# Engineering Problem Solving as Model Building

Size: px
Start display at page:

Download "Engineering Problem Solving as Model Building"

Transcription

1 Engineering Problem Solving as Model Building Part 1. How professors think about problem solving. Part 2. Mech2 and Brain-Full Crisis Part 1 How experts think about problem solving

2 When we solve a problem using theory, we are (whether we realize it or not) constructing a model of the problem. Why model? A physical model boat is different from the real boat, but by pushing or pulling on the model, we can get information about the real boat (your foam boats taught you about stability and drag). A theoretical model is similar in that once it is constructed, we can use it to answer many questions. Construction of the model means selecting a consistent set of sub-models, assumptions and conservation principles.

3 Possible model structure for many thermodynamics problems Problem Statement (specify known, unknown desired quantities, and possibly some assumptions to fill gaps) Control mass or control volume drawing, boundaries usually chosen where things are known or desired Mass, Energy Conservation Entropy Balance State Change, E 2 -E 1 =, S 2 - S 1 = Process: Rev., Irrev., adiabatic, PV n =constant.. Other Physics Mechanics, heat transfer theory,. State diagram (P-V, T-S ) (optional but usually VERY helpful) Property Model Ideal gas, incompressible liquid, real gas, 2-phase Thermodynamic Relations H=U+PV, du=tds-pdv, Cp=.(puts variables in more convenient forms)

4 This is not a set of directions! Arrows show that boxes are connected and consistent, not steps in problem solving. Together, modules (the boxes) make a complete model. From the model we get mathematical relations between the variables. The solution order depends on what we seek. A simple example Steel Mass M A mass M of steel is heated from T 1 to T 2, there is heat transfer to the steel, and work W by the steel. Variants of the problem: 1. M, T 1, T 2 given, find, W 2., M, T 1 given, find T 2 3., T 1, T 2 given, find M 4. M, T 1, T 2 given find S 2 -S 1

5 Control mass there is no flow, and it is sensible to take the same system (the steel) for all problem variants W Steel Mass M Mass conservation is trivial (M=constant) Energy conservation is E 2 -E 1 =-W Entropy Balance is ds=δ/t +ds gen Assumptions Steel Mass M No information on elevation change or velocity, so neglect them. No information on the steel, so based on past problems, we might assume that it behaves like an incompressible and constant volume solid, with property information in textbook. Keep open to the possibility that later these assumptions are inconsistent with the other parts of the problem model, and therefore inappropriate.

6 Property Model Steel Mass M Simple compressible substance (only boundary work is possible, and it is zero in this case) v=constant even if T, P change so (C p =C v =C) u=u(t) s=s(t) Because these properties are independent of pressure, we may not need to worry about lack of information on P Process Information Steel Mass M Constant volume, so W=0 No information to suggest is zero, so it must be retained in 1 st Law May or may not be reversible, so unclear if we can relate to entropy

7 Other Physics Steel Mass M In some problems, we might need to relate applied forces to pressures in the system, solving equations of statics or dynamics. In some problems, heat transfer might be related to temperatures thought heat transfer theory. In this particular example, we need not worry about any such constraints because our system is a static, incompressible lump. Thermodynamic Relations Steel Mass M Text provides C (kj/kg/k), and the problem statement may involve temperature. The first law involves energy, so we need to relate, u, C, T: C=du/dT (for our case with the solid) du=tds-pdv or ds= du/t=cdt/t

8 The complete model Steel Mass M U 2 -U 1 =-W but W=0 and U related to T MC(T 2 -T 1 )= for problems #1, 2, 3, use trivial algebra. for problem #4, we also need to integrate ds=cdt/t State diagrams It has NOT been necessary to assume reversibility in this problem, so we DON T know for sure the path from 1 2. Steel Mass M The diagrams reinforce important parts of the model related to our property model and the path. T 2 T T T 1 v S

9 Problem A mass M of steel is heated from T1 to T2, there is heat transfer to the steel, and work W by the steel. M, T1, T2 given, find, W Control mass drawing Steel W Mass M Mass, Energy Conservation E 2 -E 1 =-W Entropy Balance ds δ/t State Change, E 2 -E 1 =U 2 -U 1 =MC(T 2 - T 1 ) S 2 -S 1 =MC ln (T 2 /T 1 ) Process: Constant V so W=0 Other Physics Seems KE, PE not relevant State diagram (P-V, T-S ) (optional but usually VERY helpful) Property Model V const; u(t), s(t) Thermodynamic Relations du=tds-pdv, du=cdt (const. V) Experts vs Novices Experts tend to have a good framework or structure for their models, and are practiced in the art of assembling the model building blocks. Novices tend to focus on the final model, because it provides a fast way to compute answers.

10 Part 2. Why Mech 2 Brings you to the Point of Crisis Should you construct or memorize models? Construction Requires skills in math and very firm foundations Only memorize the building blocks Essential for new problems Not the fastest way to solve old problems Memorization Does not depend on foundations. Many, many models to memorize. Useless for new problems. Fastest way to solve old problems

11 Thermo Lectures 1-3 PVT Properties 3 Model Building Blocks 3 Complete Models Ideal gas Ideal gas Incompressible liquids and solids Incompressible liquids and solids Steam Tables Steam Tables Thermo Lectures 1-9 PVT, Energy and First Law 3 Major Model Components, Perhaps 9 Sub-models 3x2x4=24 Complete Models Ideal gas liquids and solids Steam Tables For example, just using First Law in Integrated form, 12 models: Const V Const V Const V E 2 -E 1 =-W Const V Const V Const V or rate form Cylinder Cylinder Cylinder Const V Cylinder Cylinder Cylinder Cylinder Insulated vs isothermal

12 Add springs 1 more variation in model building blocks Each piston problem could now be with or without springs (insulated or not) Now 3x2x6=36 complete models Add possibility of piston kinetic energy 1 more variation in model building blocks Piston problems now insulated (or not), with spring (or not), with KE (or not) = 8 piston variants Total complete models =3x2x(2+8)=60

13 Add all the rest Control volume analysis 2 nd Law Machinery with many parts.. Steady vs transient problems Textbook has over 1000 problems! Fluids + Thermo + Math? In the first few years of mech 2, we set exam problems combining all 3 subjects. How many complete models to memorize? How do think students liked this?

14 Things to remember Over the weeks # complete models Your brain capacity # model building blocks time Things to remember Over the weeks Best test scores by memorizing examples # complete models Need to construct models Your brain capacity # model building blocks time

15 Things to remember Over the weeks Brain Full Crisis # complete models Your brain capacity Mech 2 First Year UBC # model building blocks High-school time Have you reached Brain-Full Crisis (BFC)?

16 We ve given you mixed messages Stressed importance of derivations, understanding Assigned model building MATLAB and physical labs Given quiz problems not exactly like past examples Given time-limited computational tests Assigned relatively few marks to complex, longer model building assignments The time to start practicing model construction is today. In studying for the finals Review and list the basic building blocks. Focus on how building blocks have been glued together in past problems. DO NOT spend time on new examples, except to test your model building. Remember that this is a long-term investment.

17 Discussion What sort of exercises would promote ability to construct models rather than just use them? What sort of testing would discourage memorization of problem solutions (this could influence how the final exams are set). Do you already have experience with constructing models from scratch, but in another part of your life? From the discussion after the lecture Should consider unlimited-time exams to remove the incentive to memorize whole problems (this will take some work, but should be possible for some, if not all, exams). Exam marking schemes should clearly indicate (where appropriate) that most of the marks come from problem setup (ok we will check final exams for this) Vista problem sets might be set up to emphasize construction of models from building blocks (not sure how to do this, but it is worth considering)

18 Extra slides not covered in class (but probably worth a quick read) Another example: A diesel pump with friction might be thought of as an ideal, frictionless pump in series with a flow resistance (a throttling process). At the inlet to the pump (1), the mass flow is 0.2 kg/s, the temperature T 1 =25 C, and the pressure is P 1 =120 kpa. At the outlet (3), P 3 =50,000 kpa and T 3 =25.6 C All parts of the pump, piping and flow resistance are well insulated. The fluid is diesel with density ρ=820 kg/m 3 and heat capacity 2.0 kj/kg/k. Find the shaft work from the pump. Indicate your choice of control volumes carefully and explain any further assumptions needed. TRY THIS: TAKE THIS PROBLEM AND COMPLETE THE MODEL TEMPLATE ON THE NEXT PAGE. Ideal pump Flow resistance Shaft work

19 Problem Control volume Ideal pump 1 Shaft work Flow resistance 2 3 Mass, Energy Conservation Other Physics Entropy Balance State Change Process: State diagram Property Model Thermodynamic Relations Alternative connections between ideas Course concept road map showing the order topics covered (based how theory is developed) Components of the problem solving process given in text (and earlier notes) Thinking of problem solving as construction of a model rather than applying a problem template.

20 Mech222 Notes Text/Notes Cengel &Boles Equilibrium state, PVT exist Conservation of Energy de=δ-δw Property Models (Ch. 3) Ideal gas, tables Given a few properties, calculate others (Ch. 3) 1 st Law control mass problems Ch. 4 RTT CV analysis Zeroth Law Existence of E de=δ-δw ds univ max at equilibrium U T S V equality of temperature 1 st Law CV problems Ch.5 T res. E W δ ds T Simple heat engine/pump Problems Ch. 6 η=1-t L /T H T res. E W η=1-t L /T H 1 st +2 nd Law problems Ch. 7 δ 0 T δ ds T The road map Explains how ideas depend on previous material. Compares approaches of text vs. notes Is unrelated to how we normally solve problems.

21 Problem Solving Method (CB 1-12) 1. Physical layout of the problem? Make a sketch!. 2. What control mass do you choose? Show on sketch! 3. Initial state? 4. Final state? 5. Process: is any property fixed or otherwise specified? 6. What thermodynamic properties are convenient? Use these for a state diagram 7. What model do you use for the material of interest? 8. What laws are needed (mass, 1 st Law, 2 nd Law )? 9. Solution method needed? Do you need to iterate.? Textbook problem solving steps comforting step-by-step process Identifies some of the key concept blocks : process, states, property models. We don t always solve problems in exactly the order stated, even if we do hit all of the concept blocks.

### FUNDAMENTALS OF ENGINEERING THERMODYNAMICS

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS System: Quantity of matter (constant mass) or region in space (constant volume) chosen for study. Closed system: Can exchange energy but not mass; mass is constant

More information

### Dynamic Process Modeling. Process Dynamics and Control

Dynamic Process Modeling Process Dynamics and Control 1 Description of process dynamics Classes of models What do we need for control? Modeling for control Mechanical Systems Modeling Electrical circuits

More information

### Sheet 5:Chapter 5 5 1C Name four physical quantities that are conserved and two quantities that are not conserved during a process.

Thermo 1 (MEP 261) Thermodynamics An Engineering Approach Yunus A. Cengel & Michael A. Boles 7 th Edition, McGraw-Hill Companies, ISBN-978-0-07-352932-5, 2008 Sheet 5:Chapter 5 5 1C Name four physical

More information

### APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES

APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES INTRODUCTION This tutorial is designed for students wishing to extend their knowledge of thermodynamics to a more

More information

### CO 2 41.2 MPa (abs) 20 C

comp_02 A CO 2 cartridge is used to propel a small rocket cart. Compressed CO 2, stored at a pressure of 41.2 MPa (abs) and a temperature of 20 C, is expanded through a smoothly contoured converging nozzle

More information

### Diesel Cycle Analysis

Engineering Software P.O. Box 1180, Germantown, MD 20875 Phone: (301) 540-3605 FAX: (301) 540-3605 E-Mail: info@engineering-4e.com Web Site: http://www.engineering-4e.com Diesel Cycle Analysis Diesel Cycle

More information

### Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Thermodynamics study and application of thermal energy temperature quantity

More information

### ME 201 Thermodynamics

ME 0 Thermodynamics Second Law Practice Problems. Ideally, which fluid can do more work: air at 600 psia and 600 F or steam at 600 psia and 600 F The maximum work a substance can do is given by its availablity.

More information

### Chapter 10 Temperature and Heat

Chapter 10 Temperature and Heat What are temperature and heat? Are they the same? What causes heat? What Is Temperature? How do we measure temperature? What are we actually measuring? Temperature and Its

More information

### Chapter 7 Energy and Energy Balances

CBE14, Levicky Chapter 7 Energy and Energy Balances The concept of energy conservation as expressed by an energy balance equation is central to chemical engineering calculations. Similar to mass balances

More information

### The Second Law of Thermodynamics

The Second aw of Thermodynamics The second law of thermodynamics asserts that processes occur in a certain direction and that the energy has quality as well as quantity. The first law places no restriction

More information

### Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

More information

### ES-7A Thermodynamics HW 1: 2-30, 32, 52, 75, 121, 125; 3-18, 24, 29, 88 Spring 2003 Page 1 of 6

Spring 2003 Page 1 of 6 2-30 Steam Tables Given: Property table for H 2 O Find: Complete the table. T ( C) P (kpa) h (kj/kg) x phase description a) 120.23 200 2046.03 0.7 saturated mixture b) 140 361.3

More information

### Problem Set 1 3.20 MIT Professor Gerbrand Ceder Fall 2003

LEVEL 1 PROBLEMS Problem Set 1 3.0 MIT Professor Gerbrand Ceder Fall 003 Problem 1.1 The internal energy per kg for a certain gas is given by U = 0. 17 T + C where U is in kj/kg, T is in Kelvin, and C

More information

### Fundamentals of THERMAL-FLUID SCIENCES

Fundamentals of THERMAL-FLUID SCIENCES THIRD EDITION YUNUS A. CENGEL ROBERT H. TURNER Department of Mechanical JOHN M. CIMBALA Me Graw Hill Higher Education Boston Burr Ridge, IL Dubuque, IA Madison, Wl

More information

### The First Law of Thermodynamics

Thermodynamics The First Law of Thermodynamics Thermodynamic Processes (isobaric, isochoric, isothermal, adiabatic) Reversible and Irreversible Processes Heat Engines Refrigerators and Heat Pumps The Carnot

More information

### Supplementary Notes on Entropy and the Second Law of Thermodynamics

ME 4- hermodynamics I Supplementary Notes on Entropy and the Second aw of hermodynamics Reversible Process A reversible process is one which, having taken place, can be reversed without leaving a change

More information

### Exergy: the quality of energy N. Woudstra

Exergy: the quality of energy N. Woudstra Introduction Characteristic for our society is a massive consumption of goods and energy. Continuation of this way of life in the long term is only possible if

More information

### High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur

High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 06 One-dimensional Gas Dynamics (Contd.) We

More information

### WEEKLY SCHEDULE. GROUPS (mark X) SPECIAL ROOM FOR SESSION (Computer class room, audio-visual class room)

SESSION WEEK COURSE: THERMAL ENGINEERING DEGREE: Aerospace Engineering YEAR: 2nd TERM: 2nd The course has 29 sessions distributed in 14 weeks. The laboratory sessions are included in these sessions. The

More information

### Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS

Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS Lecture slides by Hasan Hacışevki Copyright

More information

### Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004

Statistical Mechanics, Kinetic Theory Ideal Gas 8.01t Nov 22, 2004 Statistical Mechanics and Thermodynamics Thermodynamics Old & Fundamental Understanding of Heat (I.e. Steam) Engines Part of Physics Einstein

More information

### Lesson. 11 Vapour Compression Refrigeration Systems: Performance Aspects And Cycle Modifications. Version 1 ME, IIT Kharagpur 1

Lesson Vapour Compression Refrigeration Systems: Performance Aspects And Cycle Modifications Version ME, IIT Kharagpur The objectives of this lecture are to discuss. Performance aspects of SSS cycle and

More information

### Steady Heat Conduction

Steady Heat Conduction In thermodynamics, we considered the amount of heat transfer as a system undergoes a process from one equilibrium state to another. hermodynamics gives no indication of how long

More information

### Textbook: Introduction to Fluid Mechanics by Philip J. Pritchard. John Wiley & Sons, 8th Edition, ISBN-13 9780470547557, -10 0470547553

Semester: Spring 2016 Course: MEC 393, Advanced Fluid Mechanics Instructor: Professor Juldeh Sesay, 226 Heavy Engineering Bldg., (631)632-8493 Email: Juldeh.sessay@stonybrook.edu Office hours: Mondays

More information

### The Second Law of Thermodynamics

Objectives MAE 320 - Chapter 6 The Second Law of Thermodynamics The content and the pictures are from the text book: Çengel, Y. A. and Boles, M. A., Thermodynamics: An Engineering Approach, McGraw-Hill,

More information

### QUESTIONS THERMODYNAMICS PRACTICE PROBLEMS FOR NON-TECHNICAL MAJORS. Thermodynamic Properties

QUESTIONS THERMODYNAMICS PRACTICE PROBLEMS FOR NON-TECHNICAL MAJORS Thermodynamic Properties 1. If an object has a weight of 10 lbf on the moon, what would the same object weigh on Jupiter? ft ft -ft g

More information

### INTRODUCTION TO FLUID MECHANICS

INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION

More information

### Differential Balance Equations (DBE)

Differential Balance Equations (DBE) Differential Balance Equations Differential balances, although more complex to solve, can yield a tremendous wealth of information about ChE processes. General balance

More information

### a) Use the following equation from the lecture notes: = ( 8.314 J K 1 mol 1) ( ) 10 L

hermodynamics: Examples for chapter 4. 1. One mole of nitrogen gas is allowed to expand from 0.5 to 10 L reversible and isothermal process at 300 K. Calculate the change in molar entropy using a the ideal

More information

### Technical Thermodynamics

Technical Thermodynamics Chapter 2: Basic ideas and some definitions Prof. Dr.-Ing. habil. Egon Hassel University of Rostock, Germany Faculty of Mechanical Engineering and Ship Building Institute of Technical

More information

### Learning Module 4 - Thermal Fluid Analysis Note: LM4 is still in progress. This version contains only 3 tutorials.

Learning Module 4 - Thermal Fluid Analysis Note: LM4 is still in progress. This version contains only 3 tutorials. Attachment C1. SolidWorks-Specific FEM Tutorial 1... 2 Attachment C2. SolidWorks-Specific

More information

### An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation

An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation R K Kapooria Department of Mechanical Engineering, BRCM College of Engineering & Technology, Bahal (Haryana)

More information

### ENERGY TRANSFER SYSTEMS AND THEIR DYNAMIC ANALYSIS

ENERGY TRANSFER SYSTEMS AND THEIR DYNAMIC ANALYSIS Many mechanical energy systems are devoted to transfer of energy between two points: the source or prime mover (input) and the load (output). For chemical

More information

### Chapter 6 The first law and reversibility

Chapter 6 The first law and reversibility 6.1 The first law for processes in closed systems We have discussed the properties of equilibrium states and the relationship between the thermodynamic parameters

More information

### OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE. TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS

UNIT 61: ENGINEERING THERMODYNAMICS Unit code: D/601/1410 QCF level: 5 Credit value: 15 OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS 2 Be able to evaluate

More information

### AC 2011-2088: ON THE WORK BY ELECTRICITY IN THE FIRST AND SECOND LAWS OF THERMODYNAMICS

AC 2011-2088: ON THE WORK BY ELECTRICITY IN THE FIRST AND SECOND LAWS OF THERMODYNAMICS Hyun W. Kim, Youngstown State University Hyun W. Kim, Ph.D., P.E. Hyun W. Kim is a professor of mechanical engineering

More information

### Stirling heat engine Internal combustion engine (Otto cycle) Diesel engine Steam engine (Rankine cycle) Kitchen Refrigerator

Lecture. Real eat Engines and refrigerators (Ch. ) Stirling heat engine Internal combustion engine (Otto cycle) Diesel engine Steam engine (Rankine cycle) Kitchen Refrigerator Carnot Cycle - is not very

More information

### Answer, Key Homework 6 David McIntyre 1

Answer, Key Homework 6 David McIntyre 1 This print-out should have 0 questions, check that it is complete. Multiple-choice questions may continue on the next column or page: find all choices before making

More information

### Compressible Fluids. Faith A. Morrison Associate Professor of Chemical Engineering Michigan Technological University November 4, 2004

94 c 2004 Faith A. Morrison, all rights reserved. Compressible Fluids Faith A. Morrison Associate Professor of Chemical Engineering Michigan Technological University November 4, 2004 Chemical engineering

More information

### APPLIED THERMODYNAMICS. TUTORIAL No.3 GAS TURBINE POWER CYCLES. Revise gas expansions in turbines. Study the Joule cycle with friction.

APPLIED HERMODYNAMICS UORIAL No. GAS URBINE POWER CYCLES In this tutorial you will do the following. Revise gas expansions in turbines. Revise the Joule cycle. Study the Joule cycle with friction. Extend

More information

### The final numerical answer given is correct but the math shown does not give that answer.

Note added to Homework set 7: The solution to Problem 16 has an error in it. The specific heat of water is listed as c 1 J/g K but should be c 4.186 J/g K The final numerical answer given is correct but

More information

### UNIT 2 REFRIGERATION CYCLE

UNIT 2 REFRIGERATION CYCLE Refrigeration Cycle Structure 2. Introduction Objectives 2.2 Vapour Compression Cycle 2.2. Simple Vapour Compression Refrigeration Cycle 2.2.2 Theoretical Vapour Compression

More information

### where V is the velocity of the system relative to the environment.

Exergy Exergy is the theoretical limit for the wor potential that can be obtaed from a source or a system at a given state when teractg with a reference (environment) at a constant condition. A system

More information

### A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension forces. 2 Objectives Have a working knowledge of the basic

More information

### REFRIGERATION (& HEAT PUMPS)

REFRIGERATION (& HEAT PUMPS) Refrigeration is the 'artificial' extraction of heat from a substance in order to lower its temperature to below that of its surroundings Primarily, heat is extracted from

More information

### LECTURE 28 to 29 ACCUMULATORS FREQUENTLY ASKED QUESTIONS

LECTURE 28 to 29 ACCUMULATORS FREQUENTLY ASKED QUESTIONS 1. Define an accumulator and explain its function A hydraulic accumulator is a device that stores the potential energy of an incompressible fluid

More information

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

### Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 20 Conservation Equations in Fluid Flow Part VIII Good morning. I welcome you all

More information

### Mohan Chandrasekharan #1

International Journal of Students Research in Technology & Management Exergy Analysis of Vapor Compression Refrigeration System Using R12 and R134a as Refrigerants Mohan Chandrasekharan #1 # Department

More information

### How To Calculate The Performance Of A Refrigerator And Heat Pump

THERMODYNAMICS TUTORIAL 5 HEAT PUMPS AND REFRIGERATION On completion of this tutorial you should be able to do the following. Discuss the merits of different refrigerants. Use thermodynamic tables for

More information

### FLUID MECHANICS IM0235 DIFFERENTIAL EQUATIONS - CB0235 2014_1

COURSE CODE INTENSITY PRE-REQUISITE CO-REQUISITE CREDITS ACTUALIZATION DATE FLUID MECHANICS IM0235 3 LECTURE HOURS PER WEEK 48 HOURS CLASSROOM ON 16 WEEKS, 32 HOURS LABORATORY, 112 HOURS OF INDEPENDENT

More information

### MATLAB AS A PROTOTYPING TOOL FOR HYDRONIC NETWORKS BALANCING

MATLAB AS A PROTOTYPING TOOL FOR HYDRONIC NETWORKS BALANCING J. Pekař, P. Trnka, V. Havlena* Abstract The objective of this note is to describe the prototyping stage of development of a system that is

More information

### This chapter deals with three equations commonly used in fluid mechanics:

MASS, BERNOULLI, AND ENERGY EQUATIONS CHAPTER 5 This chapter deals with three equations commonly used in fluid mechanics: the mass, Bernoulli, and energy equations. The mass equation is an expression of

More information

### Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine

HEFAT2012 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 2012 Malta Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine Dr MK

More information

### TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW

TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW Rajesh Khatri 1, 1 M.Tech Scholar, Department of Mechanical Engineering, S.A.T.I., vidisha

More information

### NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

More information

### Description of zero-buoyancy entraining plume model

Influence of entrainment on the thermal stratification in simulations of radiative-convective equilibrium Supplementary information Martin S. Singh & Paul A. O Gorman S1 CRM simulations Here we give more

More information

### Chapter 8 Maxwell relations and measurable properties

Chapter 8 Maxwell relations and measurable properties 8.1 Maxwell relations Other thermodynamic potentials emerging from Legendre transforms allow us to switch independent variables and give rise to alternate

More information

### BACHELOR OF SCIENCE DEGREE

BACHELOR OF SCIENCE DEGREE GENERAL EDUCATION CURRICULUM and Additional Degree Requirements Engineering Science Brett Coulter, Ph.D. - Director The Engineering Science degree is a wonderful way for liberal

More information

### Fluids and Solids: Fundamentals

Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.

More information

### Pre-requisites 2012-2013

Pre-requisites 2012-2013 Engineering Computation The student should be familiar with basic tools in Mathematics and Physics as learned at the High School level and in the first year of Engineering Schools.

More information

### Availability. Second Law Analysis of Systems. Reading Problems 10.1 10.4 10.59, 10.65, 10.66, 10.67 10.69, 10.75, 10.81, 10.

Availability Readg Problems 10.1 10.4 10.59, 10.65, 10.66, 10.67 10.69, 10.75, 10.81, 10.88 Second Law Analysis of Systems AVAILABILITY: the theoretical maximum amount of reversible work that can be obtaed

More information

### جامعة البلقاء التطبيقية

AlBalqa Applied University تا سست عام 997 The curriculum of associate degree in Air Conditioning, Refrigeration and Heating Systems consists of (7 credit hours) as follows: Serial No. Requirements First

More information

### explain your reasoning

I. A mechanical device shakes a ball-spring system vertically at its natural frequency. The ball is attached to a string, sending a harmonic wave in the positive x-direction. +x a) The ball, of mass M,

More information

### 9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9

More information

### HEAT TRANSFER IM0245 3 LECTURE HOURS PER WEEK THERMODYNAMICS - IM0237 2014_1

COURSE CODE INTENSITY PRE-REQUISITE CO-REQUISITE CREDITS ACTUALIZATION DATE HEAT TRANSFER IM05 LECTURE HOURS PER WEEK 8 HOURS CLASSROOM ON 6 WEEKS, HOURS LABORATORY, HOURS OF INDEPENDENT WORK THERMODYNAMICS

More information

### 1. A belt pulley is 3 ft. in diameter and rotates at 250 rpm. The belt which is 5 ins. wide makes an angle of contact of 190 over the pulley.

Sample Questions REVISED FIRST CLASS PARTS A1, A2, AND A3 (NOTE: these questions are intended as representations of the style of questions that may appear on examinations. They are not intended as study

More information

### CE 204 FLUID MECHANICS

CE 204 FLUID MECHANICS Onur AKAY Assistant Professor Okan University Department of Civil Engineering Akfırat Campus 34959 Tuzla-Istanbul/TURKEY Phone: +90-216-677-1630 ext.1974 Fax: +90-216-677-1486 E-mail:

More information

### Topic 3b: Kinetic Theory

Topic 3b: Kinetic Theory What is temperature? We have developed some statistical language to simplify describing measurements on physical systems. When we measure the temperature of a system, what underlying

More information

### Problem Set 3 Solutions

Chemistry 360 Dr Jean M Standard Problem Set 3 Solutions 1 (a) One mole of an ideal gas at 98 K is expanded reversibly and isothermally from 10 L to 10 L Determine the amount of work in Joules We start

More information

### Water hammering in fire fighting installation

Water hammering in fire fighting installation Forward One of major problems raised in the fire fighting network installed at Pioneer company for pharmaceutical industry /Sulaymania was the high water hammering

More information

### THE KINETIC THEORY OF GASES

Chapter 19: THE KINETIC THEORY OF GASES 1. Evidence that a gas consists mostly of empty space is the fact that: A. the density of a gas becomes much greater when it is liquefied B. gases exert pressure

More information

### INTERNAL COMBUSTION (IC) ENGINES

INTERNAL COMBUSTION (IC) ENGINES An IC engine is one in which the heat transfer to the working fluid occurs within the engine itself, usually by the combustion of fuel with the oxygen of air. In external

More information

### PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION REFRIGERATION SYSTEM WITH R404A, R407C AND R410A

Int. J. Mech. Eng. & Rob. Res. 213 Jyoti Soni and R C Gupta, 213 Research Paper ISSN 2278 149 www.ijmerr.com Vol. 2, No. 1, January 213 213 IJMERR. All Rights Reserved PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION

More information

### Slide 10.1. Basic system Models

Slide 10.1 Basic system Models Objectives: Devise Models from basic building blocks of mechanical, electrical, fluid and thermal systems Recognize analogies between mechanical, electrical, fluid and thermal

More information

### Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics

Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.

More information

### 1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic

More information

### FREESTUDY HEAT TRANSFER TUTORIAL 3 ADVANCED STUDIES

FREESTUDY HEAT TRANSFER TUTORIAL ADVANCED STUDIES This is the third tutorial in the series on heat transfer and covers some of the advanced theory of convection. The tutorials are designed to bring the

More information

### Define the notations you are using properly. Present your arguments in details. Good luck!

Umeå Universitet, Fysik Vitaly Bychkov Prov i fysik, Thermodynamics, 0-0-4, kl 9.00-5.00 jälpmedel: Students may use any book(s) including the textbook Thermal physics. Minor notes in the books are also

More information

### Condensers & Evaporator Chapter 5

Condensers & Evaporator Chapter 5 This raises the condenser temperature and the corresponding pressure thereby reducing the COP. Page 134 of 263 Condensers & Evaporator Chapter 5 OBJECTIVE QUESTIONS (GATE,

More information

### Dimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena.

Dimensional Analysis and Similarity Dimensional analysis is very useful for planning, presentation, and interpretation of experimental data. As discussed previously, most practical fluid mechanics problems

More information

### Distance Learning Program

Distance Learning Program Leading To Master of Engineering or Master of Science In Mechanical Engineering Typical Course Presentation Format Program Description Clarkson University currently offers a Distance

More information

### Physics 5D - Nov 18, 2013

Physics 5D - Nov 18, 2013 30 Midterm Scores B } Number of Scores 25 20 15 10 5 F D C } A- A A + 0 0-59.9 60-64.9 65-69.9 70-74.9 75-79.9 80-84.9 Percent Range (%) The two problems with the fewest correct

More information

### DET: Mechanical Engineering Thermofluids (Higher)

DET: Mechanical Engineering Thermofluids (Higher) 6485 Spring 000 HIGHER STILL DET: Mechanical Engineering Thermofluids Higher Support Materials *+,-./ CONTENTS Section : Thermofluids (Higher) Student

More information

### du u U 0 U dy y b 0 b

BASIC CONCEPTS/DEFINITIONS OF FLUID MECHANICS (by Marios M. Fyrillas) 1. Density (πυκνότητα) Symbol: 3 Units of measure: kg / m Equation: m ( m mass, V volume) V. Pressure (πίεση) Alternative definition:

More information

### Modeling Mechanical Systems

chp3 1 Modeling Mechanical Systems Dr. Nhut Ho ME584 chp3 2 Agenda Idealized Modeling Elements Modeling Method and Examples Lagrange s Equation Case study: Feasibility Study of a Mobile Robot Design Matlab

More information

### Mathematical Modeling and Engineering Problem Solving

Mathematical Modeling and Engineering Problem Solving Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University Reference: 1. Applied Numerical Methods with

More information

### Current Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light

Current Staff Course Unit/ Length August August September September October Unit Objectives/ Big Ideas Basic Outline/ Structure PS4- Types of Waves Because light can travel through space, it cannot be

More information

### CFD Analysis of a Centrifugal Pump with Supercritical Carbon Dioxide as a Working Fluid

KNS 2013 Spring CFD Analysis of a Centrifugal Pump with Supercritical Carbon Dioxide as a Working Fluid Seong Gu Kim Jeong Ik Lee Yoonhan Ahn Jekyoung Lee Jae Eun Cha Yacine Addad Dept. Nuclear & Quantum

More information

### MECHANICAL ENGINEERING EXPERIMENTATION AND LABORATORY II EXPERIMENT 490.07 ENGINE PERFORMANCE TEST

MECHANICAL ENGINEERING EXPERIMENTATION AND LABORATORY II EXPERIMENT 490.07 ENGINE PERFORMANCE TEST 1. Objectives To determine the variation of the brake torque, brake mean effective pressure, brake power,

More information

### VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

More information

### Newton s Law of Motion

chapter 5 Newton s Law of Motion Static system 1. Hanging two identical masses Context in the textbook: Section 5.3, combination of forces, Example 4. Vertical motion without friction 2. Elevator: Decelerating

More information

### Chapter 13 - Solutions

= Chapter 13 - Solutions Description: Find the weight of a cylindrical iron rod given its area and length and the density of iron. Part A On a part-time job you are asked to bring a cylindrical iron rod

More information

### - momentum conservation equation ρ = ρf. These are equivalent to four scalar equations with four unknowns: - pressure p - velocity components

J. Szantyr Lecture No. 14 The closed system of equations of the fluid mechanics The above presented equations form the closed system of the fluid mechanics equations, which may be employed for description

More information

### Quantity/potential-related elementary concepts in primary school teacher education

Quantity/potential-related elementary concepts in primary school teacher education Federico Corni, Enrico Giliberti, Cristina Mariani Faculty of Education, University of Modena and Reggio Emilia, Italy

More information

### The Use of Control Valve Sizing Equations with Simulation Based Process Data

The Use of Control Valve Sizing Equations with Simulation Based Process Data Marc L. Riveland Director, Advanced Technologies Fisher Valves, Emerson Process Management Keywords: Control Valve, Thermodynamics,

More information

### Unit 1 INTRODUCTION 1.1.Introduction 1.2.Objectives

Structure 1.1.Introduction 1.2.Objectives 1.3.Properties of Fluids 1.4.Viscosity 1.5.Types of Fluids. 1.6.Thermodynamic Properties 1.7.Compressibility 1.8.Surface Tension and Capillarity 1.9.Capillarity

More information

### 1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

More information