Digital Signal Processing
|
|
|
- Reynold Lawson
- 10 years ago
- Views:
Transcription
1 The Scientist and Engineer's Guide to Digital Signal Processing Second Edition
2 Be sure to visit the book s website at:
3 The Scientist and Engineer's Guide to Digital Signal Processing Second Edition by Steven W. Smith California Technical Publishing San Diego, California
4 The Scientist and Engineer's Guide to Digital Signal Processing Second Edition by Steven W. Smith copyright by California Technical Publishing All rights reserved. No portion of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, without written permission of the publisher. ISBN ISBN ISBN LCCN hardcover paperback electronic California Technical Publishing P.O. Box San Diego, CA To contact the author or publisher through the internet: website: DSPguide.com Printed in the United States of America First Edition, 1997 Second Edition, 1999 Important Legal Information: Warning and Disclaimer This book presents the fundamentals of Digital Signal Processing using examples from common science and engineering problems. While the author believes that the concepts and data contained in this book are accurate and correct, they should not be used in any application without proper verification by the person making the application. Extensive and detailed testing is essential where incorrect functioning could result in personal injury or damage to property. The material in this book is intended solely as a teaching aid, and is not represented to be an appropriate or safe solution to any particular problem. For this reason, the author, publisher, and distributors make no warranties, express or implied, that the concepts, examples, data, algorithms, techniques, or programs contained in this book are free from error, conform to any industry standard, or are suitable for any application. The author, publisher, and distributors disclaim all liability and responsibility to any person or entity with respect to any loss or damage caused, or alleged to be caused, directly or indirectly, by the information contained in this book. If you do not wish to be bound by the above, you may return this book to the publisher for a full refund.
5 FOUNDATIONS Contents at a Glance Chapter 1. The Breadth and Depth of DSP...1 Chapter 2. Statistics, Probability and Noise...11 Chapter 3. ADC and DAC...35 Chapter 4. DSP Software...67 FUNDAMENTALS Chapter 5. Linear Systems...87 Chapter 6. Convolution Chapter 7. Properties of Convolution Chapter 8. The Discrete Fourier Transform Chapter 9. Applications of the DFT Chapter 10. Fourier Transform Properties Chapter 11. Fourier Transform Pairs Chapter 12. The Fast Fourier Transform Chapter 13. Continuous Signal Processing DIGITAL FILTERS Chapter 14. Introduction to Digital Filters Chapter 15. Moving Average Filters Chapter 16. Windowed-Sinc Filters Chapter 17. Custom Filters Chapter 18. FFT Convolution Chapter 19. Recursive Filters Chapter 20. Chebyshev Filters Chapter 21. Filter Comparison APPLICATIONS Chapter 22. Audio Processing Chapter 23. Image Formation and Display Chapter 24. Linear Image Processing Chapter 25. Special Imaging Techniques Chapter 26. Neural Networks (and more!) Chapter 27. Data Compression Chapter 28. Digital Signal Processors Chapter 29. Getting Started with DSPs COMPLEX TECHNIQUES Chapter 30. Complex Numbers Chapter 31. The Complex Fourier Transform Chapter 32. The Laplace Transform Chapter 33. The z-transform Glossary Index v
6 Table of Contents FOUNDATIONS Chapter 1. The Breadth and Depth of DSP...1 The Roots of DSP 1 Telecommunications 4 Audio Processing 5 Echo Location 7 Imaging Processing 9 Chapter 2. Statistics, Probability and Noise...11 Signal and Graph Terminology 11 Mean and Standard Deviation 13 Signal vs. Underlying Process 17 The Histogram, Pmf and Pdf 19 The Normal Distribution 26 Digital Noise Generation 29 Precision and Accuracy 32 Chapter 3. ADC and DAC...35 Quantization 35 The Sampling Theorem 39 Digital-to-Analog Conversion 44 Analog Filters for Data Conversion 48 Selecting the Antialias Filter 55 Multirate Data Conversion 58 Single Bit Data Conversion 60 Chapter 4. DSP Software...67 Computer Numbers 67 Fixed Point (Integers) 68 Floating Point (Real Numbers) 70 Number Precision 72 Execution Speed: Program Language 76 Execution Speed: Hardware 80 Execution Speed: Programming Tips 84 vi
7 FUNDAMENTALS Chapter 5. Linear Systems...87 Signals and Systems 87 Requirements for Linearity 89 Static Linearity and Sinusoidal Fidelity 92 Examples of Linear and Nonlinear Systems 94 Special Properties of Linearity 96 Superposition: the Foundation of DSP 98 Common Decompositions 100 Alternatives to Linearity 104 Chapter 6. Convolution The Delta Function and Impulse Response 107 Convolution 108 The Input Side Algorithm 112 The Output Side Algorithm 116 The Sum of Weighted Inputs 122 Chapter 7. Properties of Convolution Common Impulse Responses 123 Mathematical Properties 132 Correlation 136 Speed 140 Chapter 8. The Discrete Fourier Transform The Family of Fourier Transforms 141 Notation and Format of the real DFT 146 The Frequency Domain's Independent Variable 148 DFT Basis Functions 150 Synthesis, Calculating the Inverse DFT 152 Analysis, Calculating the DFT 156 Duality 161 Polar Notation 161 Polar Nuisances 164 Chapter 9. Applications of the DFT Spectral Analysis of Signals 169 Frequency Response of Systems 177 Convolution via the Frequency Domain 180 Chapter 10. Fourier Transform Properties Linearity of the Fourier Transform 185 Characteristics of the Phase 188 Periodic Nature of the DFT 194 Compression and Expansion, Multirate methods 200 vii
8 Multiplying Signals (Amplitude Modulation) 204 The Discrete Time Fourier Transform 206 Parseval's Relation 208 Chapter 11. Fourier Transform Pairs Delta Function Pairs 209 The Sinc Function 212 Other Transform Pairs 215 Gibbs Effect 218 Harmonics 220 Chirp Signals 222 Chapter 12. The Fast Fourier Transform Real DFT Using the Complex DFT 225 How the FFT Works 228 FFT Programs 233 Speed and Precision Comparisons 237 Further Speed Increases 238 Chapter 13. Continuous Signal Processing The Delta Function 243 Convolution 246 The Fourier Transform 252 The Fourier Series 255 DIGITAL FILTERS Chapter 14. Introduction to Digital Filters Filter Basics 261 How Information is Represented in Signals 265 Time Domain Parameters 266 Frequency Domain Parameters 268 High-Pass, Band-Pass and Band-Reject Filters 271 Filter Classification 274 Chapter 15. Moving Average Filters Implementation by Convolution 277 Noise Reduction vs. Step Response 278 Frequency Response 280 Relatives of the Moving Average Filter 280 Recursive Implementation 282 Chapter 16. Windowed-Sinc Filters Strategy of the Windowed-Sinc 285 Designing the Filter 288 Examples of Windowed-Sinc Filters 292 Pushing it to the Limit 293 viii
9 Chapter 17. Custom Filters Arbitrary Frequency Response 297 Deconvolution 300 Optimal Filters 307 Chapter 18. FFT Convolution The Overlap-Add Method 311 FFT Convolution 312 Speed Improvements 316 Chapter 19. Recursive Filters The Recursive Method 319 Single Pole Recursive Filters 322 Narrow-band Filters 326 Phase Response 328 Using Integers 332 Chapter 20. Chebyshev Filters The Chebyshev and Butterworth Responses 333 Designing the Filter 334 Step Response Overshoot 338 Stability 339 Chapter 21. Filter Comparison Match #1: Analog vs. Digital Filters 343 Match #2: Windowed-Sinc vs. Chebyshev 346 Match #3: Moving Average vs. Single Pole 348 APPLICATIONS Chapter 22. Audio Processing Human Hearing 351 Timbre 355 Sound Quality vs. Data Rate 358 High Fidelity Audio 359 Companding 362 Speech Synthesis and Recognition 364 Nonlinear Audio Processing 368 Chapter 23. Image Formation and Display Digital Image Structure 373 Cameras and Eyes 376 Television Video Signals 384 Other Image Acquisition and Display 386 Brightness and Contrast Adjustments 387 Grayscale Transforms 390 Warping 394 ix
10 Chapter 24. Linear Image Processing Convolution Edge Modification 402 Convolution by Separability 404 Example of a Large PSF: Illumination Flattening 407 Fourier Image Analysis 410 FFT Convolution 416 A Closer Look at Image Convolution 418 Chapter 25. Special Imaging Techniques Spatial Resolution 423 Sample Spacing and Sampling Aperture 430 Signal-to-Noise Ratio 432 Morphological Image Processing 436 Computed Tomography 442 Chapter 26. Neural Networks (and more!) Target Detection 451 Neural Network Architecture 458 Why Does it Work? 463 Training the Neural Network 465 Evaluating the Results 473 Recursive Filter Design 476 Chapter 27. Data Compression Data Compression Strategies 481 Run-Length Encoding 483 Huffman Encoding 484 Delta Encoding 486 LZW Compression 488 JPEG (Transform Compression) 494 MPEG 501 Chapter 28. Digital Signal Processors How DSPs are different 503 Circular Buffering 506 Architecture of the Digital Signal Processor 509 Fixed versus Floating Point 514 C versus Assembly 520 How Fast are DSPs? 526 The Digital Signal Processor Market 531 Chapter 29. Getting Started with DSPs The ADSP-2106x family 535 The SHARC EZ-KIT Lite 537 Design Example: An FIR Audio Filter 538 Analog Measurements on a DSP System 542 x
11 Another Look at Fixed versus Floating Point 544 Advanced Software Tools 546 COMPLEX TECHNIQUES Chapter 30. Complex Numbers The Complex Number System 551 Polar Notation 555 Using Complex Numbers by Substitution 557 Complex Representation of Sinusoids 559 Complex Representation of Systems 561 Electrical Circuit Analysis 563 Chapter 31. The Complex Fourier Transform The Real DFT 567 Mathematical Equivalence 569 The Complex DFT 570 The Family of Fourier Transforms 575 Why the Complex Fourier Transform is Used 577 Chapter 32. The Laplace Transform The Nature of the s-domain 581 Strategy of the Laplace Transform 588 Analysis of Electric Circuits 592 The Importance of Poles and Zeros 597 Filter Design in the s-domain 600 Chapter 33. The z-transform The Nature of the z-domain 605 Analysis of Recursive Systems 610 Cascade and Parallel Stages 616 Spectral Inversion 619 Gain Changes 621 Chebyshev-Butterworth Filter Design 623 The Best and Worst of DSP 630 Glossary Index xi
12 Preface Goals and Strategies of this Book The technical world is changing very rapidly. In only 15 years, the power of personal computers has increased by a factor of nearly one-thousand. By all accounts, it will increase by another factor of one-thousand in the next 15 years. This tremendous power has changed the way science and engineering is done, and there is no better example of this than Digital Signal Processing. In the early 1980s, DSP was taught as a graduate level course in electrical engineering. A decade later, DSP had become a standard part of the undergraduate curriculum. Today, DSP is a basic skill needed by scientists and engineers in many fields. Unfortunately, DSP education has been slow to adapt to this change. Nearly all DSP textbooks are still written in the traditional electrical engineering style of detailed and rigorous mathematics. DSP is incredibly powerful, but if you can't understand it, you can't use it! This book was written for scientists and engineers in a wide variety of fields: physics, bioengineering, geology, oceanography, mechanical and electrical engineering, to name just a few. The goal is to present practical techniques while avoiding the barriers of detailed mathematics and abstract theory. To achieve this goal, three strategies were employed in writing this book: First, the techniques are explained, not simply proven to be true through mathematical derivations. While much of the mathematics is included, it is not used as the primary means of conveying the information. Nothing beats a few well written paragraphs supported by good illustrations. Second, complex numbers are treated as an advanced topic, something to be learned after the fundamental principles are understood. Chapters 1-29 explain all the basic techniques using only algebra, and in rare cases, a small amount of elementary calculus. Chapters show how complex math extends the power of DSP, presenting techniques that cannot be implemented with real numbers alone. Many would view this approach as heresy! Traditional DSP textbooks are full of complex math, often starting right from the first chapter. xii
13 Third, very simple computer programs are used. Most DSP programs are written in C, Fortran, or a similar language. However, learning DSP has different requirements than using DSP. The student needs to concentrate on the algorithms and techniques, without being distracted by the quirks of a particular language. Power and flexibility aren't important; simplicity is critical. The programs in this book are written to teach DSP in the most straightforward way, with all other factors being treated as secondary. Good programming style is disregarded if it makes the program logic more clear. For instance: a simplified version of BASIC is used line numbers are included the only control structure used is the FOR-NEXT loop there are no I/O statements This is the simplest programming style I could find. Some may think that this book would be better if the programs had been written in C. I couldn't disagree more. The Intended Audience This book is primarily intended for a one year course in practical DSP, with the students being drawn from a wide variety of science and engineering fields. The suggested prerequisites are: A course in practical electronics: (op amps, RC circuits, etc.) A course in computer programming (Fortran or similar) One year of calculus This book was also written with the practicing professional in mind. Many everyday DSP applications are discussed: digital filters, neural networks, data compression, audio and image processing, etc. As much as possible, these chapters stand on their own, not requiring the reader to review the entire book to solve a specific problem. Support by Analog Devices The Second Edition of this book includes two new chapters on Digital Signal Processors, microprocessors specifically designed to carry out DSP tasks. Much of the information for these chapters was generously provided by Analog Devices, Inc., a world leader in the development and manufacturing of electronic components for signal processing. ADI's encouragement and support has significantly expanded the scope of this book, showing that DSP algorithms are only useful in conjunction with the appropriate hardware. xiii
14 Acknowledgements A special thanks to the many reviewers who provided comments and suggestions on this book. Their generous donation of time and skill has made this a better work: Magnus Aronsson (Department of Electrical Engineering, University of Utah); Bruce B. Azimi (U.S. Navy); Vernon L. Chi (Department of Computer Science, University of North Carolina); Manohar Das, Ph.D. (Department of Electrical and Systems Engineering, Oakland University); Carol A. Dean (Analog Devices, Inc.); Fred DePiero, Ph.D. (Department of Electrical Engineering, CalPoly State University); Jose Fridman, Ph.D. (Analog Devices, Inc.); Frederick K. Duennebier, Ph. D. (Department of Geology and Geophysics, University of Hawaii, Manoa); D. Lee Fugal (Space & Signals Technologies); Filson H. Glanz, Ph.D. (Department of Electrical and Computer Engineering, University of New Hampshire); Kenneth H. Jacker, (Department of Computer Science, Appalachian State University); Rajiv Kapadia, Ph.D. (Department of Electrical Engineering, Mankato State University); Dan King (Analog Devices, Inc.); Kevin Leary (Analog Devices, Inc.); A. Dale Magoun, Ph.D. (Department of Computer Science, Northeast Louisiana University); Ben Mbugua (Analog Devices, Inc.); Bernard J. Maxum, Ph.D. (Department of Electrical Engineering, Lamar University); Paul Morgan, Ph.D. (Department of Geology, Northern Arizona University); Dale H. Mugler, Ph.D. (Department of Mathematical Science, University of Akron); Christopher L. Mullen, Ph.D. (Department of Civil Engineering, University of Mississippi); Cynthia L. Nelson, Ph.D. (Sandia National Laboratories); Branislava Perunicic-Drazenovic, Ph.D. (Department of Electrical Engineering, Lamar University); John Schmeelk, Ph.D. (Department of Mathematical Science, Virginia Commonwealth University); Richard R. Schultz, Ph.D. (Department of Electrical Engineering, University of North Dakota); David Skolnick (Analog Devices, Inc.); Jay L. Smith, Ph.D. (Center for Aerospace Technology, Weber State University); Jeffrey Smith, Ph.D. (Department of Computer Science, University of Georgia); Oscar Yanez Suarez, Ph.D. (Department of Electrical Engineering, Metropolitan University, Iztapalapa campus, Mexico City); and other reviewers who wish to remain anonymous. This book is now in the hands of the final reviewer, you. Please take the time to give me your comments and suggestions. This will allow future reprints and editions to serve your needs even better. All it takes is a two minute message to: [email protected]. Thanks; I hope you enjoy the book. Steve Smith January 1999 xiv
Filter Comparison. Match #1: Analog vs. Digital Filters
CHAPTER 21 Filter Comparison Decisions, decisions, decisions! With all these filters to choose from, how do you know which to use? This chapter is a head-to-head competition between filters; we'll select
Introduction to Digital Filters
CHAPTER 14 Introduction to Digital Filters Digital filters are used for two general purposes: (1) separation of signals that have been combined, and (2) restoration of signals that have been distorted
SECTION 6 DIGITAL FILTERS
SECTION 6 DIGITAL FILTERS Finite Impulse Response (FIR) Filters Infinite Impulse Response (IIR) Filters Multirate Filters Adaptive Filters 6.a 6.b SECTION 6 DIGITAL FILTERS Walt Kester INTRODUCTION Digital
BSEE Degree Plan Bachelor of Science in Electrical Engineering: 2015-16
BSEE Degree Plan Bachelor of Science in Electrical Engineering: 2015-16 Freshman Year ENG 1003 Composition I 3 ENG 1013 Composition II 3 ENGR 1402 Concepts of Engineering 2 PHYS 2034 University Physics
Synchronization of sampling in distributed signal processing systems
Synchronization of sampling in distributed signal processing systems Károly Molnár, László Sujbert, Gábor Péceli Department of Measurement and Information Systems, Budapest University of Technology and
ELECTRONIC FILTER DESIGN HANDBOOK
ELECTRONIC FILTER DESIGN HANDBOOK Arthur B.Williams Fred J.Taylor Fourth Edition McGFUW-HILL New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney
Introduction to Robotics Analysis, Systems, Applications
Introduction to Robotics Analysis, Systems, Applications Saeed B. Niku Mechanical Engineering Department California Polytechnic State University San Luis Obispo Technische Urw/carsMt Darmstadt FACHBEREfCH
Digital Image Processing
GONZ_FMv3.qxd 7/26/07 9:05 AM Page i Digital Image Processing Third Edition Rafael C. Gonzalez University of Tennessee Richard E. Woods MedData Interactive Upper Saddle River, NJ 07458 GONZ_FMv3.qxd 7/26/07
DIGITAL IMAGE PROCESSING AND ANALYSIS
DIGITAL IMAGE PROCESSING AND ANALYSIS Human and Computer Vision Applications with CVIPtools SECOND EDITION SCOTT E UMBAUGH Uffi\ CRC Press Taylor &. Francis Group Boca Raton London New York CRC Press is
Hideo Okawara s Mixed Signal Lecture Series. DSP-Based Testing Fundamentals 46 Per-pin Signal Generator
Hideo Okawara s Mixed Signal Lecture Series DSP-Based Testing Fundamentals 46 Per-pin Signal Generator Advantest Corporation, Tokyo Japan August 2012 Preface to the Series ADC and DAC are the most typical
4 Digital Video Signal According to ITU-BT.R.601 (CCIR 601) 43
Table of Contents 1 Introduction 1 2 Analog Television 7 3 The MPEG Data Stream 11 3.1 The Packetized Elementary Stream (PES) 13 3.2 The MPEG-2 Transport Stream Packet.. 17 3.3 Information for the Receiver
FUNDAMENTALS OF MODERN SPECTRAL ANALYSIS. Matthew T. Hunter, Ph.D.
FUNDAMENTALS OF MODERN SPECTRAL ANALYSIS Matthew T. Hunter, Ph.D. AGENDA Introduction Spectrum Analyzer Architecture Dynamic Range Instantaneous Bandwidth The Importance of Image Rejection and Anti-Aliasing
Analysis/resynthesis with the short time Fourier transform
Analysis/resynthesis with the short time Fourier transform summer 2006 lecture on analysis, modeling and transformation of audio signals Axel Röbel Institute of communication science TU-Berlin IRCAM Analysis/Synthesis
chapter Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction 1.2 Historical Perspective
Introduction to Digital Signal Processing and Digital Filtering chapter 1 Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction Digital signal processing (DSP) refers to anything
Image Compression through DCT and Huffman Coding Technique
International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Rahul
Lesson 7: SYSTEM-ON. SoC) AND USE OF VLSI CIRCUIT DESIGN TECHNOLOGY. Chapter-1L07: "Embedded Systems - ", Raj Kamal, Publs.: McGraw-Hill Education
Lesson 7: SYSTEM-ON ON-CHIP (SoC( SoC) AND USE OF VLSI CIRCUIT DESIGN TECHNOLOGY 1 VLSI chip Integration of high-level components Possess gate-level sophistication in circuits above that of the counter,
Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction
Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals Modified from the lecture slides of Lami Kaya ([email protected]) for use CECS 474, Fall 2008. 2009 Pearson Education Inc., Upper
USB 3.0 CDR Model White Paper Revision 0.5
USB 3.0 CDR Model White Paper Revision 0.5 January 15, 2009 INTELLECTUAL PROPERTY DISCLAIMER THIS WHITE PAPER IS PROVIDED TO YOU AS IS WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
Algebra I Credit Recovery
Algebra I Credit Recovery COURSE DESCRIPTION: The purpose of this course is to allow the student to gain mastery in working with and evaluating mathematical expressions, equations, graphs, and other topics,
For Articulation Purpose Only
E305 Digital Audio and Video (4 Modular Credits) This document addresses the content related abilities, with reference to the module. Abilities of thinking, learning, problem solving, team work, communication,
MP3 Player CSEE 4840 SPRING 2010 PROJECT DESIGN. [email protected]. [email protected]
MP3 Player CSEE 4840 SPRING 2010 PROJECT DESIGN Zheng Lai Zhao Liu Meng Li Quan Yuan [email protected] [email protected] [email protected] [email protected] I. Overview Architecture The purpose
Continuous-Time Converter Architectures for Integrated Audio Processors: By Brian Trotter, Cirrus Logic, Inc. September 2008
Continuous-Time Converter Architectures for Integrated Audio Processors: By Brian Trotter, Cirrus Logic, Inc. September 2008 As consumer electronics devices continue to both decrease in size and increase
Introduction to Digital Audio
Introduction to Digital Audio Before the development of high-speed, low-cost digital computers and analog-to-digital conversion circuits, all recording and manipulation of sound was done using analog techniques.
Analog Signal Conditioning
Analog Signal Conditioning Analog and Digital Electronics Electronics Digital Electronics Analog Electronics 2 Analog Electronics Analog Electronics Operational Amplifiers Transistors TRIAC 741 LF351 TL084
Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics:
Voice Transmission --Basic Concepts-- Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics: Amplitude Frequency Phase Voice Digitization in the POTS Traditional
Understanding CIC Compensation Filters
Understanding CIC Compensation Filters April 2007, ver. 1.0 Application Note 455 Introduction f The cascaded integrator-comb (CIC) filter is a class of hardware-efficient linear phase finite impulse response
Lecture 14. Point Spread Function (PSF)
Lecture 14 Point Spread Function (PSF), Modulation Transfer Function (MTF), Signal-to-noise Ratio (SNR), Contrast-to-noise Ratio (CNR), and Receiver Operating Curves (ROC) Point Spread Function (PSF) Recollect
ELECTRICAL ENGINEERING
EE ELECTRICAL ENGINEERING See beginning of Section H for abbreviations, course numbers and coding. The * denotes labs which are held on alternate weeks. A minimum grade of C is required for all prerequisite
Teaching optics in electrical engineering curriculums
Teaching optics in electrical engineering curriculums by Alexander D Poularikas and Samuel Seely University of Alabama in Huntsville Electrical and Computer Engineering Department Huntsville, Alabama 35899
Em bedded DSP : I ntroduction to Digital Filters
Embedded DSP : Introduction to Digital Filters 1 Em bedded DSP : I ntroduction to Digital Filters Digital filters are a important part of DSP. In fact their extraordinary performance is one of the keys
DISTANCE DEGREE PROGRAM CURRICULUM NOTE:
Bachelor of Science in Electrical Engineering DISTANCE DEGREE PROGRAM CURRICULUM NOTE: Some Courses May Not Be Offered At A Distance Every Semester. Chem 121C General Chemistry I 3 Credits Online Fall
A bachelor of science degree in electrical engineering with a cumulative undergraduate GPA of at least 3.0 on a 4.0 scale
What is the University of Florida EDGE Program? EDGE enables engineering professional, military members, and students worldwide to participate in courses, certificates, and degree programs from the UF
Reconfigurable Low Area Complexity Filter Bank Architecture for Software Defined Radio
Reconfigurable Low Area Complexity Filter Bank Architecture for Software Defined Radio 1 Anuradha S. Deshmukh, 2 Prof. M. N. Thakare, 3 Prof.G.D.Korde 1 M.Tech (VLSI) III rd sem Student, 2 Assistant Professor(Selection
Final Year Project Progress Report. Frequency-Domain Adaptive Filtering. Myles Friel. Supervisor: Dr.Edward Jones
Final Year Project Progress Report Frequency-Domain Adaptive Filtering Myles Friel 01510401 Supervisor: Dr.Edward Jones Abstract The Final Year Project is an important part of the final year of the Electronic
Advanced Signal Processing and Digital Noise Reduction
Advanced Signal Processing and Digital Noise Reduction Saeed V. Vaseghi Queen's University of Belfast UK WILEY HTEUBNER A Partnership between John Wiley & Sons and B. G. Teubner Publishers Chichester New
San José State University Department of Electrical Engineering EE 112, Linear Systems, Spring 2010
San José State University Department of Electrical Engineering EE 112, Linear Systems, Spring 2010 Instructor: Robert H. Morelos-Zaragoza Office Location: ENGR 373 Telephone: (408) 924-3879 Email: [email protected]
Analog/Digital Conversion. Analog Signals. Digital Signals. Analog vs. Digital. Interfacing a microprocessor-based system to the real world.
Analog/Digital Conversion Analog Signals Interacing a microprocessor-based system to the real world. continuous range x(t) Analog and digital signals he bridge: Sampling heorem Conversion concepts Conversion
DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION
DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION Introduction The outputs from sensors and communications receivers are analogue signals that have continuously varying amplitudes. In many systems
Analog Representations of Sound
Analog Representations of Sound Magnified phonograph grooves, viewed from above: The shape of the grooves encodes the continuously varying audio signal. Analog to Digital Recording Chain ADC Microphone
SGN-1158 Introduction to Signal Processing Test. Solutions
SGN-1158 Introduction to Signal Processing Test. Solutions 1. Convolve the function ( ) with itself and show that the Fourier transform of the result is the square of the Fourier transform of ( ). (Hints:
FOURIER TRANSFORM BASED SIMPLE CHORD ANALYSIS. UIUC Physics 193 POM
FOURIER TRANSFORM BASED SIMPLE CHORD ANALYSIS Fanbo Xiang UIUC Physics 193 POM Professor Steven M. Errede Fall 2014 1 Introduction Chords, an essential part of music, have long been analyzed. Different
ADC and DAC. Quantization
CHAPTER ADC and DAC Most of the signals directly encountered in science and engineering are continuous: light intensity that changes with distance; voltage that varies over time; a chemical reaction rate
Digital Signal Controller Based Automatic Transfer Switch
Digital Signal Controller Based Automatic Transfer Switch by Venkat Anant Senior Staff Applications Engineer Freescale Semiconductor, Inc. Abstract: An automatic transfer switch (ATS) enables backup generators,
Speech Signal Processing: An Overview
Speech Signal Processing: An Overview S. R. M. Prasanna Department of Electronics and Electrical Engineering Indian Institute of Technology Guwahati December, 2012 Prasanna (EMST Lab, EEE, IITG) Speech
Mathematics (MAT) MAT 061 Basic Euclidean Geometry 3 Hours. MAT 051 Pre-Algebra 4 Hours
MAT 051 Pre-Algebra Mathematics (MAT) MAT 051 is designed as a review of the basic operations of arithmetic and an introduction to algebra. The student must earn a grade of C or in order to enroll in MAT
FFT Algorithms. Chapter 6. Contents 6.1
Chapter 6 FFT Algorithms Contents Efficient computation of the DFT............................................ 6.2 Applications of FFT................................................... 6.6 Computing DFT
Teaching the Importance of Data Correlation in Engineering Technology
Session 3549 Teaching the Importance of Data Correlation in Engineering Technology Michael R. Warren, Dana M. Burnett, Jay R. Porter, and Rainer J. Fink Texas A&M University Abstract To meet the needs
Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9
Glencoe correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 STANDARDS 6-8 Number and Operations (NO) Standard I. Understand numbers, ways of representing numbers, relationships among numbers,
How To Get A Computer Science Degree At Appalachian State
118 Master of Science in Computer Science Department of Computer Science College of Arts and Sciences James T. Wilkes, Chair and Professor Ph.D., Duke University [email protected] http://www.cs.appstate.edu/
Undergraduate Major in Computer Science and Engineering
University of California, Irvine 2015-2016 1 Undergraduate Major in Computer Science and Engineering On This Page: Overview Admissions Requirements for the B.S. in Computer Science and Engineering Sample
Electrical Engineering
306 Electrical Engineering Paul Neudorfer, Ph.D., Chair Objectives Electrical engineering is concerned with the use of electrical energy for the benefit of society. The profession of electrical engineering
Convolution. The Delta Function and Impulse Response
CHAPTER 6 Convolution Convolution is a mathematical way of combining two signals to form a third signal. It is the single most important technique in Digital Signal Processing. Using the strategy of impulse
LEVERAGING FPGA AND CPLD DIGITAL LOGIC TO IMPLEMENT ANALOG TO DIGITAL CONVERTERS
LEVERAGING FPGA AND CPLD DIGITAL LOGIC TO IMPLEMENT ANALOG TO DIGITAL CONVERTERS March 2010 Lattice Semiconductor 5555 Northeast Moore Ct. Hillsboro, Oregon 97124 USA Telephone: (503) 268-8000 www.latticesemi.com
CHAPTER 3: DIGITAL IMAGING IN DIAGNOSTIC RADIOLOGY. 3.1 Basic Concepts of Digital Imaging
Physics of Medical X-Ray Imaging (1) Chapter 3 CHAPTER 3: DIGITAL IMAGING IN DIAGNOSTIC RADIOLOGY 3.1 Basic Concepts of Digital Imaging Unlike conventional radiography that generates images on film through
SIGNAL PROCESSING & SIMULATION NEWSLETTER
1 of 10 1/25/2008 3:38 AM SIGNAL PROCESSING & SIMULATION NEWSLETTER Note: This is not a particularly interesting topic for anyone other than those who ar e involved in simulation. So if you have difficulty
Performing the Fast Fourier Transform with Microchip s dspic30f Series Digital Signal Controllers
Performing the Fast Fourier Transform with Microchip s dspic30f Series Digital Signal Controllers Application Note Michigan State University Dept. of Electrical & Computer Engineering Author: Nicholas
DIGITAL SIGNAL PROCESSING - APPLICATIONS IN MEDICINE
DIGITAL SIGNAL PROCESSING - APPLICATIONS IN MEDICINE Paulo S. R. Diniz Program of Electrical Engineering, COPPE/EE/Federal University of Rio de Janeiro, Brazil David M. Simpson and A. De Stefano Institute
Binary Numbering Systems
Binary Numbering Systems April 1997, ver. 1 Application Note 83 Introduction Binary numbering systems are used in virtually all digital systems, including digital signal processing (DSP), networking, and
INTRODUCTION TO DIGITAL SYSTEMS. IMPLEMENTATION: MODULES (ICs) AND NETWORKS IMPLEMENTATION OF ALGORITHMS IN HARDWARE
INTRODUCTION TO DIGITAL SYSTEMS 1 DESCRIPTION AND DESIGN OF DIGITAL SYSTEMS FORMAL BASIS: SWITCHING ALGEBRA IMPLEMENTATION: MODULES (ICs) AND NETWORKS IMPLEMENTATION OF ALGORITHMS IN HARDWARE COURSE EMPHASIS:
Non-Data Aided Carrier Offset Compensation for SDR Implementation
Non-Data Aided Carrier Offset Compensation for SDR Implementation Anders Riis Jensen 1, Niels Terp Kjeldgaard Jørgensen 1 Kim Laugesen 1, Yannick Le Moullec 1,2 1 Department of Electronic Systems, 2 Center
Course overview Processamento de sinais 2009/10 LEA
Course overview Processamento de sinais 2009/10 LEA João Pedro Gomes [email protected] Instituto Superior Técnico Processamento de sinais MEAer (IST) Course overview 1 / 19 Course overview Motivation:
AVR223: Digital Filters with AVR. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR223: Digital Filters with AVR Features Implementation of Digital Filters Coefficient and Data scaling Fast Implementation of 4 th Order FIR Filter Fast Implementation of 2 nd Order IIR Filter Methods
Analog Filters. A common instrumentation filter application is the attenuation of high frequencies to avoid frequency aliasing in the sampled data.
Analog Filters Filters can be used to attenuate unwanted signals such as interference or noise or to isolate desired signals from unwanted. They use the frequency response of a measuring system to alter
Administrative - Master Syllabus COVER SHEET
Administrative - Master Syllabus COVER SHEET Purpose: It is the intention of this to provide a general description of the course, outline the required elements of the course and to lay the foundation for
Analog signals are those which are naturally occurring. Any analog signal can be converted to a digital signal.
3.3 Analog to Digital Conversion (ADC) Analog signals are those which are naturally occurring. Any analog signal can be converted to a digital signal. 1 3.3 Analog to Digital Conversion (ADC) WCB/McGraw-Hill
CM0340 SOLNS. Do not turn this page over until instructed to do so by the Senior Invigilator.
CARDIFF UNIVERSITY EXAMINATION PAPER Academic Year: 2008/2009 Examination Period: Examination Paper Number: Examination Paper Title: SOLUTIONS Duration: Autumn CM0340 SOLNS Multimedia 2 hours Do not turn
LOW COST HARDWARE IMPLEMENTATION FOR DIGITAL HEARING AID USING
LOW COST HARDWARE IMPLEMENTATION FOR DIGITAL HEARING AID USING RasPi Kaveri Ratanpara 1, Priyan Shah 2 1 Student, M.E Biomedical Engineering, Government Engineering college, Sector-28, Gandhinagar (Gujarat)-382028,
Introduction to image coding
Introduction to image coding Image coding aims at reducing amount of data required for image representation, storage or transmission. This is achieved by removing redundant data from an image, i.e. by
CHAPTER 6 Frequency Response, Bode Plots, and Resonance
ELECTRICAL CHAPTER 6 Frequency Response, Bode Plots, and Resonance 1. State the fundamental concepts of Fourier analysis. 2. Determine the output of a filter for a given input consisting of sinusoidal
How To Use A High Definition Oscilloscope
PRELIMINARY High Definition Oscilloscopes HDO4000 and HDO6000 Key Features 12-bit ADC resolution, up to 15-bit with enhanced resolution 200 MHz, 350 MHz, 500 MHz, 1 GHz bandwidths Long Memory up to 250
Implementing an In-Service, Non- Intrusive Measurement Device in Telecommunication Networks Using the TMS320C31
Disclaimer: This document was part of the First European DSP Education and Research Conference. It may have been written by someone whose native language is not English. TI assumes no liability for the
PCM Encoding and Decoding:
PCM Encoding and Decoding: Aim: Introduction to PCM encoding and decoding. Introduction: PCM Encoding: The input to the PCM ENCODER module is an analog message. This must be constrained to a defined bandwidth
School of Mathematics, Computer Science and Engineering. Mathematics* Associate in Arts Degree COURSES, PROGRAMS AND MAJORS
Mathematics School of Mathematics, Computer Science and Engineering Dean: Lianna Zhao, MD Academic Chair: Miriam Castroconde Faculty: Miriam Castroconde; Terry Cheng; Howard Dachslager, PhD; Ilknur Erbas
List of courses MEngg (Computer Systems)
List of courses MEngg (Computer Systems) Course No. Course Title Non-Credit Courses CS-401 CS-402 CS-403 CS-404 CS-405 CS-406 Introduction to Programming Systems Design System Design using Microprocessors
AND9035/D. BELASIGNA 250 and 300 for Low-Bandwidth Applications APPLICATION NOTE
BELASIGNA 250 and 300 for Low-Bandwidth Applications APPLICATION NOTE Introduction This application note describes the use of BELASIGNA 250 and BELASIGNA 300 in low bandwidth applications. The intended
Study Program Handbook Electrical and Computer Engineering
Study Program Handbook Electrical and Computer Engineering Bachelor of Science Jacobs University Undergraduate Handbook ECE - Matriculation Fall 2015 Page: ii Contents 1 The Electrical and Computer Engineering
Signal to Noise Instrumental Excel Assignment
Signal to Noise Instrumental Excel Assignment Instrumental methods, as all techniques involved in physical measurements, are limited by both the precision and accuracy. The precision and accuracy of a
AMSCO S Ann Xavier Gantert
AMSCO S Integrated ALGEBRA 1 Ann Xavier Gantert AMSCO SCHOOL PUBLICATIONS, INC. 315 HUDSON STREET, NEW YORK, N.Y. 10013 Dedication This book is dedicated to Edward Keenan who left a profound influence
FPGA. AT6000 FPGAs. Application Note AT6000 FPGAs. 3x3 Convolver with Run-Time Reconfigurable Vector Multiplier in Atmel AT6000 FPGAs.
3x3 Convolver with Run-Time Reconfigurable Vector Multiplier in Atmel AT6000 s Introduction Convolution is one of the basic and most common operations in both analog and digital domain signal processing.
Project Management Using Earned Value
Project Management Using Earned Value Third Edition Gary C. Humphreys Earned Value Management Consulting Training 2002, 2011, 2014 Gary C. Humphreys Humphreys & Associates, Inc. All rights reserved. No
Abstract. Cycle Domain Simulator for Phase-Locked Loops
Abstract Cycle Domain Simulator for Phase-Locked Loops Norman James December 1999 As computers become faster and more complex, clock synthesis becomes critical. Due to the relatively slower bus clocks
Digital vs. Analog Volume Controls
Digital vs. Analog Volume Controls October 2011 AMM ESS 10/11 Summary of this Presentation In a Digital Audio System what is the trade-off between using a digital or an analog volume control? To answer
Position Classification Flysheet for Computer Science Series, GS-1550. Table of Contents
Position Classification Flysheet for Computer Science Series, GS-1550 Table of Contents SERIES DEFINITION... 2 OCCUPATIONAL INFORMATION... 2 EXCLUSIONS... 4 AUTHORIZED TITLES... 5 GRADE LEVEL CRITERIA...
H.264/MPEG-4 AVC Video Compression Tutorial
Introduction The upcoming H.264/MPEG-4 AVC video compression standard promises a significant improvement over all previous video compression standards. In terms of coding efficiency, the new standard is
Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP
Department of Electrical and Computer Engineering Ben-Gurion University of the Negev LAB 1 - Introduction to USRP - 1-1 Introduction In this lab you will use software reconfigurable RF hardware from National
Implementation of the LMS Algorithm for Noise Cancellation on Speech Using the ARM LPC2378 Processor.
School of Mathematics and Systems Engineering Reports from MSI - Rapporter från MSI Implementation of the LMS Algorithm for Noise Cancellation on Speech Using the ARM LPC2378 Processor. Cesar Augusto Azurdia
Teaching DSP through the Practical Case Study of an FSK Modem
Disclaimer: This document was part of the First European DSP Education and Research Conference. It may have been written by someone whose native language is not English. TI assumes no liability for the
Table 1 Mixed-Signal Test course major topics. Mixed-signal Test and Measurement Concepts ENCT 351 What are Mixed-signal circuits
Mixed-Signal Test Emphasis in Engineering Technology Rainer J. Fink, Jay Porter, Yong-Kyu Jung, B. Ben Zoghi Department of Engineering Technology and Industrial Distribution Texas A&M University College
CSEN301 Embedded Systems Trimester 1
Victoria University of Wellington (VUW) course offering for NZ-EU Joint Mobility Project Novel Sensing Technologies and Instrumentation in Environmental Climate Change Monitoring 1. General The Victoria
Kingdom of Saudi Arabia King Saud University
Kingdom of Saudi Arabia King Saud University College of Computer & Information Sciences Department of Computer Engineering The MASTER S PROGRAM IN COMPUTER ENGINEERING ٢٠٠٣ M.S. PROGRAM IN COMPUTER ENGINEERING
ACCUPLACER Arithmetic & Elementary Algebra Study Guide
ACCUPLACER Arithmetic & Elementary Algebra Study Guide Acknowledgments We would like to thank Aims Community College for allowing us to use their ACCUPLACER Study Guides as well as Aims Community College
Polytechnic University of Puerto Rico Department of Electrical Engineering Master s Degree in Electrical Engineering.
Polytechnic University of Puerto Rico Department of Electrical Engineering Master s Degree in Electrical Engineering Course Syllabus Course Title : Algorithms for Digital Signal Processing Course Code
RARITAN VALLEY COMMUNITY COLLEGE COURSE OUTLINE. CISY 103 Computer Concepts and Programming
RARITAN VALLEY COMMUNITY COLLEGE COURSE OUTLINE CISY 103 Computer Concepts and Programming I. Basic Course Information A. Course Number and Title: CISY-103, Computer Concepts and Programming B. New or
Design and Development of Virtual Instrument (VI) Modules for an Introductory Digital Logic Course
Session ENG 206-6 Design and Development of Virtual Instrument (VI) Modules for an Introductory Digital Logic Course Nikunja Swain, Ph.D., PE South Carolina State University [email protected] Raghu Korrapati,
Optical Metrology. Third Edition. Kjell J. Gasvik Spectra Vision AS, Trondheim, Norway JOHN WILEY & SONS, LTD
2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Optical Metrology Third Edition Kjell J. Gasvik Spectra Vision AS,
CBS RECORDS PROFESSIONAL SERIES CBS RECORDS CD-1 STANDARD TEST DISC
CBS RECORDS PROFESSIONAL SERIES CBS RECORDS CD-1 STANDARD TEST DISC 1. INTRODUCTION The CBS Records CD-1 Test Disc is a highly accurate signal source specifically designed for those interested in making
