apply a few turns of the Teflon Tape supplied with your unit. Wrap to Teflon Tape clockwise around the threads and then tighten securely in the pulley gear s radial arm screw sockets. The Teflon Tape will allow for a snug fit of the rods coarse threads in the socket and prevents unwanted vibrations during precision rotation experiments.

3 TEACHER NOTES: EXPERIMENT #1 KINEMATICS OF ROTATIONAL MOTION (Method 1) Calculating the Angular acceleration form the total time and the angular displacement (θ); using the equation [θ = ω i t + ½ αt 2 ] where ω i = 0: Start by hanging a mass from a string in which one end is wrapped around one of the three pulleys. Rotate the apparatus allowing the mass to descend until it just touches the floor. Now raise the mass by winding up apparatus until it has rotated a complete number times (4 to 6 times). When released the allowing the falling mass will accelerate the apparatus resulting in an angular displacement equal to the number of rotations used to raise the mass. This angular displacement (θ) can be found by multiplying the number of rotations by 2 π. In the sample calculation below apparatus was rotated five complete times. This gives an angular displacement of 31.4 radians. Finding the angular acceleration of the falling mass: Equation: Calculating (α) α = 2 θ/t 2 Substitution: α = 2(31.4)/(8.04) 2 Answer α = rad/s 2 (Method 2) In the second method, angular acceleration is determined from the linear acceleration and the radius of the pulley. Finding the linear acceleration of the falling mass: Vertical displacement s =.923 m Equation: Calculating (a) a = 2s/t 2 Substitution: a = 2(.923)/(8.04) 2 = m/s 2 Answer a = m/s 2

4 Transforming linear acceleration into angular acceleration: Pulley radius m Answer α = a/r =.0286/.0293 = rad/s 2 Substitution: a = 2(.923)/(8.04) 2 = m/s 2 As can be seen from the sample data, close agreement between the two methods is expected. EXPERIMENT Answer a = # DETERMINING m/s 2 THE MOMENT OF INERTIA FT (Method 1) In this experiment the rotational inertia I of the apparatus is found by applying Newton s second law for rotational motion: ( = I α). Here the torque is produced by the tension in the string F T. To calculate this tension, the mass of the falling weight and its vertical acceleration from experiment 1 is needed. Using the equation F W - F T = ma the value (F T ) can be determined. FW F T = F W ma = (.20)(9.81) (.20)(.0309) = N Combining the value of (a) the tension in the string F T, (b) the radius of pulley r and (c) the angular acceleration of the apparatus α from above, we can solve for I the moment of inertia using ( = I α), where = F T x r Equation: Calculating (I) I = FT x r/ α Substitution: I = (1.956 N)( m)/ (0.783 rad/s 2 ) Answer I = _.0988 kg m 2 (Method 2) Direct Determination of Moment of Inertia from formulas. When adding up the moment of inertia of each of the parts of the apparatus, the value of the pulley component of the apparatus cannot be easily determined. This value is therefore provided for the students and is given to be ( kg m 2 ). Sample data is given below based on the moveable masses being placed at the far end of the rods.

5 I(pulleys) kg m 2 (provided by teacher) Thin Rods: length m, mass kg I( thin rods) kg m 2 (times four) kg m 2 Movable mass: mass kg distance from center m I ( movable mass) (times four) kg m 2 Σ I = I (pulleys) + I (rods) + I ( movable masses) =.0968_ kg m 2 EXPERIMENT #3 ENERGY OF ROTATIONAL MOTION Using the equations for translational and rotational kinetic energy and comparing their total to the loss of potential energy of the system, a good approximation of the conservation of mechanical energy can be found. KE(total) = ½ mv 2 + ½ Iω 2 I (kg m 2 ) ωf (rad/s) KE(rot) ( J) KE(tran) (J) KE (total) (J) ΔPE (J) Above is the result of sample calculations from the lab representing good confirmation of the conservation of mechanical energy.

6 STUDENT LABS: EXPERIMENT #1 KINEMATICS OF ROTATIONAL MOTION As any object starts spinning faster and faster it is experiencing a type of acceleration called angular acceleration (α). In this experiment with the Rotational Inertia Demonstrator you will calculate this acceleration using two different methods and compare their results. Procedure: (Method 1) Calculating angular acceleration (α) using [θ = ω i t + ½ αt 2 ] where ω i = 0: 1. Start by hanging a mass from a string in which one end is wrapped around one of the three pulleys. Rotate the apparatus allowing the mass to descend until it just touches the floor. Now raise the mass by winding up apparatus until it has rotated a complete number of times (4 to 6 times). Measure the vertical distance the hanging mass was raised above the floor s and record this distance in the space provided in method 2. When released, the falling mass will accelerate the apparatus resulting in an angular displacement equal to the number of rotations used to raise the mass. This angular displacement (θ) can be found by multiplying the number of rotations by 2 π. # Rotations = radians Timing # Rotations the free fall: = radians 2. Start with the all moveable masses on the rods placed at the same distance from the center. Raise the hanging mass back up to its initial distance above the floor and time its fall to the # Rotations floor as it freely accelerates the = apparatus rest. Repeat this radians process of measuring the time to fall, until you have at least three consistent values. Average these three values. (t 1 ) s (t 2 ) s (t 3 ) s (t avg ) s Calculating the Angular acceleration: 3. To calculate this acceleration you will use three different values from your experiment. First, since the falling weight and the apparatus were initially at rest, the starting angular velocity was zero (ω i ). Second, the total angular displacement in radians (θ) was determined from the number of rotations the apparatus made. Knowing the average time of acceleration, the angular displacement and the initial angular velocity, calculate the average angular acceleration.

7 Finding the angular acceleration of the falling mass: Equation: Calculating (α) α = Substitution: α = Answer α = rad/s 2 (Method 2) calculating angular acceleration using (a = αr) 4. First, calculate the linear acceleration (a) of the falling mass from the data above. Use the vertical displacement (s), time to fall and the initial velocity (v i ) of the mass, which was zero, to make this calculation. Vertical displacement s = m Equation: Calculating (a) a = Substitution: a = Answer a = m/s 2 5. Determine the radius of the pulley, which the string is wrapped around, by measuring its diameter with a caliper of ruler. Points on the pulley at the radius where the string is unwinding, experience a tangential acceleration (a T ), which is the same as the linear acceleration of the falling mass. Pulley radius m 6. Use the relationship between the angular acceleration (α) of a rotating object and the tangential acceleration (at) of a point on the object at a given radius (r), to determine the angular acceleration of the apparatus. Equation: α = Answer α = rad/s 2 7. Compare the two acceleration values and determine if they agree within the uncertainty of measurement.

8 EXPERIMENT #2 DETERMINING THE MOMENT OF INERTIA OF THE ROTATIONAL INERTIA DEMONSTRATOR When an unbalanced torque is applied to a body it will experience an angular acceleration in accord with Newton s second law. Here the net force becomes the net torque, and mass becomes the moment of inertia. Calculating the angular acceleration as in experiment 1 and using the torque produce by the tension in the string connected to the falling mass, you will calculate apparatus s moment of inertia. Next, you will calculate the moment of inertia a second time by the direct application of the formulas for the moment of inertia of geometric objects. Procedure: (Method 1) Using Newton s 2nd Law 1. This method will require you to use the calculated values from experiment 1 for both the vertical acceleration of the falling mass and the angular acceleration of the rotating apparatus. In addition, you will need to use the same value of the falling mass and the radius of the pulley used in the experiment. Record these acceleration values below. Angular acceleration of rotating apparatus (Exp.1, Method 1) rad/s 2 Linear Acceleration of falling mass (Exp.1, Method 2) m/s 2 2. Below you will calculate the torque produced by the string attached to the falling mass. This value is a product of the tension (F T ) in the string and the radius of the pulley you chose to wrap the string around. Record the radius of the pulley used in experiment 1. Radius of pulley m 3. To calculate the tension in the string, use the value of the linear acceleration of the falling mass and its weight. Here, the tension of the string pulling down on the side of the pulley is the same tension pulling up on the falling mass. What two forces are acting on the falling mass and which is greater? Draw a free body diagram of these forces and use Newton s second law to calculate the string tension. Falling mass (m) kg Weight of falling mass (F W ) N Equation: Calculating (F T ) F T = Substitution: F T = Answer F T = N

9 4. Now that you have the value of (a) the tension in the string, (b) the radius of pulley and (c) the angular acceleration of the apparatus, solve for I the moment of inertia using Newton s Law ( = I α). Equation: Calculating (I) I = Substitution: I = Answer I = kg m 2 (Method 2) Direct Determination of Rotational Inertia from formulas The direct method requires you to find the total moment of inertia by adding up the moment of inertia of each of the parts of the apparatus. To do this, your will need to know the masses and dimensions of the various parts of the system. Since all the thin rods and moveable masses are the same you only need to measure one of each. The moveable masses on the rods are treated as point-masses and have the same formula for moment of inertia as a hoop. Unscrew one of the thin rods and find and record its mass. For its length, use the distance from the center of the axis of rotation to its end point. Even though this ignores the short distance near the center, you will still have a good approximation. Finally, the pulleys assembly can be treated as and series of disks, however, since these cannot be individually measured, the moment of inertia of the pulley assembly will be provided by the lab instructor. Remember, that the moment of inertial of a system is just the sum of the moments of inertia of the individual parts. I(pulleys) kg m 2 (provided by teacher) Thin Rods: length m, mass kg I( thin rods) kg m 2 (times four) kg m 2 Movable mass: mass kg distance from center m I ( movable mass) (times four) kg m 2 Σ I = I (pulleys) + I (rods) + I ( movable masses) Σ I = + + = kg m 2 Compare the moment of inertia values from methods 1 & 2 and determine if they agree within the uncertainty of measurement.

10 EXPERIMENT 3 ENERGY OF ROTATIONAL MOTION Like the energy that runs a Grandfather clock, the Rotational Inertia Demonstrator is powered by the potential energy of a falling weight. With friction extremely small, the transfer of energy within the system represents a good approximation of the conservation of mechanical energy. As the falling hanging mass loses gravitational potential energy, it and the rotating apparatus above gain kinetic energy. The purpose of this activity is to calculate and compare the final kinetic energy of the system to the loss of potential energy of the falling mass. Determining the initial mechanical energy of the system. 1. With the apparatus initially at rest and the hanging mass raised above the floor, the total mechanical energy of the system equals the potential energy of the hanging mass. Measure and record its mass and height through which is will fall. Gravitational Potential Energy Falling mass: Mass kg Vertical displacement m Equation: Calculating (Potential Energy PE) PE = Substitution: PE = Answer PE = J Translational Kinetic Energy 2. To find the kinetic energy of the falling mass as it strikes the floor, you will need to know its final velocity. As in experiment 1, raise the falling mass to its initial position and time its descent to the floor, repeating this until you have three consistent values. Record their average. (t 1 ) s (t 2 ) s (t 3 ) s (t avg ) s (v avg ) m/s 3. Next, use the vertical displacement (s), the average time to fall and the initial velocity (vi) of the mass (which was zero), to calculate the average velocity with which the mass strikes the floor. From the mean speed equation we know that velocity final is two times the average velocity. With this value, continue and calculate the falling mass s kinetic energy as it reaches the floor. V f = 2 x V avg =

11 Equation: Calculating Kinetic Energy KE = Substitution: KE = Answer KE f = J Rotational Kinetic Energy 4. The equation for rotational kinetic energy has the same format as translational kinetic energy. In the rotational equation, the mass is replaced with its moment of inertia (I) and the final velocity is replaced with its final angular velocity (ω f ).. Use the value for the moment of inertia you calculated in experiment 2. V f for the falling mass is the same tangential velocity of the pulley with the string wrapped around. From the equation (v = r ω ), the value of ω f will be calculated by dividing above V f for the falling mass by the radius of the pulley. Radius of pulley m ω f = rad /s I = kg m 2 Equation: Calculating Rotational Kinetic Energy KE = Substitution: KE = Answer KE = J KE(total) = (tran.) + (rot.) = J 5. Compare below the sum of the two final kinetic energies to the loss of potential energy of the falling mass and determine if they agree within the uncertainty of measurement.

Center of Gravity. We touched on this briefly in chapter 7! x 2

Center of Gravity We touched on this briefly in chapter 7! x 1 x 2 cm m 1 m 2 This was for what is known as discrete objects. Discrete refers to the fact that the two objects separated and individual.

Torque and Rotary Motion

Torque and Rotary Motion Name Partner Introduction Motion in a circle is a straight-forward extension of linear motion. According to the textbook, all you have to do is replace displacement, velocity,

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is

Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.4-9.6, 10.1-10.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of

Angular acceleration α

Angular Acceleration Angular acceleration α measures how rapidly the angular velocity is changing: Slide 7-0 Linear and Circular Motion Compared Slide 7- Linear and Circular Kinematics Compared Slide 7-

Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.

Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems

Physics 201 Homework 8

Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 N-m is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kg-m 2. What is the

Lab 7: Rotational Motion

Lab 7: Rotational Motion Equipment: DataStudio, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME-9472), string with loop at one end and small white bead at the other end (125

Physics 1A Lecture 10C

Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. --Oprah Winfrey Static Equilibrium

Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

EXPERIMENT: MOMENT OF INERTIA

OBJECTIVES EXPERIMENT: MOMENT OF INERTIA to familiarize yourself with the concept of moment of inertia, I, which plays the same role in the description of the rotation of a rigid body as mass plays in

11. Rotation Translational Motion: Rotational Motion:

11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational

Solution Derivations for Capa #11

Solution Derivations for Capa #11 1) A horizontal circular platform (M = 128.1 kg, r = 3.11 m) rotates about a frictionless vertical axle. A student (m = 68.3 kg) walks slowly from the rim of the platform

PHY231 Section 1, Form B March 22, 2012

1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate

Rotational Motion: Moment of Inertia

Experiment 8 Rotational Motion: Moment of Inertia 8.1 Objectives Familiarize yourself with the concept of moment of inertia, I, which plays the same role in the description of the rotation of a rigid body

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

SOLID MECHANICS DYNAMICS TUTORIAL MOMENT OF INERTIA. This work covers elements of the following syllabi.

SOLID MECHANICS DYNAMICS TUTOIAL MOMENT OF INETIA This work covers elements of the following syllabi. Parts of the Engineering Council Graduate Diploma Exam D5 Dynamics of Mechanical Systems Parts of the

Acceleration due to Gravity

Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision

Lecture 16. Newton s Second Law for Rotation. Moment of Inertia. Angular momentum. Cutnell+Johnson: 9.4, 9.6

Lecture 16 Newton s Second Law for Rotation Moment of Inertia Angular momentum Cutnell+Johnson: 9.4, 9.6 Newton s Second Law for Rotation Newton s second law says how a net force causes an acceleration.

PHY121 #8 Midterm I 3.06.2013

PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

CHAPTER 15 FORCE, MASS AND ACCELERATION

CHAPTER 5 FORCE, MASS AND ACCELERATION EXERCISE 83, Page 9. A car initially at rest accelerates uniformly to a speed of 55 km/h in 4 s. Determine the accelerating force required if the mass of the car

Practice Exam Three Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 Practice Exam Three Solutions Problem 1a) (5 points) Collisions and Center of Mass Reference Frame In the lab frame,

PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013

PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

Centripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad.

Centripetal Force 1 Introduction In classical mechanics, the dynamics of a point particle are described by Newton s 2nd law, F = m a, where F is the net force, m is the mass, and a is the acceleration.

Kinetic Friction. Experiment #13

Kinetic Friction Experiment #13 Joe Solution E00123456 Partner - Jane Answers PHY 221 Lab Instructor Chuck Borener Thursday, 11 AM 1 PM Lecture Instructor Dr. Jacobs Abstract In this experiment, we test

Linear Motion vs. Rotational Motion

Linear Motion vs. Rotational Motion Linear motion involves an object moving from one point to another in a straight line. Rotational motion involves an object rotating about an axis. Examples include a

3600 s 1 h. 24 h 1 day. 1 day

Week 7 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

Gravitational Potential Energy

Gravitational Potential Energy Consider a ball falling from a height of y 0 =h to the floor at height y=0. A net force of gravity has been acting on the ball as it drops. So the total work done on the

Kinetic Friction. Experiment #13

Kinetic Friction Experiment #13 Joe Solution E01234567 Partner- Jane Answers PHY 221 Lab Instructor- Nathaniel Franklin Wednesday, 11 AM-1 PM Lecture Instructor Dr. Jacobs Abstract The purpose of this

3 Work, Power and Energy

3 Work, Power and Energy At the end of this section you should be able to: a. describe potential energy as energy due to position and derive potential energy as mgh b. describe kinetic energy as energy

Moment of Inertia & Rotational Energy Physics Lab IX Objective

Moment o Inertia & Rotational Energy Physics Lab IX Objective In this lab, the physical nature o the moment o inertia and the conservation law o mechanical energy involving rotational motion will be examined

Unit 4 Practice Test: Rotational Motion

Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle

PHYSICS 111 HOMEWORK SOLUTION #9. April 5, 2013

PHYSICS 111 HOMEWORK SOLUTION #9 April 5, 2013 0.1 A potter s wheel moves uniformly from rest to an angular speed of 0.16 rev/s in 33 s. Find its angular acceleration in radians per second per second.

Chapter 7 Homework solutions

Chapter 7 Homework solutions 8 Strategy Use the component form of the definition of center of mass Solution Find the location of the center of mass Find x and y ma xa + mbxb (50 g)(0) + (10 g)(5 cm) x

Chapter 3.8 & 6 Solutions

Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled

AP Physics: Rotational Dynamics 2

Name: Assignment Due Date: March 30, 2012 AP Physics: Rotational Dynamics 2 Problem A solid cylinder with mass M, radius R, and rotational inertia 1 2 MR2 rolls without slipping down the inclined plane

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of

Conservation of Energy Physics Lab VI

Conservation of Energy Physics Lab VI Objective This lab experiment explores the principle of energy conservation. You will analyze the final speed of an air track glider pulled along an air track by a

Two-Body System: Two Hanging Masses

Specific Outcome: i. I can apply Newton s laws of motion to solve, algebraically, linear motion problems in horizontal, vertical and inclined planes near the surface of Earth, ignoring air resistance.

Chapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6.

Chapter 11 11.7 A solid cylinder of radius 10cm and mass 1kg starts from rest and rolls without slipping a distance of 6m down a house roof that is inclined at 30 degrees (a) What is the angular speed

Newton s Second Law. ΣF = m a. (1) In this equation, ΣF is the sum of the forces acting on an object, m is the mass of

Newton s Second Law Objective The Newton s Second Law experiment provides the student a hands on demonstration of forces in motion. A formulated analysis of forces acting on a dynamics cart will be developed

Experiment 4 ~ Newton s Second Law: The Atwood Machine

xperiment 4 ~ Newton s Second Law: The twood Machine Purpose: To predict the acceleration of an twood Machine by applying Newton s 2 nd Law and use the predicted acceleration to verify the equations of

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION This tutorial covers pre-requisite material and should be skipped if you are

Hand Held Centripetal Force Kit

Hand Held Centripetal Force Kit PH110152 Experiment Guide Hand Held Centripetal Force Kit INTRODUCTION: This elegantly simple kit provides the necessary tools to discover properties of rotational dynamics.

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

Work and Energy. W =!KE = KE f

Activity 19 PS-2826 Work and Energy Mechanics: work-energy theorem, conservation of energy GLX setup file: work energy Qty Equipment and Materials Part Number 1 PASPORT Xplorer GLX PS-2002 1 PASPORT Motion

SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS

SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS This work covers elements of the syllabus for the Engineering Council exams C105 Mechanical and Structural Engineering

VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

Lecture Presentation Chapter 7 Rotational Motion

Lecture Presentation Chapter 7 Rotational Motion Suggested Videos for Chapter 7 Prelecture Videos Describing Rotational Motion Moment of Inertia and Center of Gravity Newton s Second Law for Rotation Class

8.012 Physics I: Classical Mechanics Fall 2008

MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE

Instruction Manual Manual No. 012-06053B. Rotary Motion Sensor. Model No. CI-6538

Instruction Manual Manual No. 012-06053B Rotary Motion Sensor Table of Contents Equipment List... 3 Optional Accessories... 4-5 Mini-Rotational Accessory...4 Linear Motion Accessory...4 Chaos Accessory...4

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular

E X P E R I M E N T 8

E X P E R I M E N T 8 Torque, Equilibrium & Center of Gravity Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics, Exp 8:

EDUH 1017 - SPORTS MECHANICS

4277(a) Semester 2, 2011 Page 1 of 9 THE UNIVERSITY OF SYDNEY EDUH 1017 - SPORTS MECHANICS NOVEMBER 2011 Time allowed: TWO Hours Total marks: 90 MARKS INSTRUCTIONS All questions are to be answered. Use

5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity.

5. Forces and Motion-I 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will

Tennessee State University

Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

Experiment 5 ~ Friction

Purpose: Experiment 5 ~ Friction In this lab, you will make some basic measurements of friction. First you will measure the coefficients of static friction between several combinations of surfaces using

Simple Harmonic Motion

Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

Experiment 9. The Pendulum

Experiment 9 The Pendulum 9.1 Objectives Investigate the functional dependence of the period (τ) 1 of a pendulum on its length (L), the mass of its bob (m), and the starting angle (θ 0 ). Use a pendulum

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

Lecture L5 - Other Coordinate Systems

S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L5 - Other Coordinate Systems In this lecture, we will look at some other common systems of coordinates. We will present polar coordinates

Physics 1120: Simple Harmonic Motion Solutions

Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for

General Physics Lab: Atwood s Machine

General Physics Lab: Atwood s Machine Introduction One may study Newton s second law using a device known as Atwood s machine, shown below. It consists of a pulley and two hanging masses. The difference

Determination of Acceleration due to Gravity

Experiment 2 24 Kuwait University Physics 105 Physics Department Determination of Acceleration due to Gravity Introduction In this experiment the acceleration due to gravity (g) is determined using two

ENERGYand WORK (PART I and II) 9-MAC

ENERGYand WORK (PART I and II) 9-MAC Purpose: To understand work, potential energy, & kinetic energy. To understand conservation of energy and how energy is converted from one form to the other. Apparatus:

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

Proving the Law of Conservation of Energy

Table of Contents List of Tables & Figures: Table 1: Data/6 Figure 1: Example Diagram/4 Figure 2: Setup Diagram/8 1. Abstract/2 2. Introduction & Discussion/3 3. Procedure/5 4. Results/6 5. Summary/6 Proving

D Alembert s principle and applications

Chapter 1 D Alembert s principle and applications 1.1 D Alembert s principle The principle of virtual work states that the sum of the incremental virtual works done by all external forces F i acting in

Rotation: Moment of Inertia and Torque

Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body

G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and

ROTARY MOTION SENSOR

Instruction Manual and Experiment Guide for the PASCO scientific Model CI-6538 012-06053A 5/96 ROTARY MOTION SENSOR 1996 PASCO scientific \$10.00 012-06053A Rotary Motion Sensor Table of Contents Section

Lab 2: Vector Analysis

Lab 2: Vector Analysis Objectives: to practice using graphical and analytical methods to add vectors in two dimensions Equipment: Meter stick Ruler Protractor Force table Ring Pulleys with attachments

Problem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s

Problem Set 1 1.1 A bicyclist starts from rest and after traveling along a straight path a distance of 20 m reaches a speed of 30 km/h. Determine her constant acceleration. How long does it take her to

Lab #4 - Linear Impulse and Momentum

Purpose: Lab #4 - Linear Impulse and Momentum The objective of this lab is to understand the linear and angular impulse/momentum relationship. Upon completion of this lab you will: Understand and know

Chapter 8: Rotational Motion of Solid Objects

Chapter 8: Rotational Motion of Solid Objects 1. An isolated object is initially spinning at a constant speed. Then, although no external forces act upon it, its rotational speed increases. This must be

Centripetal force, rotary motion, angular velocity, apparent force.

Related Topics Centripetal force, rotary motion, angular velocity, apparent force. Principle and Task A body with variable mass moves on a circular path with ad-justable radius and variable angular velocity.

So if ω 0 increases 3-fold, the stopping angle increases 3 2 = 9-fold.

Name: MULTIPLE CHOICE: Questions 1-11 are 5 points each. 1. A safety device brings the blade of a power mower from an angular speed of ω 1 to rest in 1.00 revolution. At the same constant angular acceleration,

PHYS 101-4M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

PHYS 101-4M, Fall 2005 Exam #3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A bicycle wheel rotates uniformly through 2.0 revolutions in

Tips For Selecting DC Motors For Your Mobile Robot

Tips For Selecting DC Motors For Your Mobile Robot By AJ Neal When building a mobile robot, selecting the drive motors is one of the most important decisions you will make. It is a perfect example of an

Ideal Cable. Linear Spring - 1. Cables, Springs and Pulleys

Cables, Springs and Pulleys ME 202 Ideal Cable Neglect weight (massless) Neglect bending stiffness Force parallel to cable Force only tensile (cable taut) Neglect stretching (inextensible) 1 2 Sketch a

Laboratory Report Scoring and Cover Sheet

Laboratory Report Scoring and Cover Sheet Title of Lab _Newton s Laws Course and Lab Section Number: PHY 1103-100 Date _23 Sept 2014 Principle Investigator _Thomas Edison Co-Investigator _Nikola Tesla

Physical Quantities, Symbols and Units

Table 1 below indicates the physical quantities required for numerical calculations that are included in the Access 3 Physics units and the Intermediate 1 Physics units and course together with the SI

FRICTION, WORK, AND THE INCLINED PLANE

FRICTION, WORK, AND THE INCLINED PLANE Objective: To measure the coefficient of static and inetic friction between a bloc and an inclined plane and to examine the relationship between the plane s angle

226 Chapter 15: OSCILLATIONS

Chapter 15: OSCILLATIONS 1. In simple harmonic motion, the restoring force must be proportional to the: A. amplitude B. frequency C. velocity D. displacement E. displacement squared 2. An oscillatory motion

LAB 6: GRAVITATIONAL AND PASSIVE FORCES

55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction

HOOKE S LAW AND SIMPLE HARMONIC MOTION

HOOKE S LAW AND SIMPLE HARMONIC MOTION Alexander Sapozhnikov, Brooklyn College CUNY, New York, alexs@brooklyn.cuny.edu Objectives Study Hooke s Law and measure the spring constant. Study Simple Harmonic

Physics 41 HW Set 1 Chapter 15

Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,

Mechanical Principles

Unit 4: Mechanical Principles Unit code: F/60/450 QCF level: 5 Credit value: 5 OUTCOME 3 POWER TRANSMISSION TUTORIAL BELT DRIVES 3 Power Transmission Belt drives: flat and v-section belts; limiting coefficient

Chapter Project Worksheet 1 1. inclined plane, wedge, screw, lever, wheel and axle, pulley 2. pulley 3. lever 4. inclined plane 5. Answers will vary: top, side, or bottom 6. Answers will vary; only one

Educational Objectives To investigate equilibrium using a lever in two activities.

Lever: Equilibrium and Torque Main Topic Subtopic Learning Level Technology Level Activity Type Forces Simple Machines High Low Student Teacher s Notes Description: Investigate torque and equilibrium in

TOP VIEW. FBD s TOP VIEW. Examination No. 2 PROBLEM NO. 1. Given:

RLEM N. 1 Given: Find: vehicle having a mass of 500 kg is traveling on a banked track on a path with a constant radius of R = 1000 meters. t the instant showing, the vehicle is traveling with a speed of

Wind Turbines. Wind Turbines 2. Wind Turbines 4. Wind Turbines 3. Wind Turbines 5. Wind Turbines 6

Wind Turbines 1 Wind Turbines 2 Introductory Question Wind Turbines You and a child half your height lean out over the edge of a pool at the same angle. If you both let go simultaneously, who will tip

Lecture L22-2D Rigid Body Dynamics: Work and Energy

J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for