# Chapter 8 Maxwell relations and measurable properties

Size: px
Start display at page:

Download "Chapter 8 Maxwell relations and measurable properties"

Transcription

1 Chapter 8 Maxwell relations and measurable properties 8.1 Maxwell relations Other thermodynamic potentials emerging from Legendre transforms allow us to switch independent variables and give rise to alternate versions of the second law at different constant conditions: entropy fundamental equation energy fundamental equation enthalpy Helmholtz free energy Gibbs free energy maximum at equilibrium minimum at equilibrium minimum at equilibrium minimum at equilibrium minimum at equilibrium Here, we discuss some of the mathematical properties of these functions, and their consequences for relationships between thermodynamic variables. These considerations will allow us to connect quantities that are difficult to measure directly like the entropy and the chemical potential to variables that we can easily access using experiments. To start, note that all of the potentials above have multiple independent variables. A general feature of well-behaved multivariate functions is that the mixed partial derivatives don t depend on the order in which they are taken, (8.1) Or, writing out the derivatives explicitly, [ ] [ ] (8.2) This fact has important consequences for potentials since their derivatives involve other thermodynamic quantities. As an example, consider the energy equation, Examine the second derivative with respect to and at constant conditions: (8.3) [ ] [ ] (8.4) 1

2 Substituting for the inner derivatives using the fundamental equation in (8.3), [ ] [ ] (8.5) Therefore, a relationship between the derivatives of and emerges simply from the fact that these two quantities are related by a common second derivative of a thermodynamic potential. Such equalities based on potential second derivatives are called Maxwell relations, after James Maxwell, one of the early founders of modern thermodynamics and electromagnetism. There are in fact many Maxwell relations, depending on which potential is used and which pair of independent variables is examined. Here is another example, based on the Gibbs free energy: [ ] [ ] (8.6) Substituting for the inner derivatives, (8.7) which shows a relationship between the pressure-dependence of the chemical potential and the -dependence of the system volume. In fact, the right-hand derivative is equal to. These examples illustrate a basic recipe: pick a potential and a second derivative involving two of its independent variables, and then substitute first derivative definitions to produce a Maxwell relation. Maxwell relations connect two derivatives of thermodynamic variables, and emerge due to the equivalence of potential second derivatives under a change of operation order:, where is a thermodynamic potential and and are two of its natural independent variables. Maxwell relations are quite important, for two reasons. First, they show us that derivatives of thermodynamic parameters are not completely independent. This can serve as a consistency check in both experiments and in pen-and-paper analysis. Second, they provide a method to express derivatives involving difficult-to-measure quantities in terms of ones that are readily accessible experimentally, as we will now see. 8.2 Measurable quantities How does one measure the entropy or chemical potential from experiments? These kinds of quantities are not usually directly accessible in the lab. What we can measure, typically, are mechanical quantities like pressure, bulk quantities like volume and density, and 2

3 thermal properties like temperature and heat flow (e.g., by slow heat exchange experiments where we can measure temperature changes in a coupled reference body). Of the thermodynamic variables that we have discussed thus far, the following are considered measureable: Measurable thermodynamic variables or temperature pressure volume number of particles or mass (related by the molecular weight) enthalpy (latent heat) of phase change There are also several readily-measured material properties that depend on derivatives of thermodynamic variables. Because these quantities measure the change in a system parameter in response to an infinitesimal perturbation, they are termed response functions: Measurable thermodynamic response functions constant volume heat capacity constant pressure heat capacity isothermal compressibility thermal expansivity / expansion coef. These response functions are defined such that they are positive in the case of normal systems, such as ideal gases and simple liquids. There are occasional exceptions in some of them; for example, the thermal expansivity of liquid water below 4 C is negative. There are additional measurable response functions that we have not listed; some of them can be expressed as combinations of the above, and some of them emerge in systems with other thermodynamic variables, such as those involving electromagnetic or interfacial work. Note that the heat capacities as presented above are extensive, while more conventionally we might see intensive versions, such as and. Maxwell relations enable us to express experimentally-inaccessible quantities in terms of the measurable ones just listed. Consider the following example derivative, (8.8) 3

4 This is reminiscent of the definition for, so that we can substitute: (8.9) Hence the entropy s dependence on pressure at constant temperature is related to the thermal expansivity. Many times, however, getting to measurable quantities isn t so easy. Consider the following Maxwell relation, (8.10) Here, we moved to something that appears even less measurable than before. Fortunately, there are other ways to relate thermodynamic variables using the principles of multivariate calculus. We can use the so-called triple product rule, which shows that, Rearranging, (8.11) (8.12) which finally gives an expression involving only measurable quantities, (8.13) We now turn to a more complex example that relies on additional mathematical manipulations; let us find the relationship between and. From the definitions of these quantities, we can infer a good place to start: both response functions depend on a derivative of the entropy with temperature. The difference between the two is the variable that is held constant in the derivative. We can relate a change in the constant conditions of a derivative in the following way. Construct the function, assuming constant conditions throughout. Notice that this is not a fundamental potential because is not a function of its natural variables. We can still, however, perform the construction since is a state function and and stem from different conjugate pairs. We choose as an 4

5 independent variable because it is the temperature derivative that is relevant to the heat capacities. We now expand in differential form as, (8.14) To start relating the constant volume conditions to those at constant pressure, we take the -derivative of this expression at constant. This is operationally equivalent to dividing by and applying constant conditions to any complete derivative that is formed, (8.15) We recognize that the LHS can be replaced using to, and the rightmost derivative connects (8.16) Finally, we use a Maxwell relation to address the final term in our expression, giving, by Maxwell relation from previous example (8.17) Simplifying everything, (8.18) As a final example, we will compute a quantity called the isentropic compressibility, defined by, (8.19) Experimentally, the isentropic compressibility measures the fractional change in volume of a system during a reversible adiabatic compression. To proceed, we use the triple product rule to remove the entropy from the constant condition, 5

6 [ ] (8.20) Now we use a new calculus rule, called addition of variable, that will enable us to expand the numerator and denominator by including temperature. We want to add temperature because there are no measurable properties that are derivatives of at constant and vice versa. The rule produces, (8.21) Note that the remaining derivatives all involve permutations of the same three variables. This suggests the use of the triple product rule again, [ ] [ ] (8.22) Finally, we see that we can insert the expression for the isothermal compressibility, (8.23) 8.3 General considerations for calculus manipulations Many thermodynamic calculus manipulations can be derived from a relatively simple procedure. The first step is to construct a state function involving the variables of interest. Some examples include:,,, or. Note that, if the state function is a potential, we do not necessarily need to use natural variables. We can choose any independent variables that we like so long as they form a complete set of thermodynamic information (i.e., all stem from different conjugate pairs). The second step is to write out the full differential of the state function. As an example, take, 6

7 (8.24) The third step is to set the differentials to zero for any terms that are constant in the problem of interest. For example, if is constant then and we have: (8.25) Note that we must keep in mind that the current equation corresponds to constant conditions. This is important as any new derivatives that are formed will acquire as a constant variable. The fourth step is to take the derivative of interest, essentially dividing by the appropriate differential. All new derivatives acquire any previously applied constant conditions. Moreover, we must specify additional constant conditions as necessary to meet one less than the number of independent variables. In our example, we can also specify to be constant when taking the derivative: (8.26) In conjunction with this procedure, one can then begin to substitute various fundamental definitions, expressions for measurable quantities, and Maxwell relations. As another example, consider the expression. When derivatives involve a thermodynamic potential, we often begin with its differential form: (8.27) Constant conditions implies, (8.28) Taking the temperature derivative at constant volume, (8.29) in which we can begin to see opportunities to substitute response functions. There are a number of common calculus manipulation techniques that are useful in thermodynamic analysis. These are briefly summarized below. 7

8 Rules of calculus manipulations inversion triple product rule addition of variable nonnatural derivative As we have seen earlier, there are also rules that apply specifically to thermodynamic potentials: Rules for thermodynamic potentials Maxwell relations potential transformation The combination of all of these techniques enables us to relate virtually any thermodynamic quantity to the set of measurable variables described earlier. 8

9 Problems prove the triple product rule 1. Fundamentals problem. Given only the ideal gas equation of state,, prove the following properties using fundamental equations and Maxwell relations. In the first two parts, you are proving that several ideal-gas properties are volume independent. a) b) and c) 2. Fundamentals problem. Express the following in terms of measurable quantities for a single component system at constant conditions: a) b) c) d) e) f) g) h) 3. Conceptual problem. Indicate whether each of the following relations is true in general: a) 9

10 b) c) 1. Prove that all of the response functions, and are in fact measurable. For the former two, consider the first law in conjunction with heating at different constant conditions, where can be quantified by coupling to a reference body. 3. Conceptual problem. A quasi-static adiabatic process is performed on a system at starting at state 1. Indicate the direction the system will proceed in the P-T plane (i.e., find ), in terms of measurable quantities. 4. Fundamentals problem. The Van der Waals equation of state for a gas is: where and and are positive constants. Find the change in molar internal energy,, upon isothermal expansion from molar volume to. 6. Applied problem. A Joule-Thompson process is one by which a gas is throttled (expanded) with no heat exchanged. Therefore, any change in internal energy is due to internal changes in pressure-volume work, and total enthalpy is conserved. Often during such an expansion, the temperature of the gas will change. The Joule-Thomson coefficient measures how much the temperature changes for a given pressure drop:. Here does not indicate a relationship to the chemical potential, but instead simply comes from convention. Show that the Joule-Thomson coefficient is given by. 6. Applied problem. Let the fundamental equation for an elastic band be 10

11 where is the length and the tension. a) An elastic band heats up when it is slowly stretched adiabatically. When it is cooled at constant tension, will the same band expand or contract? b) The same amount of heat flows into two identical elastic bands (not necessarily the same as in part a) while one is held at constant tension and the other at constant length. Which experiences the largest temperature rise? Prove this. 7. Applied problem. Liquid water exhibits a wealth of properties that are considered anomalous when compared to simple liquid models like the van der Waals fluid. One wellknown anomaly is that, at constant pressure, water exhibits a temperature of maximum density (TMD). At atmospheric pressure, this temperature is around 4 C. In general, though, we can construct a line in the plane that gives the TMD for any pressure. Consider the properties of this line: a) Along the TMD line, what must be true about the thermal expansion coefficient? Prove also that along this line. Be careful to address all of the terms in your proof. b) Show that the slope of this line is given by: c) Water s isothermal compressibility increases upon cooling. Can anything be said about the slope of the TMD line? 11

### a) Use the following equation from the lecture notes: = ( 8.314 J K 1 mol 1) ( ) 10 L

hermodynamics: Examples for chapter 4. 1. One mole of nitrogen gas is allowed to expand from 0.5 to 10 L reversible and isothermal process at 300 K. Calculate the change in molar entropy using a the ideal

More information

### High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur

High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 06 One-dimensional Gas Dynamics (Contd.) We

More information

### Dynamic Process Modeling. Process Dynamics and Control

Dynamic Process Modeling Process Dynamics and Control 1 Description of process dynamics Classes of models What do we need for control? Modeling for control Mechanical Systems Modeling Electrical circuits

More information

### Exergy: the quality of energy N. Woudstra

Exergy: the quality of energy N. Woudstra Introduction Characteristic for our society is a massive consumption of goods and energy. Continuation of this way of life in the long term is only possible if

More information

### Chapter 6 The first law and reversibility

Chapter 6 The first law and reversibility 6.1 The first law for processes in closed systems We have discussed the properties of equilibrium states and the relationship between the thermodynamic parameters

More information

### We will try to get familiar with a heat pump, and try to determine its performance coefficient under different circumstances.

C4. Heat Pump I. OBJECTIVE OF THE EXPERIMENT We will try to get familiar with a heat pump, and try to determine its performance coefficient under different circumstances. II. INTRODUCTION II.1. Thermodynamic

More information

### Problem Set 4 Solutions

Chemistry 360 Dr Jean M Standard Problem Set 4 Solutions 1 Two moles of an ideal gas are compressed isothermally and reversibly at 98 K from 1 atm to 00 atm Calculate q, w, ΔU, and ΔH For an isothermal

More information

### FUNDAMENTALS OF ENGINEERING THERMODYNAMICS

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS System: Quantity of matter (constant mass) or region in space (constant volume) chosen for study. Closed system: Can exchange energy but not mass; mass is constant

More information

### ) and mass of each particle is m. We make an extremely small

Umeå Universitet, Fysik Vitaly Bychkov Prov i fysik, Thermodynamics, --6, kl 9.-5. Hjälpmedel: Students may use any book including the textbook Thermal physics. Present your solutions in details: it will

More information

### Problem Set 1 3.20 MIT Professor Gerbrand Ceder Fall 2003

LEVEL 1 PROBLEMS Problem Set 1 3.0 MIT Professor Gerbrand Ceder Fall 003 Problem 1.1 The internal energy per kg for a certain gas is given by U = 0. 17 T + C where U is in kj/kg, T is in Kelvin, and C

More information

### Physics 5D - Nov 18, 2013

Physics 5D - Nov 18, 2013 30 Midterm Scores B } Number of Scores 25 20 15 10 5 F D C } A- A A + 0 0-59.9 60-64.9 65-69.9 70-74.9 75-79.9 80-84.9 Percent Range (%) The two problems with the fewest correct

More information

### Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004

Statistical Mechanics, Kinetic Theory Ideal Gas 8.01t Nov 22, 2004 Statistical Mechanics and Thermodynamics Thermodynamics Old & Fundamental Understanding of Heat (I.e. Steam) Engines Part of Physics Einstein

More information

### CHAPTER 14 THE CLAUSIUS-CLAPEYRON EQUATION

CHAPTER 4 THE CAUIU-CAPEYRON EQUATION Before starting this chapter, it would probably be a good idea to re-read ections 9. and 9.3 of Chapter 9. The Clausius-Clapeyron equation relates the latent heat

More information

### Technical Thermodynamics

Technical Thermodynamics Chapter 2: Basic ideas and some definitions Prof. Dr.-Ing. habil. Egon Hassel University of Rostock, Germany Faculty of Mechanical Engineering and Ship Building Institute of Technical

More information

### The Second Law of Thermodynamics

The Second aw of Thermodynamics The second law of thermodynamics asserts that processes occur in a certain direction and that the energy has quality as well as quantity. The first law places no restriction

More information

### Physics 176 Topics to Review For the Final Exam

Physics 176 Topics to Review For the Final Exam Professor Henry Greenside May, 011 Thermodynamic Concepts and Facts 1. Practical criteria for identifying when a macroscopic system is in thermodynamic equilibrium:

More information

### Boyle s law - For calculating changes in pressure or volume: P 1 V 1 = P 2 V 2. Charles law - For calculating temperature or volume changes: V 1 T 1

Common Equations Used in Chemistry Equation for density: d= m v Converting F to C: C = ( F - 32) x 5 9 Converting C to F: F = C x 9 5 + 32 Converting C to K: K = ( C + 273.15) n x molar mass of element

More information

### Chapter 10 Phase equilibrium

Chapter 10 Phase equilibrium It is a familiar fact that pure substances tend to exist in one of three distinct states: solid, liquid, and gas. Take water, for example. As ice is heated at atmospheric pressure,

More information

### REFRIGERATION (& HEAT PUMPS)

REFRIGERATION (& HEAT PUMPS) Refrigeration is the 'artificial' extraction of heat from a substance in order to lower its temperature to below that of its surroundings Primarily, heat is extracted from

More information

### Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

.1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations

More information

### Problem Set 3 Solutions

Chemistry 360 Dr Jean M Standard Problem Set 3 Solutions 1 (a) One mole of an ideal gas at 98 K is expanded reversibly and isothermally from 10 L to 10 L Determine the amount of work in Joules We start

More information

### Define the notations you are using properly. Present your arguments in details. Good luck!

Umeå Universitet, Fysik Vitaly Bychkov Prov i fysik, Thermodynamics, 0-0-4, kl 9.00-5.00 jälpmedel: Students may use any book(s) including the textbook Thermal physics. Minor notes in the books are also

More information

### Chapter 2 Classical Thermodynamics: The Second Law

Chapter 2 Classical hermodynamics: he Second Law 2.1 Heat engines and refrigerators 2.2 he second law of thermodynamics 2.3 Carnot cycles and Carnot engines 2.4* he thermodynamic temperature scale 2.5

More information

### Introduction to the Ideal Gas Law

Course PHYSICS260 Assignment 5 Consider ten grams of nitrogen gas at an initial pressure of 6.0 atm and at room temperature. It undergoes an isobaric expansion resulting in a quadrupling of its volume.

More information

### Thermodynamics - Example Problems Problems and Solutions

Thermodynamics - Example Problems Problems and Solutions 1 Examining a Power Plant Consider a power plant. At point 1 the working gas has a temperature of T = 25 C. The pressure is 1bar and the mass flow

More information

### APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES

APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES INTRODUCTION This tutorial is designed for students wishing to extend their knowledge of thermodynamics to a more

More information

### Supplementary Notes on Entropy and the Second Law of Thermodynamics

ME 4- hermodynamics I Supplementary Notes on Entropy and the Second aw of hermodynamics Reversible Process A reversible process is one which, having taken place, can be reversed without leaving a change

More information

### vap H = RT 1T 2 = 30.850 kj mol 1 100 kpa = 341 K

Thermodynamics: Examples for chapter 6. 1. The boiling point of hexane at 1 atm is 68.7 C. What is the boiling point at 1 bar? The vapor pressure of hexane at 49.6 C is 53.32 kpa. Assume that the vapor

More information

### The first law: transformation of energy into heat and work. Chemical reactions can be used to provide heat and for doing work.

The first law: transformation of energy into heat and work Chemical reactions can be used to provide heat and for doing work. Compare fuel value of different compounds. What drives these reactions to proceed

More information

### Gibbs Free Energy and Chemical Potential. NC State University

Chemistry 433 Lecture 14 Gibbs Free Energy and Chemical Potential NC State University The internal energy expressed in terms of its natural variables We can use the combination of the first and second

More information

### Chapter 10 Temperature and Heat

Chapter 10 Temperature and Heat What are temperature and heat? Are they the same? What causes heat? What Is Temperature? How do we measure temperature? What are we actually measuring? Temperature and Its

More information

### HEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases

UNIT HEAT. KINETIC THEORY OF GASES.. Introduction Molecules have a diameter of the order of Å and the distance between them in a gas is 0 Å while the interaction distance in solids is very small. R. Clausius

More information

### Thermodynamics 2nd year physics A. M. Steane 2000, revised 2004, 2006

Thermodynamics 2nd year physics A. M. Steane 2000, revised 2004, 2006 We will base our tutorials around Adkins, Equilibrium Thermodynamics, 2nd ed (McGraw-Hill). Zemansky, Heat and Thermodynamics is good

More information

### Compressible Fluids. Faith A. Morrison Associate Professor of Chemical Engineering Michigan Technological University November 4, 2004

94 c 2004 Faith A. Morrison, all rights reserved. Compressible Fluids Faith A. Morrison Associate Professor of Chemical Engineering Michigan Technological University November 4, 2004 Chemical engineering

More information

### Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows

Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows 3.- 1 Basics: equations of continuum mechanics - balance equations for mass and momentum - balance equations for the energy and the chemical

More information

### Final Exam CHM 3410, Dr. Mebel, Fall 2005

Final Exam CHM 3410, Dr. Mebel, Fall 2005 1. At -31.2 C, pure propane and n-butane have vapor pressures of 1200 and 200 Torr, respectively. (a) Calculate the mole fraction of propane in the liquid mixture

More information

### So T decreases. 1.- Does the temperature increase or decrease? For 1 mole of the vdw N2 gas:

1.- One mole of Nitrogen (N2) has been compressed at T0=273 K to the volume V0=1liter. The gas goes through the free expansion process (Q = 0, W = 0), in which the pressure drops down to the atmospheric

More information

### Thermodynamics of Mixing

Thermodynamics of Mixing Dependence of Gibbs energy on mixture composition is G = n A µ A + n B µ B and at constant T and p, systems tend towards a lower Gibbs energy The simplest example of mixing: What

More information

### Differential Balance Equations (DBE)

Differential Balance Equations (DBE) Differential Balance Equations Differential balances, although more complex to solve, can yield a tremendous wealth of information about ChE processes. General balance

More information

### The First Law of Thermodynamics

Thermodynamics The First Law of Thermodynamics Thermodynamic Processes (isobaric, isochoric, isothermal, adiabatic) Reversible and Irreversible Processes Heat Engines Refrigerators and Heat Pumps The Carnot

More information

### The final numerical answer given is correct but the math shown does not give that answer.

Note added to Homework set 7: The solution to Problem 16 has an error in it. The specific heat of water is listed as c 1 J/g K but should be c 4.186 J/g K The final numerical answer given is correct but

More information

### 18 Q0 a speed of 45.0 m/s away from a moving car. If the car is 8 Q0 moving towards the ambulance with a speed of 15.0 m/s, what Q0 frequency does a

First Major T-042 1 A transverse sinusoidal wave is traveling on a string with a 17 speed of 300 m/s. If the wave has a frequency of 100 Hz, what 9 is the phase difference between two particles on the

More information

### How To Calculate The Performance Of A Refrigerator And Heat Pump

THERMODYNAMICS TUTORIAL 5 HEAT PUMPS AND REFRIGERATION On completion of this tutorial you should be able to do the following. Discuss the merits of different refrigerants. Use thermodynamic tables for

More information

### PHYS 1624 University Physics I. PHYS 2644 University Physics II

PHYS 1624 Physics I An introduction to mechanics, heat, and wave motion. This is a calculus- based course for Scientists and Engineers. 4 hours (3 lecture/3 lab) Prerequisites: Credit for MATH 2413 (Calculus

More information

### Chapter 7 : Simple Mixtures

Chapter 7 : Simple Mixtures Using the concept of chemical potential to describe the physical properties of a mixture. Outline 1)Partial Molar Quantities 2)Thermodynamics of Mixing 3)Chemical Potentials

More information

### NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

More information

### 1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic

More information

### 1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

More information

### The Physics Degree. Graduate Skills Base and the Core of Physics

The Physics Degree Graduate Skills Base and the Core of Physics Version date: September 2011 THE PHYSICS DEGREE This document details the skills and achievements that graduates of accredited degree programmes

More information

### THE KINETIC THEORY OF GASES

Chapter 19: THE KINETIC THEORY OF GASES 1. Evidence that a gas consists mostly of empty space is the fact that: A. the density of a gas becomes much greater when it is liquefied B. gases exert pressure

More information

### Measurement of the viscosities of He, Ne and Ar for the determination of their gas kinetic diameters.

American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-4, Issue-11, pp-57-62 www.ajer.org Research Paper Measurement of the viscosities of He, Ne and Ar for the determination

More information

### KINETIC THEORY AND THERMODYNAMICS

KINETIC THEORY AND THERMODYNAMICS 1. Basic ideas Kinetic theory based on experiments, which proved that a) matter contains particles and quite a lot of space between them b) these particles always move

More information

### The Second Law of Thermodynamics

Objectives MAE 320 - Chapter 6 The Second Law of Thermodynamics The content and the pictures are from the text book: Çengel, Y. A. and Boles, M. A., Thermodynamics: An Engineering Approach, McGraw-Hill,

More information

### 7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790.

CHATER 3. The atmosphere is a homogeneous mixture (a solution) of gases.. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. have volumes that depend on their conditions,

More information

### PHYSICAL-CHEMICAL PROCESSES OF CLOUD ACTIVATION STUDIED WITH A DESKTOP CLOUD MODEL

PHYSICAL-CHEMICAL PROCESSES OF CLOUD ACTIVATION STUDIED WITH A DESKTOP CLOUD MODEL Stephen E. Schwartz ses@bnl.gov Brookhaven National Laboratory Upton NY USA 11973 6th International Conference Air-Surface

More information

### A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension forces. 2 Objectives Have a working knowledge of the basic

More information

### How To Understand Algebraic Equations

Please use the resources below to review mathematical concepts found in chemistry. 1. Many Online videos by MiraCosta Professor Julie Harland: www.yourmathgal.com 2. Text references in red/burgundy and

More information

### Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Thermodynamics study and application of thermal energy temperature quantity

More information

### Thermodynamics. Chapter 13 Phase Diagrams. NC State University

Thermodynamics Chapter 13 Phase Diagrams NC State University Pressure (atm) Definition of a phase diagram A phase diagram is a representation of the states of matter, solid, liquid, or gas as a function

More information

### We will study the temperature-pressure diagram of nitrogen, in particular the triple point.

K4. Triple Point of Nitrogen I. OBJECTIVE OF THE EXPERIMENT We will study the temperature-pressure diagram of nitrogen, in particular the triple point. II. BAKGROUND THOERY States of matter Matter is made

More information

### Forms of Energy. Freshman Seminar

Forms of Energy Freshman Seminar Energy Energy The ability & capacity to do work Energy can take many different forms Energy can be quantified Law of Conservation of energy In any change from one form

More information

### Gases. States of Matter. Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large Chaotic (random)

Gases States of Matter States of Matter Kinetic E (motion) Potential E(interaction) Distance Between (size) Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large

More information

### Equations of State. Equations of State (EoS)

Equations of State (EoS) Equations of State From molecular considerations, identify which intermolecular interactions are significant (including estimating relative strengths of dipole moments, polarizability,

More information

### Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1

Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1 FV 6/26/13 MATERIALS: PURPOSE: 1000 ml tall-form beaker, 10 ml graduated cylinder, -10 to 110 o C thermometer, thermometer clamp, plastic pipet, long

More information

### Unit 3: States of Matter Practice Exam

Page 1 Unit 3: States of Matter Practice Exam Multiple Choice. Identify the choice that best completes the statement or answers the question. 1. Two gases with unequal masses are injected into opposite

More information

### Answer, Key Homework 6 David McIntyre 1

Answer, Key Homework 6 David McIntyre 1 This print-out should have 0 questions, check that it is complete. Multiple-choice questions may continue on the next column or page: find all choices before making

More information

### CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING Essential Standard: STUDENTS WILL UNDERSTAND THAT THE PROPERTIES OF MATTER AND THEIR INTERACTIONS ARE A CONSEQUENCE OF THE STRUCTURE OF MATTER,

More information

### Thermodynamics AP Physics B. Multiple Choice Questions

Thermodynamics AP Physics B Name Multiple Choice Questions 1. What is the name of the following statement: When two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium

More information

### Chapter 1 Classical Thermodynamics: The First Law. 1.2 The first law of thermodynamics. 1.3 Real and ideal gases: a review

Chapter 1 Classical Thermodynamics: The First Law 1.1 Introduction 1.2 The first law of thermodynamics 1.3 Real and ideal gases: a review 1.4 First law for cycles 1.5 Reversible processes 1.6 Work 1.7

More information

### Thermodynamics and Equilibrium

Chapter 19 Thermodynamics and Equilibrium Concept Check 19.1 You have a sample of 1.0 mg of solid iodine at room temperature. Later, you notice that the iodine has sublimed (passed into the vapor state).

More information

### CHAPTER 12. Gases and the Kinetic-Molecular Theory

CHAPTER 12 Gases and the Kinetic-Molecular Theory 1 Gases vs. Liquids & Solids Gases Weak interactions between molecules Molecules move rapidly Fast diffusion rates Low densities Easy to compress Liquids

More information

### Lecture Notes: Gas Laws and Kinetic Molecular Theory (KMT).

CHEM110 Week 9 Notes (Gas Laws) Page 1 of 7 Lecture Notes: Gas Laws and Kinetic Molecular Theory (KMT). Gases Are mostly empty space Occupy containers uniformly and completely Expand infinitely Diffuse

More information

### Fundamentals of THERMAL-FLUID SCIENCES

Fundamentals of THERMAL-FLUID SCIENCES THIRD EDITION YUNUS A. CENGEL ROBERT H. TURNER Department of Mechanical JOHN M. CIMBALA Me Graw Hill Higher Education Boston Burr Ridge, IL Dubuque, IA Madison, Wl

More information

### DEVELOPMENT OF A TWIN SCREW EXPRESSOR AS A THROTTLE VALVE REPLACEMENT FOR WATER-COOLED CHILLERS

DEVELOPMENT OF A TWIN SCREW EXPRESSOR AS A THROTTLE VALVE REPLACEMENT FOR WATER-COOLED CHILLERS J J Brasz, Carrier Corporation, Syracuse, NY, 13221, USA joost.j.brasz@carrier.utc.com I K Smith and N Stosic

More information

### Mohan Chandrasekharan #1

International Journal of Students Research in Technology & Management Exergy Analysis of Vapor Compression Refrigeration System Using R12 and R134a as Refrigerants Mohan Chandrasekharan #1 # Department

More information

### An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation

An analysis of a thermal power plant working on a Rankine cycle: A theoretical investigation R K Kapooria Department of Mechanical Engineering, BRCM College of Engineering & Technology, Bahal (Haryana)

More information

### = 800 kg/m 3 (note that old units cancel out) 4.184 J 1000 g = 4184 J/kg o C

Units and Dimensions Basic properties such as length, mass, time and temperature that can be measured are called dimensions. Any quantity that can be measured has a value and a unit associated with it.

More information

### Pre-requisites 2012-2013

Pre-requisites 2012-2013 Engineering Computation The student should be familiar with basic tools in Mathematics and Physics as learned at the High School level and in the first year of Engineering Schools.

More information

### Steady Heat Conduction

Steady Heat Conduction In thermodynamics, we considered the amount of heat transfer as a system undergoes a process from one equilibrium state to another. hermodynamics gives no indication of how long

More information

### Isentropic flow. Wikepedia

Isentropic flow Wikepedia In thermodynamics, an isentropic process or isoentropic process (ισον = "equal" (Greek); εντροπία entropy = "disorder"(greek)) is one in which for purposes of engineering analysis

More information

### Chapter 7 Energy and Energy Balances

CBE14, Levicky Chapter 7 Energy and Energy Balances The concept of energy conservation as expressed by an energy balance equation is central to chemical engineering calculations. Similar to mass balances

More information

### Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

More information

### Phase Equilibrium: Fugacity and Equilibrium Calculations. Fugacity

Phase Equilibrium: Fugacity and Equilibrium Calculations (FEC) Phase Equilibrium: Fugacity and Equilibrium Calculations Relate the fugacity and the chemical potential (or the partial molar Gibbs free energy)

More information

### Development of a model for the simulation of Organic Rankine Cycles based on group contribution techniques

ASME Turbo Expo Vancouver, June 6 10 2011 Development of a model for the simulation of Organic Rankine ycles based on group contribution techniques Enrico Saverio Barbieri Engineering Department University

More information

### INTRODUCTION TO FLUID MECHANICS

INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION

More information

### PG Student (Heat Power Engg.), Mechanical Engineering Department Jabalpur Engineering College, India. Jabalpur Engineering College, India.

International Journal of Emerging Trends in Engineering and Development Issue 3, Vol. (January 23) EFFECT OF SUB COOLING AND SUPERHEATING ON VAPOUR COMPRESSION REFRIGERATION SYSTEMS USING 22 ALTERNATIVE

More information

### Lesson. 11 Vapour Compression Refrigeration Systems: Performance Aspects And Cycle Modifications. Version 1 ME, IIT Kharagpur 1

Lesson Vapour Compression Refrigeration Systems: Performance Aspects And Cycle Modifications Version ME, IIT Kharagpur The objectives of this lecture are to discuss. Performance aspects of SSS cycle and

More information

### Stirling heat engine Internal combustion engine (Otto cycle) Diesel engine Steam engine (Rankine cycle) Kitchen Refrigerator

Lecture. Real eat Engines and refrigerators (Ch. ) Stirling heat engine Internal combustion engine (Otto cycle) Diesel engine Steam engine (Rankine cycle) Kitchen Refrigerator Carnot Cycle - is not very

More information

### CE 204 FLUID MECHANICS

CE 204 FLUID MECHANICS Onur AKAY Assistant Professor Okan University Department of Civil Engineering Akfırat Campus 34959 Tuzla-Istanbul/TURKEY Phone: +90-216-677-1630 ext.1974 Fax: +90-216-677-1486 E-mail:

More information

### Engineering Problem Solving as Model Building

Engineering Problem Solving as Model Building Part 1. How professors think about problem solving. Part 2. Mech2 and Brain-Full Crisis Part 1 How experts think about problem solving When we solve a problem

More information

### 16. Heat Pipes in Electronics Cooling (2)

16. Heat Pipes in Electronics Cooling (2) 16.1 Pulsating Heat Pipes 16.1.1Introduction Conventional heat pipe technology has been successfully applied in the last thirty years for the thermal management

More information

### C H A P T E R T W O. Fundamentals of Steam Power

35 C H A P T E R T W O Fundamentals of Steam Power 2.1 Introduction Much of the electricity used in the United States is produced in steam power plants. Despite efforts to develop alternative energy converters,

More information

### IDEAL AND NON-IDEAL GASES

2/2016 ideal gas 1/8 IDEAL AND NON-IDEAL GASES PURPOSE: To measure how the pressure of a low-density gas varies with temperature, to determine the absolute zero of temperature by making a linear fit to

More information

### ME 201 Thermodynamics

ME 0 Thermodynamics Second Law Practice Problems. Ideally, which fluid can do more work: air at 600 psia and 600 F or steam at 600 psia and 600 F The maximum work a substance can do is given by its availablity.

More information

### PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION REFRIGERATION SYSTEM WITH R404A, R407C AND R410A

Int. J. Mech. Eng. & Rob. Res. 213 Jyoti Soni and R C Gupta, 213 Research Paper ISSN 2278 149 www.ijmerr.com Vol. 2, No. 1, January 213 213 IJMERR. All Rights Reserved PERFORMANCE ANALYSIS OF VAPOUR COMPRESSION

More information

### Temperature. Temperature

Chapter 8 Temperature Temperature a number that corresponds to the warmth or coldness of an object measured by a thermometer is a per-particle property no upper limit definite limit on lower end Temperature

More information

### Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion.

Name Period Gas Laws Kinetic energy is the energy of motion of molecules. Gas state of matter made up of tiny particles (atoms or molecules). Each atom or molecule is very far from other atoms or molecules.

More information

### 1.4.6-1.4.8 Gas Laws. Heat and Temperature

1.4.6-1.4.8 Gas Laws Heat and Temperature Often the concepts of heat and temperature are thought to be the same, but they are not. Perhaps the reason the two are incorrectly thought to be the same is because

More information

### = 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm

Chapter 13 Gases 1. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. Gases have volumes that depend on their conditions, and can be compressed or expanded by

More information

### 9460218_CH06_p069-080.qxd 1/20/10 9:44 PM Page 69 GAS PROPERTIES PURPOSE

9460218_CH06_p069-080.qxd 1/20/10 9:44 PM Page 69 6 GAS PROPERTIES PURPOSE The purpose of this lab is to investigate how properties of gases pressure, temperature, and volume are related. Also, you will

More information