In-Memory Databases Algorithms and Data Structures on Modern Hardware. Martin Faust David Schwalb Jens Krüger Jürgen Müller
|
|
|
- Cecilia Pearson
- 9 years ago
- Views:
Transcription
1 In-Memory Databases Algorithms and Data Structures on Modern Hardware Martin Faust David Schwalb Jens Krüger Jürgen Müller
2 The Free Lunch Is Over 2 Number of transistors per CPU increases Clock frequency stalls PIMDB WiSe 2011/12
3 Capacity vs. Speed (latency) 3 Memory hierarchy: Capacity restricted by price/performance SRAM vs. DRAM (refreshing needed every 64ms) SRAM is very fast but very expensive Memory is organized in hierarchies Fast but small memory on the top Slow but lots of memory at the bottom technology latency size CPU SRAM < 1 ns bytes L1 Cache SRAM ~ 1 ns KB L2 Cache SRAM < 10 ns MB Main Memory DRAM 100 ns GB Magnetic Disk ~ ns (10 ms) TB
4 Data Processing 4 In DBMS, on disk as well as in memory, data processing is often: Not CPU bound But bandwidth bound I/O Bottleneck CPU could process data faster Memory Access: Not truly random (in the sense of constant latency) Data is read in blocks/cache lines Even if only parts of a block are requested Potential waste of bandwidth V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 Cache Line 1 Cache Line 2
5 5 Memory Hierarchy Cache Small but fast memory, which keeps data from main memory for fast access. CPU Cache performance is crucial Similar to disk cache (e.g. buffer pool) Cache But: Caches are controlled by hardware. Cache hit Data was found in the cache. Fastest data access since no lower level is involved. Cache miss Data was not found in the cache. CPU has to load data from main memory into cache (miss penalty). Main Memory
6 Locality is King! 6 To improve cache behavior Increase cache capacity Exploit locality Spatial: related data is close (nearby references are likely) Temporal: Re-use of data (repeat reference is likely) To improve locality Non random access (e.g. scan, index traversal): Leverage sequential access patterns Clustering data to a cache lines Partition to avoid cache line pollution (e.g. vertical decomposition) Squeeze more operations/information into a cache line Random access (hash join): Partition to fit in cache (cache-sized hash tables)
7 Motivation 7 Hardware has changed TB of main memory are available Cache sizes increased Multi-core CPU s are present Memory bottleneck increased Data/Workload Tables are wide and sparse Lots of set processing Traditional databases Optimized for write-intensive workloads show bad L2 cache behavior
8 Problem Statement 8 DBMS architecture has not changed over decades Redesign needed to handle the changes in: Hardware trends (CPU/cache/memory) Changed workload requirements Data characteristics Data amount Query engine Buffer pool Traditional DBMS Architecture
9 Row- or Column-oriented Storage 9 Row Store Column Store SELECT * FROM Sales Orders WHERE Document Number = Row 1 Row 2 Doc Num Doc Date Sold- To Value Sales Status Org Row 3 Row 4 SELECT SUM(Order Value) FROM Sales Orders WHERE Document Date > Row 1 Row 2 Doc Num Doc Date Sold- To Value Sales Status Org Row 3 Row 4
10 Question + Answer 10 How to optimize an IMDB? Exploit sequential access, leverage locality -> Column store Reduce I/O Compression Direct value access -> Fixed-length (compression schemes) Late Materialization Parallelize
11 Seminar Organization
12 Objective of the Seminar 12 Work on advanced database topics in the context of in-memory databases (IMDB) with regards to enterprise data management Get to know characteristics of IMDBs Understand the value of IMDBs for enterprise computing Learn how to work scientifically Fully understand your topic and define the objectives of your work Propose a contribution in the area of your topic Quantitatively demonstrate the superiority of your solution Compare your work to existing related work Write down your contribution so that others can understand and reproduce your results
13 Seminar schedule 13 Today: Overview of topics, general introduction Tomorrow (17.4.): Q&A on topics, in depth topics 22.4.: Send your priorities for topics to lecturers 26.4.: Assignment of topics to students 28. & 29.5.: Mid-term Presentations 9. & 10.7.: Final Presentations 19.7.: Deadline for final documentation Throughout the seminar: individual coaching by teaching staff Meetings (Room V-1.16)
14 Final Presentation 14 Why a final presentation? Show your ideas and their relevance to others Explain your starting point and how you evolved your idea / implementation Present your implementation, explain your implementations properties
15 Final Documentation pages, ACM format [1] Suggested Content: Abstract, Introduction into the topic, Related work, Implementation, Experiment/Results, Interpretation, Future Work Important! Related work needs to be cited Quantify your ideas / solutions with measurements All experiments need to be reproducible (code, input data) and the raw data to the experiment results must be provided [1]
16 Grading 16 6 ECTS Grading: 30% Presentations (Mid-term 10% / Final 20%) 30% Results 30% written documentation 10% general participation in the seminar
17 Topic Assignment 17 Each participant sends list of top 3 topics in order of preference to lecturers by Topics are assigned based on preferences and skills by 26.4.
18 Topics (i) Data Structures 18 1) Partitioned Bitvector for In-Memory Column-Store A bitvector that allows for multiple partitions with different value-id-widths (bits) to create a merge-free insert-only column store. For the seminar, an evaluation of the performance impact for lookups is the main topic. 2) Vertical Bitvector A modified bitvector storage layout of values on a cacheline to enable faster decompression of multiple values at once due to better utilization of SSE units. [1] 3) Unsorted Dictionaries Evaluation of a lookup-table scheme, enabling fast range queries with unsorted dictionaries. The idea is to create a cache-sized probing-bitvector by scanning matching positions on the dictionary, which can be accessed fast while scanning the column. [1]
19 Topics (ii) Index Structures 19 4) Default Value Index A data structure to store very sparse columns without sacrificing OLTP performance. The idea is to only store exceptions and a bit-index to mark non-default positions. 5) Multi Column Indices Classic Multi-Column Indices use a tree-structure to index tuples. In column store this is a cumbersome solution, because values are stored as encoded integers and these are used as long as possible (late materialization), and values that would form one tuple are in different columns.
20 Topics (iv) Join Algorithms 20 6) Multi Column Join Algorithms When joining tables with multiple key columns, column stores need to materialize all keys or need an uncompressed tree structure (actual values not value-ids). The goal is an optimized join algorithm enabling fast joins over multiple columns. 7) Join Algorithms on shared Dictionaries Columns that store values from the same application domain could be stored with a shared dictionary and joins could be performed directly on value-ids instead of values. 8) Cache-Optimized Parallel Join Evaluation/Development of a cache-sensitive join algorithm for HYRISE.
21 Topics (v) User Interface 21 9) Analytical User Interface for HYRISE A graphical, drag and drop based javascript user interface to get fast information about the loaded data, its value distribution, distinct values etc, similar to Visual Intelligence. 10) Set-based Query Language A query language or graphical query tool that allows a user to define the desired result in a set-based manner, similar to QlikView. The user can define a query by defining subsets of tables etc, natural joins are performed automatically.
22 Topics (vi) 22 11) Branching Deltas (Simulation) For some applications, many of simulations need to be performed. Since they typically require write access, an idea would be to have separate deltas buffers for each simulation. The simulation can then be run in parallel, in order to find the best set of input parameters. 12) Result Set Compression Currently, result sets are transferred as is to the client, where it is simply read row-by-row. In scenarios where the connection between database and applications is limited (mobile, cloud), the idea of compression the result set might lead to significant performance gains. 13) Memory Compression Algorithms in Hardware (PPC) Modern PowerPC processors have hardware supported main memory compression. A first evaluation could investigate how well it compresses enterprise data, how performance is affected, and how a row store compares to a column store. 14) Rough query runtime prediction based on optimizer results During development, it is desirable to get rough estimates of how long a query will take to execute. The idea for this seminar is to use the output of the the database query optimizer to roughly estimate the execution time of given SQL queries.
23 Topics (vii) - Database Co-Processors 23 15) Execution model for co-processors Based on the memory bandwidth limitation of database co-processors, multiple execution models are possible. Evaluation of the following different models: Co-Process, Procedural Language Architecture, GPU hosted data. 16) Co-processor integration into databases Evaluation how a co-processor can be integrated with a database for application specific logic with SAP HANA (AFL) or HYRISE. 17) Automatic execution unit detection in a heterogeneous system In a heterogeneous system, the capabilities of database (co-)processors differ with respects to bandwidth, parallelization, clock frequency. To determine the best suited execution unit an execution model needs to be created based on device benchmarks and a programs current workflow.
24 Topics (viii) - Database Co-Processors 24 18) Optimized co-processor data structures Database co-processors used for application specific tasks, such as prediction algorithms or scientific calculations, require the to have a different layout than database tables. The student working on this topic will evaluate which data structures are favorable for different coprocessors and algorithms. 19) Automatic code optimization for co-processors As a heterogeneous programming framework, OpenCL enables the developer to write a single program that can be executed on many different hardware platforms. Nevertheless, the code needs to be optimized for each device to run optimal. The goal will be to optimize the code written in OpenCL C for different devices automatically based on micro benchmarks.
In-Memory Data Management for Enterprise Applications
In-Memory Data Management for Enterprise Applications Jens Krueger Senior Researcher and Chair Representative Research Group of Prof. Hasso Plattner Hasso Plattner Institute for Software Engineering University
SAP HANA - Main Memory Technology: A Challenge for Development of Business Applications. Jürgen Primsch, SAP AG July 2011
SAP HANA - Main Memory Technology: A Challenge for Development of Business Applications Jürgen Primsch, SAP AG July 2011 Why In-Memory? Information at the Speed of Thought Imagine access to business data,
IN-MEMORY DATABASE SYSTEMS. Prof. Dr. Uta Störl Big Data Technologies: In-Memory DBMS - SoSe 2015 1
IN-MEMORY DATABASE SYSTEMS Prof. Dr. Uta Störl Big Data Technologies: In-Memory DBMS - SoSe 2015 1 Analytical Processing Today Separation of OLTP and OLAP Motivation Online Transaction Processing (OLTP)
Binary search tree with SIMD bandwidth optimization using SSE
Binary search tree with SIMD bandwidth optimization using SSE Bowen Zhang, Xinwei Li 1.ABSTRACT In-memory tree structured index search is a fundamental database operation. Modern processors provide tremendous
Memory Hierarchy. Arquitectura de Computadoras. Centro de Investigación n y de Estudios Avanzados del IPN. [email protected]. MemoryHierarchy- 1
Hierarchy Arturo Díaz D PérezP Centro de Investigación n y de Estudios Avanzados del IPN [email protected] Hierarchy- 1 The Big Picture: Where are We Now? The Five Classic Components of a Computer Processor
Benchmarking Cassandra on Violin
Technical White Paper Report Technical Report Benchmarking Cassandra on Violin Accelerating Cassandra Performance and Reducing Read Latency With Violin Memory Flash-based Storage Arrays Version 1.0 Abstract
Big Data Technology Map-Reduce Motivation: Indexing in Search Engines
Big Data Technology Map-Reduce Motivation: Indexing in Search Engines Edward Bortnikov & Ronny Lempel Yahoo Labs, Haifa Indexing in Search Engines Information Retrieval s two main stages: Indexing process
361 Computer Architecture Lecture 14: Cache Memory
1 361 Computer Architecture Lecture 14 Memory cache.1 The Motivation for s Memory System Processor DRAM Motivation Large memories (DRAM) are slow Small memories (SRAM) are fast Make the average access
Architectures for Big Data Analytics A database perspective
Architectures for Big Data Analytics A database perspective Fernando Velez Director of Product Management Enterprise Information Management, SAP June 2013 Outline Big Data Analytics Requirements Spectrum
Performance Verbesserung von SAP BW mit SQL Server Columnstore
Performance Verbesserung von SAP BW mit SQL Server Columnstore Martin Merdes Senior Software Development Engineer Microsoft Deutschland GmbH SAP BW/SQL Server Porting AGENDA 1. Columnstore Overview 2.
Actian Vector in Hadoop
Actian Vector in Hadoop Industrialized, High-Performance SQL in Hadoop A Technical Overview Contents Introduction...3 Actian Vector in Hadoop - Uniquely Fast...5 Exploiting the CPU...5 Exploiting Single
SAP HANA SAP s In-Memory Database. Dr. Martin Kittel, SAP HANA Development January 16, 2013
SAP HANA SAP s In-Memory Database Dr. Martin Kittel, SAP HANA Development January 16, 2013 Disclaimer This presentation outlines our general product direction and should not be relied on in making a purchase
RCFile: A Fast and Space-efficient Data Placement Structure in MapReduce-based Warehouse Systems CLOUD COMPUTING GROUP - LITAO DENG
1 RCFile: A Fast and Space-efficient Data Placement Structure in MapReduce-based Warehouse Systems CLOUD COMPUTING GROUP - LITAO DENG Background 2 Hive is a data warehouse system for Hadoop that facilitates
The Quest for Speed - Memory. Cache Memory. A Solution: Memory Hierarchy. Memory Hierarchy
The Quest for Speed - Memory Cache Memory CSE 4, Spring 25 Computer Systems http://www.cs.washington.edu/4 If all memory accesses (IF/lw/sw) accessed main memory, programs would run 20 times slower And
EFFICIENT EXTERNAL SORTING ON FLASH MEMORY EMBEDDED DEVICES
ABSTRACT EFFICIENT EXTERNAL SORTING ON FLASH MEMORY EMBEDDED DEVICES Tyler Cossentine and Ramon Lawrence Department of Computer Science, University of British Columbia Okanagan Kelowna, BC, Canada [email protected]
In-memory databases and innovations in Business Intelligence
Database Systems Journal vol. VI, no. 1/2015 59 In-memory databases and innovations in Business Intelligence Ruxandra BĂBEANU, Marian CIOBANU University of Economic Studies, Bucharest, Romania [email protected],
File System & Device Drive. Overview of Mass Storage Structure. Moving head Disk Mechanism. HDD Pictures 11/13/2014. CS341: Operating System
CS341: Operating System Lect 36: 1 st Nov 2014 Dr. A. Sahu Dept of Comp. Sc. & Engg. Indian Institute of Technology Guwahati File System & Device Drive Mass Storage Disk Structure Disk Arm Scheduling RAID
DKDA 2012 and the Impact of In-Memory Database Algorithms
DKDA 2012 : The Fourth International Conference on Advances in Databases, Knowledge, and Data Applications Leveraging Compression in In-Memory Databases Jens Krueger, Johannes Wust, Martin Linkhorst, Hasso
low-level storage structures e.g. partitions underpinning the warehouse logical table structures
DATA WAREHOUSE PHYSICAL DESIGN The physical design of a data warehouse specifies the: low-level storage structures e.g. partitions underpinning the warehouse logical table structures low-level structures
Improve Business Productivity and User Experience with a SanDisk Powered SQL Server 2014 In-Memory OLTP Database
WHITE PAPER Improve Business Productivity and User Experience with a SanDisk Powered SQL Server 2014 In-Memory OLTP Database 951 SanDisk Drive, Milpitas, CA 95035 www.sandisk.com Table of Contents Executive
In-Memory Columnar Databases HyPer. Arto Kärki University of Helsinki 30.11.2012
In-Memory Columnar Databases HyPer Arto Kärki University of Helsinki 30.11.2012 1 Introduction Columnar Databases Design Choices Data Clustering and Compression Conclusion 2 Introduction The relational
Enterprise Applications
Enterprise Applications Chi Ho Yue Sorav Bansal Shivnath Babu Amin Firoozshahian EE392C Emerging Applications Study Spring 2003 Functionality Online Transaction Processing (OLTP) Users/apps interacting
Increasing Flash Throughput for Big Data Applications (Data Management Track)
Scale Simplify Optimize Evolve Increasing Flash Throughput for Big Data Applications (Data Management Track) Flash Memory 1 Industry Context Addressing the challenge A proposed solution Review of the Benefits
Physical Data Organization
Physical Data Organization Database design using logical model of the database - appropriate level for users to focus on - user independence from implementation details Performance - other major factor
Rethinking SIMD Vectorization for In-Memory Databases
SIGMOD 215, Melbourne, Victoria, Australia Rethinking SIMD Vectorization for In-Memory Databases Orestis Polychroniou Columbia University Arun Raghavan Oracle Labs Kenneth A. Ross Columbia University Latest
SAP HANA PLATFORM Top Ten Questions for Choosing In-Memory Databases. Start Here
PLATFORM Top Ten Questions for Choosing In-Memory Databases Start Here PLATFORM Top Ten Questions for Choosing In-Memory Databases. Are my applications accelerated without manual intervention and tuning?.
<Insert Picture Here> Best Practices for Extreme Performance with Data Warehousing on Oracle Database
1 Best Practices for Extreme Performance with Data Warehousing on Oracle Database Rekha Balwada Principal Product Manager Agenda Parallel Execution Workload Management on Data Warehouse
Price/performance Modern Memory Hierarchy
Lecture 21: Storage Administration Take QUIZ 15 over P&H 6.1-4, 6.8-9 before 11:59pm today Project: Cache Simulator, Due April 29, 2010 NEW OFFICE HOUR TIME: Tuesday 1-2, McKinley Last Time Exam discussion
External Sorting. Why Sort? 2-Way Sort: Requires 3 Buffers. Chapter 13
External Sorting Chapter 13 Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Why Sort? A classic problem in computer science! Data requested in sorted order e.g., find students in increasing
Cache Conscious Column Organization in In-Memory Column Stores
Cache Conscious Column Organization in In-Memory Column Stores David Schwalb, Jens Krüger, Hasso Plattner Technische Berichte Nr. 67 des Hasso-Plattner-Instituts für Softwaresystemtechnik an der Universität
Accelerating Enterprise Applications and Reducing TCO with SanDisk ZetaScale Software
WHITEPAPER Accelerating Enterprise Applications and Reducing TCO with SanDisk ZetaScale Software SanDisk ZetaScale software unlocks the full benefits of flash for In-Memory Compute and NoSQL applications
MS SQL Performance (Tuning) Best Practices:
MS SQL Performance (Tuning) Best Practices: 1. Don t share the SQL server hardware with other services If other workloads are running on the same server where SQL Server is running, memory and other hardware
Secondary Storage. Any modern computer system will incorporate (at least) two levels of storage: magnetic disk/optical devices/tape systems
1 Any modern computer system will incorporate (at least) two levels of storage: primary storage: typical capacity cost per MB $3. typical access time burst transfer rate?? secondary storage: typical capacity
www.quilogic.com SQL/XML-IMDBg GPU boosted In-Memory Database for ultra fast data management Harald Frick CEO QuiLogic In-Memory DB Technology
SQL/XML-IMDBg GPU boosted In-Memory Database for ultra fast data management Harald Frick CEO QuiLogic In-Memory DB Technology The parallel revolution Future computing systems are parallel, but Programmers
WITH A FUSION POWERED SQL SERVER 2014 IN-MEMORY OLTP DATABASE
WITH A FUSION POWERED SQL SERVER 2014 IN-MEMORY OLTP DATABASE 1 W W W. F U S I ON I O.COM Table of Contents Table of Contents... 2 Executive Summary... 3 Introduction: In-Memory Meets iomemory... 4 What
Integrating Apache Spark with an Enterprise Data Warehouse
Integrating Apache Spark with an Enterprise Warehouse Dr. Michael Wurst, IBM Corporation Architect Spark/R/Python base Integration, In-base Analytics Dr. Toni Bollinger, IBM Corporation Senior Software
2009 Oracle Corporation 1
The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material,
The SAP HANA Database An Architecture Overview
The SAP HANA Database An Architecture Overview Franz Färber and Norman May and Wolfgang Lehner and Philipp Große and Ingo Müller and Hannes Rauhe and Jonathan Dees Abstract Requirements of enterprise applications
FPGA-based Multithreading for In-Memory Hash Joins
FPGA-based Multithreading for In-Memory Hash Joins Robert J. Halstead, Ildar Absalyamov, Walid A. Najjar, Vassilis J. Tsotras University of California, Riverside Outline Background What are FPGAs Multithreaded
Preview of Oracle Database 12c In-Memory Option. Copyright 2013, Oracle and/or its affiliates. All rights reserved.
Preview of Oracle Database 12c In-Memory Option 1 The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any
COMPUTER HARDWARE. Input- Output and Communication Memory Systems
COMPUTER HARDWARE Input- Output and Communication Memory Systems Computer I/O I/O devices commonly found in Computer systems Keyboards Displays Printers Magnetic Drives Compact disk read only memory (CD-ROM)
Query Acceleration of Oracle Database 12c In-Memory using Software on Chip Technology with Fujitsu M10 SPARC Servers
Query Acceleration of Oracle Database 12c In-Memory using Software on Chip Technology with Fujitsu M10 SPARC Servers 1 Table of Contents Table of Contents2 1 Introduction 3 2 Oracle Database In-Memory
6. Storage and File Structures
ECS-165A WQ 11 110 6. Storage and File Structures Goals Understand the basic concepts underlying different storage media, buffer management, files structures, and organization of records in files. Contents
Condusiv s V-locity Server Boosts Performance of SQL Server 2012 by 55%
openbench Labs Executive Briefing: April 19, 2013 Condusiv s Server Boosts Performance of SQL Server 2012 by 55% Optimizing I/O for Increased Throughput and Reduced Latency on Physical Servers 01 Executive
Storing Data: Disks and Files
Storing Data: Disks and Files (From Chapter 9 of textbook) Storing and Retrieving Data Database Management Systems need to: Store large volumes of data Store data reliably (so that data is not lost!) Retrieve
Safe Harbor Statement
Safe Harbor Statement The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment
Solid State Drive Architecture
Solid State Drive Architecture A comparison and evaluation of data storage mediums Tyler Thierolf Justin Uriarte Outline Introduction Storage Device as Limiting Factor Terminology Internals Interface Architecture
Columnstore Indexes for Fast Data Warehouse Query Processing in SQL Server 11.0
SQL Server Technical Article Columnstore Indexes for Fast Data Warehouse Query Processing in SQL Server 11.0 Writer: Eric N. Hanson Technical Reviewer: Susan Price Published: November 2010 Applies to:
Parquet. Columnar storage for the people
Parquet Columnar storage for the people Julien Le Dem @J_ Processing tools lead, analytics infrastructure at Twitter Nong Li [email protected] Software engineer, Cloudera Impala Outline Context from various
This Unit: Putting It All Together. CIS 501 Computer Architecture. Sources. What is Computer Architecture?
This Unit: Putting It All Together CIS 501 Computer Architecture Unit 11: Putting It All Together: Anatomy of the XBox 360 Game Console Slides originally developed by Amir Roth with contributions by Milo
The Classical Architecture. Storage 1 / 36
1 / 36 The Problem Application Data? Filesystem Logical Drive Physical Drive 2 / 36 Requirements There are different classes of requirements: Data Independence application is shielded from physical storage
Deliverable 2.1.4. 150 Billion Triple dataset hosted on the LOD2 Knowledge Store Cluster. LOD2 Creating Knowledge out of Interlinked Data
Collaborative Project LOD2 Creating Knowledge out of Interlinked Data Project Number: 257943 Start Date of Project: 01/09/2010 Duration: 48 months Deliverable 2.1.4 150 Billion Triple dataset hosted on
Data Warehouse: Introduction
Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of base and data mining group,
The Big Picture. Cache Memory CSE 675.02. Memory Hierarchy (1/3) Disk
The Big Picture Cache Memory CSE 5.2 Computer Processor Memory (active) (passive) Control (where ( brain ) programs, Datapath data live ( brawn ) when running) Devices Input Output Keyboard, Mouse Disk,
White Paper. Optimizing the Performance Of MySQL Cluster
White Paper Optimizing the Performance Of MySQL Cluster Table of Contents Introduction and Background Information... 2 Optimal Applications for MySQL Cluster... 3 Identifying the Performance Issues.....
PostgreSQL Business Intelligence & Performance Simon Riggs CTO, 2ndQuadrant PostgreSQL Major Contributor
PostgreSQL Business Intelligence & Performance Simon Riggs CTO, 2ndQuadrant PostgreSQL Major Contributor The research leading to these results has received funding from the European Union's Seventh Framework
A Deduplication File System & Course Review
A Deduplication File System & Course Review Kai Li 12/13/12 Topics A Deduplication File System Review 12/13/12 2 Traditional Data Center Storage Hierarchy Clients Network Server SAN Storage Remote mirror
Agenda. Enterprise Application Performance Factors. Current form of Enterprise Applications. Factors to Application Performance.
Agenda Enterprise Performance Factors Overall Enterprise Performance Factors Best Practice for generic Enterprise Best Practice for 3-tiers Enterprise Hardware Load Balancer Basic Unix Tuning Performance
Performance Baseline of Hitachi Data Systems HUS VM All Flash Array for Oracle
Performance Baseline of Hitachi Data Systems HUS VM All Flash Array for Oracle Storage and Database Performance Benchware Performance Suite Release 8.5 (Build 131015) November 2013 Contents 1 System Configuration
RAID. RAID 0 No redundancy ( AID?) Just stripe data over multiple disks But it does improve performance. Chapter 6 Storage and Other I/O Topics 29
RAID Redundant Array of Inexpensive (Independent) Disks Use multiple smaller disks (c.f. one large disk) Parallelism improves performance Plus extra disk(s) for redundant data storage Provides fault tolerant
An Overview of SAP BW Powered by HANA. Al Weedman
An Overview of SAP BW Powered by HANA Al Weedman About BICP SAP HANA, BOBJ, and BW Implementations The BICP is a focused SAP Business Intelligence consulting services organization focused specifically
Chapter 6: Physical Database Design and Performance. Database Development Process. Physical Design Process. Physical Database Design
Chapter 6: Physical Database Design and Performance Modern Database Management 6 th Edition Jeffrey A. Hoffer, Mary B. Prescott, Fred R. McFadden Robert C. Nickerson ISYS 464 Spring 2003 Topic 23 Database
Petabyte Scale Data at Facebook. Dhruba Borthakur, Engineer at Facebook, SIGMOD, New York, June 2013
Petabyte Scale Data at Facebook Dhruba Borthakur, Engineer at Facebook, SIGMOD, New York, June 2013 Agenda 1 Types of Data 2 Data Model and API for Facebook Graph Data 3 SLTP (Semi-OLTP) and Analytics
Tiber Solutions. Understanding the Current & Future Landscape of BI and Data Storage. Jim Hadley
Tiber Solutions Understanding the Current & Future Landscape of BI and Data Storage Jim Hadley Tiber Solutions Founded in 2005 to provide Business Intelligence / Data Warehousing / Big Data thought leadership
Performance Tuning for the Teradata Database
Performance Tuning for the Teradata Database Matthew W Froemsdorf Teradata Partner Engineering and Technical Consulting - i - Document Changes Rev. Date Section Comment 1.0 2010-10-26 All Initial document
SQL Server 2014 New Features/In- Memory Store. Juergen Thomas Microsoft Corporation
SQL Server 2014 New Features/In- Memory Store Juergen Thomas Microsoft Corporation AGENDA 1. SQL Server 2014 what and when 2. SQL Server 2014 In-Memory 3. SQL Server 2014 in IaaS scenarios 2 SQL Server
Achieving Nanosecond Latency Between Applications with IPC Shared Memory Messaging
Achieving Nanosecond Latency Between Applications with IPC Shared Memory Messaging In some markets and scenarios where competitive advantage is all about speed, speed is measured in micro- and even nano-seconds.
Chapter 1 Computer System Overview
Operating Systems: Internals and Design Principles Chapter 1 Computer System Overview Eighth Edition By William Stallings Operating System Exploits the hardware resources of one or more processors Provides
Virtuoso and Database Scalability
Virtuoso and Database Scalability By Orri Erling Table of Contents Abstract Metrics Results Transaction Throughput Initializing 40 warehouses Serial Read Test Conditions Analysis Working Set Effect of
Scaling Your Data to the Cloud
ZBDB Scaling Your Data to the Cloud Technical Overview White Paper POWERED BY Overview ZBDB Zettabyte Database is a new, fully managed data warehouse on the cloud, from SQream Technologies. By building
System Architecture. In-Memory Database
System Architecture for Are SSDs Ready for Enterprise Storage Systems In-Memory Database Anil Vasudeva, President & Chief Analyst, Research 2007-13 Research All Rights Reserved Copying Prohibited Contact
Scalable Data Analysis in R. Lee E. Edlefsen Chief Scientist UserR! 2011
Scalable Data Analysis in R Lee E. Edlefsen Chief Scientist UserR! 2011 1 Introduction Our ability to collect and store data has rapidly been outpacing our ability to analyze it We need scalable data analysis
Parallel Data Warehouse
MICROSOFT S ANALYTICS SOLUTIONS WITH PARALLEL DATA WAREHOUSE Parallel Data Warehouse Stefan Cronjaeger Microsoft May 2013 AGENDA PDW overview Columnstore and Big Data Business Intellignece Project Ability
1. Memory technology & Hierarchy
1. Memory technology & Hierarchy RAM types Advances in Computer Architecture Andy D. Pimentel Memory wall Memory wall = divergence between CPU and RAM speed We can increase bandwidth by introducing concurrency
Oracle Database In-Memory The Next Big Thing
Oracle Database In-Memory The Next Big Thing Maria Colgan Master Product Manager #DBIM12c Why is Oracle do this Oracle Database In-Memory Goals Real Time Analytics Accelerate Mixed Workload OLTP No Changes
Performance Tuning and Optimizing SQL Databases 2016
Performance Tuning and Optimizing SQL Databases 2016 http://www.homnick.com [email protected] +1.561.988.0567 Boca Raton, Fl USA About this course This four-day instructor-led course provides students
Infrastructure Matters: POWER8 vs. Xeon x86
Advisory Infrastructure Matters: POWER8 vs. Xeon x86 Executive Summary This report compares IBM s new POWER8-based scale-out Power System to Intel E5 v2 x86- based scale-out systems. A follow-on report
Computer Architecture
Cache Memory Gábor Horváth 2016. április 27. Budapest associate professor BUTE Dept. Of Networked Systems and Services [email protected] It is the memory,... The memory is a serious bottleneck of Neumann
Protect Data... in the Cloud
QUASICOM Private Cloud Backups with ExaGrid Deduplication Disk Arrays Martin Lui Senior Solution Consultant Quasicom Systems Limited Protect Data...... in the Cloud 1 Mobile Computing Users work with their
Main Memory Data Warehouses
Main Memory Data Warehouses Robert Wrembel Poznan University of Technology Institute of Computing Science [email protected] www.cs.put.poznan.pl/rwrembel Lecture outline Teradata Data Warehouse
Chapter 13 File and Database Systems
Chapter 13 File and Database Systems Outline 13.1 Introduction 13.2 Data Hierarchy 13.3 Files 13.4 File Systems 13.4.1 Directories 13.4. Metadata 13.4. Mounting 13.5 File Organization 13.6 File Allocation
Chapter 13 File and Database Systems
Chapter 13 File and Database Systems Outline 13.1 Introduction 13.2 Data Hierarchy 13.3 Files 13.4 File Systems 13.4.1 Directories 13.4. Metadata 13.4. Mounting 13.5 File Organization 13.6 File Allocation
Maximizing VMware ESX Performance Through Defragmentation of Guest Systems. Presented by
Maximizing VMware ESX Performance Through Defragmentation of Guest Systems Presented by July, 2010 Table of Contents EXECUTIVE OVERVIEW 3 TEST EQUIPMENT AND METHODS 4 TESTING OVERVIEW 5 Fragmentation in
Rackspace Cloud Databases and Container-based Virtualization
Rackspace Cloud Databases and Container-based Virtualization August 2012 J.R. Arredondo @jrarredondo Page 1 of 6 INTRODUCTION When Rackspace set out to build the Cloud Databases product, we asked many
SWISSBOX REVISITING THE DATA PROCESSING SOFTWARE STACK
3/2/2011 SWISSBOX REVISITING THE DATA PROCESSING SOFTWARE STACK Systems Group Dept. of Computer Science ETH Zürich, Switzerland SwissBox Humboldt University Dec. 2010 Systems Group = www.systems.ethz.ch
05. Alternative Speichermodelle. Architektur von Datenbanksystemen I
05. Alternative Speichermodelle Architektur von Datenbanksystemen I Einführung LETZTE VORLESUNG ROW-BASED RECORD MANAGEMENT klassisches N-äres Speichermodell (NSM), auch row-store NSM = Normalized Storage
Bringing Big Data Modelling into the Hands of Domain Experts
Bringing Big Data Modelling into the Hands of Domain Experts David Willingham Senior Application Engineer MathWorks [email protected] 2015 The MathWorks, Inc. 1 Data is the sword of the
RAMCloud and the Low- Latency Datacenter. John Ousterhout Stanford University
RAMCloud and the Low- Latency Datacenter John Ousterhout Stanford University Most important driver for innovation in computer systems: Rise of the datacenter Phase 1: large scale Phase 2: low latency Introduction
Architecture Sensitive Database Design: Examples from the Columbia Group
Architecture Sensitive Database Design: Examples from the Columbia Group Kenneth A. Ross Columbia University John Cieslewicz Columbia University Jun Rao IBM Research Jingren Zhou Microsoft Research In
Using Synology SSD Technology to Enhance System Performance Synology Inc.
Using Synology SSD Technology to Enhance System Performance Synology Inc. Synology_SSD_Cache_WP_ 20140512 Table of Contents Chapter 1: Enterprise Challenges and SSD Cache as Solution Enterprise Challenges...
Performance Baseline of Oracle Exadata X2-2 HR HC. Part II: Server Performance. Benchware Performance Suite Release 8.4 (Build 130630) September 2013
Performance Baseline of Oracle Exadata X2-2 HR HC Part II: Server Performance Benchware Performance Suite Release 8.4 (Build 130630) September 2013 Contents 1 Introduction to Server Performance Tests 2
Big Fast Data Hadoop acceleration with Flash. June 2013
Big Fast Data Hadoop acceleration with Flash June 2013 Agenda The Big Data Problem What is Hadoop Hadoop and Flash The Nytro Solution Test Results The Big Data Problem Big Data Output Facebook Traditional
COS 318: Operating Systems. Virtual Memory and Address Translation
COS 318: Operating Systems Virtual Memory and Address Translation Today s Topics Midterm Results Virtual Memory Virtualization Protection Address Translation Base and bound Segmentation Paging Translation
