Mode-Finding of Gaussian Mixtures

Size: px
Start display at page:

Download "Mode-Finding of Gaussian Mixtures"

Transcription

1 Mode-Finding of Gaussian Mixtures Seppo Pulkkinen University of Turku January 13, 2012 Seppo Pulkkinen (University of Turku) Mode-Finding of Gaussian Mixtures January 13, / 22

2 Outline 1 Introduction Gaussian Mixtures Kernel Density Estimation 2 Practical Applications Visual Tracking 3 Overview of the Algorithm Continuation via the Gaussian Convolution Trust region-based predictor-corrector method Choice of initial values 4 Numerical Results 5 Software Implementation Seppo Pulkkinen (University of Turku) Mode-Finding of Gaussian Mixtures January 13, / 22

3 Gaussian Mixtures Basic Definitions and Motivation A d-dimensional Gaussian mixture is a weighted sum of probability densities of n random variables X i N d (µ i, Σ i ) with mean µ i R d covariance matrix Σ i R d d + That is, n n p(x) = w i g(x; µ i, Σ i ), w i = 1, i=1 where ( 1 g(x; µ, Σ) = exp (x µ)t Σ 1 ) (x µ) (2π) d 2 Σ 2 denotes the normal density and w i > 0 are weighting coefficients. i=1 Seppo Pulkkinen (University of Turku) Mode-Finding of Gaussian Mixtures January 13, / 22

4 Basic Definitions and Motivation Kernel Density Estimation A kernel density estimate (KDE) is constructed from a finite set of samples y i representing some unknown distribution. A KDE is a linear combination of sample probabilities, ˆp h (x) = 1 n K h ( x y n i ), i=1 The kernel function K h : R + R + satisfies the condition K h ( x )dx = 1 R d and h > 0 is the kernel bandwidth. The choice of the kernel bandwidth h is critical for the accuracy of the estimate. The required number of samples is large and increases rapidly with dimension. However, this is a viable approach in low dimensions. Seppo Pulkkinen (University of Turku) Mode-Finding of Gaussian Mixtures January 13, / 22

5 Basic Definitions and Motivation Density Estimation with Gaussian Kernels The KDE induced by the Gaussian kernel ) 1 K h (r) = ( (2π) d 2 h exp r2 d 2h 2 is a special case of a Gaussian mixture. A Gaussian Mixture, its KDE and histogram. A Gaussian KDE and its basis functions. Seppo Pulkkinen (University of Turku) Mode-Finding of Gaussian Mixtures January 13, / 22

6 Brute force algorithm for locating all modes of a GM: At each centroid µ i, start a local optimization method. Not computationally feasible when the number of mixture components is large (e.g. when seeking the modes of a KDE). Numerical results imply that: For homoscedastic GM (Σ i = σi): The algorithm locates all modes (except in some pathological cases). For isotropic GM (Σ i = σ i I): The algorithm usually works, but it is possible to construct an example where it fails to locate all modes. For nonisotropic GM: The algorithm generally fails to locate all modes. Seppo Pulkkinen (University of Turku) Mode-Finding of Gaussian Mixtures January 13, / 22 Basic Definitions and Motivation Mode-finding of Gaussian Mixtures and KDEs M. Á. Carreira-Perpiñán (2000). Mode-finding for Mixtures of Gaussian Distributions IEEE Transactions on Pattern Analysis and Machine Intelligence 22(11)

7 Basic Definitions and Motivation Finding the global Mode of a Gaussian Mixture or KDE In some applications, we only consider finding the global mode. A Gaussian mixture, and especially a KDE can be highly multimodal with a large number of nonrelevant modes. computationally expensive if the number of Gaussians is large. A bivariate Gaussian mixture. KDE of the Gaussian mixture. For seeking the global mode, we need an algorithm that does not get trapped into irrelevant local maxima. converges rapidly to the global mode. Seppo Pulkkinen (University of Turku) Mode-Finding of Gaussian Mixtures January 13, / 22

8 Practical Applications Practical Application: Real-Time Object Tracking Original image. Gaussian mixture model. Assume that a Gaussian mixture model (or KDE) gives the probability that the specified target is at the given location. The target can be located by finding the global mode of the density. Exhaustive mode finding might not be feasible since we are dealing with a real-time application. Seppo Pulkkinen (University of Turku) Mode-Finding of Gaussian Mixtures January 13, / 22

9 Mode-Finding Algorithm Global Mode-Finding Algorithm We have developed an algorithm for finding global modes (maxima) of isotropic Gaussian mixtures and KDEs. The isotropic Gaussian mixture (i.e. a GM with Σ i = σi 2 I) is p(x) = 1 (2π) d 2 n w i σ d i=1 i exp ( x µ i 2 ). The algorithm is more robust and efficient than, for instance, the classical mean-shift algorithm for mode-finding. 2σ 2 i S. Pulkkinen and M.M. Mäkelä and N. Karmitsa (2012). A Continuation approach to Mode-Finding of Multivariate Gaussian Mixtures and Kernel Density Estimates Journal of Global Optimization, to appear. Seppo Pulkkinen (University of Turku) Mode-Finding of Gaussian Mixtures January 13, / 22

10 Mode-Finding Algorithm Previous Approaches: The Mean-Shift Algorithm The Gaussian mean shift (Cheng, Comaniciu et al.) is obtained from the condition p(x) = 0. The update formula is a fixed point iteration: ) n i=1 w i exp ( x k µ i 2 µ σ x k+1 = d+2 2σ 2 i i i ( ). n i=1 w i exp x k µ i 2 σ d+2 2σ 2 i i This method has only linear convergence. The result also depends on the choice of the starting point. In principle, a mean-shift iteration could be started from a large number of starting points. This might not be computationally feasible for many practical applications. Seppo Pulkkinen (University of Turku) Mode-Finding of Gaussian Mixtures January 13, / 22

11 Mode-Finding Algorithm The Continuation Principle Use a parametrized transformation p γ such that lim γ 0 p γ = p. p γ0 has a unique maximizer for some γ 0 > 0. Gradually transform the original Gaussian mixture p into p γ0. Follow the maximizers of the transformed mixtures back to the original mixture as γ 0. This continuation approach effectively skips undesired local maxima. Seppo Pulkkinen (University of Turku) Mode-Finding of Gaussian Mixtures January 13, / 22

12 Mode-Finding Algorithm The Gaussian Convolution Definition The Gaussian convolution of a Gaussian mixture p is ) y x 2 p γ (x) = C γ p(y) exp ( γ 2 dy, R d where C γ = ( 1 πγ ) d is a normalization factor. Larger values of γ give a smoother mixture. The transformation produces the original mixture as γ 0. The Gaussian convolution of a Gaussian mixture has a closed-form expression. Seppo Pulkkinen (University of Turku) Mode-Finding of Gaussian Mixtures January 13, / 22

13 Mode-Finding Algorithm Differential Equation Formulation Define the homotopy mapping Impose the optimality conditions h(x, γ) = p γ (x), h(x, 0) = p(x). x h(x(γ), γ) = 0, 2 xh(x(γ), γ) is negative definite γ [0, γ 0 ], γ 0 > 0. This leads to the initial value problem x (γ) = 2 xh(x(γ), γ) 1 γ xh(x(γ), γ) γ ]0, γ 0 ], x(γ 0 ) = x 0 for some γ 0 > 0 and x 0 R d satisfying the above optimality conditions. Seppo Pulkkinen (University of Turku) Mode-Finding of Gaussian Mixtures January 13, / 22

14 Implementation and Numerical Results Predictor-Corrector Method The solution curve of the initial value problem is highly nonlinear. However, it is a linear first-order ODE. A standard IVP solver can be applied. Linearize the problem, i.e. take a predictor step along the tangent of the solution curve. Apply a corrector method to return back to the solution curve. The proposed algorithm uses a rapidly converging and robust trust region Newton method with superlinear convergence. Seppo Pulkkinen (University of Turku) Mode-Finding of Gaussian Mixtures January 13, / 22

15 Implementation and Numerical Results Choice of Starting Point The convolved Gaussian mixture p γ is strictly concave in a given d-ball if γ is sufficiently large. The unique maximizer of p γ converges to the mean of the Gaussian mixture as γ. It can be shown that all stationary points of a GM lie within the convex hull of the means µ i. Consequently, the starting point for the continuation can be uniquely determined. Seppo Pulkkinen (University of Turku) Mode-Finding of Gaussian Mixtures January 13, / 22

16 Implementation and Numerical Results Summary of the Algorithm Key Components of the Proposed Algorithm: 1 The Gaussian convolution for smoothing the Gaussian mixture. 2 A differential equation describing the transformation of maximizers of the transformed mixtures. 3 Conditions for concavity of the transformed mixture. As a result, the starting point can be uniquely determined. 4 A robust trust region-based predictor-corrector method. A steplength adaptation strategy. Newton-based corrector with trust regions. Seppo Pulkkinen (University of Turku) Mode-Finding of Gaussian Mixtures January 13, / 22

17 Numerical Results Implementation and Numerical Results The algorithm was applied to kernel density estimates obtained by sampling from Gaussian mixtures considered as the true density. We chose the optimal kernel bandwidth. The results imply a high success rate considering that the number of modes in the KDEs is large due to sampling artifacts. p Modes in p ˆp h Modes in ˆp h Success p Modes in p ˆp h Modes in ˆp h Success yes 1 37 no 2 35 yes no 3 40 yes 3 40 no 1 24 yes 1 23 no 2 21 yes yes 3 19 yes 3 23 yes 1 36 yes 1 35 no 2 25 yes no 3 31 yes 3 36 no 1 37 yes 1 26 yes 2 27 no yes 3 35 yes 3 27 yes 1 23 yes 1 57 yes 2 26 yes yes 3 24 yes 3 49 yes Seppo Pulkkinen (University of Turku) Mode-Finding of Gaussian Mixtures January 13, / 22

18 Implementation and Numerical Results Implementation Python + numpy + matplotlib high-level interfaces FORTRAN + OpenMP evaluation visualization f2py testing mode-finding The core routines are implemented in Fortran 95. Parallelization via OpenMP. Optimized routines for evaluation of a Gaussian mixture and its derivatives. Mode-finding via the trust region-based Newton method and the continuation method. Additional Python interfaces using PyLab via f2py. Future versions will include methods for other methods related to Gaussian mixture analysis. finding all modes and not only the global one (clustering) finding saddle points (principal curve estimation) Seppo Pulkkinen (University of Turku) Mode-Finding of Gaussian Mixtures January 13, / 22

19 Conclusions Conclusions and Future Research The proposed algorithm: Converges to the global or some significant mode of a Gaussian mixture or KDE. Is insensitive to the choice of starting point. Is computationally highly efficient. Topics of future research: Mode-Finding of anisotropic Gaussian mixtures? Finding all modes or saddle points of a Gaussian KDE is a fundamental problem in data analysis. In KDE-based clustering, the modes of the KDE represent clusters. The saddle points of a KDE represent cluster boundaries and they lie on the principal curves of a dataset. Develop an algorithm for exhaustive mode- and saddle point-finding of Gaussian mixtures and KDEs? Seppo Pulkkinen (University of Turku) Mode-Finding of Gaussian Mixtures January 13, / 22

20 Other Applications and Problems related to Gaussian Mixtures Finding all Modes: Connectedness of Critical Curves A point x R d is on a critical curve of p if and only if 2 p(x) p(x) = λ p(x) for some λ R Critical curves connect critical points (i.e. points where p(x) = 0). In principle, all modes of a Gaussian mixture can be found by following critical curves. Implementing a numerical algorithm for tracing a critical curve is nontrivial. Open problem: Under what conditions the graph of critical curves is connected? Seppo Pulkkinen (University of Turku) Mode-Finding of Gaussian Mixtures January 13, / 22

21 Other Applications and Problems related to Gaussian Mixtures Kernel Density Clustering True clusters Kernel density clusters Construct a KDE from the data samples. Each mode of the KDE is interpreted as a cluster. A data point x i belongs to the given cluster if a local iteration (e.g. mean-shift or Newton) started from x i converges to the mode corresponding the cluster. Seppo Pulkkinen (University of Turku) Mode-Finding of Gaussian Mixtures January 13, / 22

22 Other Applications and Problems related to Gaussian Mixtures Kernel Density Principal Curves (Ozertem et al., 2008) True principal curve Kernel density principal curves A principal curve passes through the middle of the data. A point x R d is on the principal curve of a probability density if and only if 2 p(x) p(x) = λ p(x), where λ is the largest negative eigenvalue of 2 p(x). Seppo Pulkkinen (University of Turku) Mode-Finding of Gaussian Mixtures January 13, / 22

Linear Threshold Units

Linear Threshold Units Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear

More information

2.2 Creaseness operator

2.2 Creaseness operator 2.2. Creaseness operator 31 2.2 Creaseness operator Antonio López, a member of our group, has studied for his PhD dissertation the differential operators described in this section [72]. He has compared

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 6 Three Approaches to Classification Construct

More information

Regression III: Advanced Methods

Regression III: Advanced Methods Lecture 16: Generalized Additive Models Regression III: Advanced Methods Bill Jacoby Michigan State University http://polisci.msu.edu/jacoby/icpsr/regress3 Goals of the Lecture Introduce Additive Models

More information

Robert Collins CSE598G. More on Mean-shift. R.Collins, CSE, PSU CSE598G Spring 2006

Robert Collins CSE598G. More on Mean-shift. R.Collins, CSE, PSU CSE598G Spring 2006 More on Mean-shift R.Collins, CSE, PSU Spring 2006 Recall: Kernel Density Estimation Given a set of data samples x i ; i=1...n Convolve with a kernel function H to generate a smooth function f(x) Equivalent

More information

Analysis of kiva.com Microlending Service! Hoda Eydgahi Julia Ma Andy Bardagjy December 9, 2010 MAS.622j

Analysis of kiva.com Microlending Service! Hoda Eydgahi Julia Ma Andy Bardagjy December 9, 2010 MAS.622j Analysis of kiva.com Microlending Service! Hoda Eydgahi Julia Ma Andy Bardagjy December 9, 2010 MAS.622j What is Kiva? An organization that allows people to lend small amounts of money via the Internet

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes

More information

Lecture 3: Linear methods for classification

Lecture 3: Linear methods for classification Lecture 3: Linear methods for classification Rafael A. Irizarry and Hector Corrada Bravo February, 2010 Today we describe four specific algorithms useful for classification problems: linear regression,

More information

MACHINE LEARNING IN HIGH ENERGY PHYSICS

MACHINE LEARNING IN HIGH ENERGY PHYSICS MACHINE LEARNING IN HIGH ENERGY PHYSICS LECTURE #1 Alex Rogozhnikov, 2015 INTRO NOTES 4 days two lectures, two practice seminars every day this is introductory track to machine learning kaggle competition!

More information

Lecture 5 Principal Minors and the Hessian

Lecture 5 Principal Minors and the Hessian Lecture 5 Principal Minors and the Hessian Eivind Eriksen BI Norwegian School of Management Department of Economics October 01, 2010 Eivind Eriksen (BI Dept of Economics) Lecture 5 Principal Minors and

More information

A Complete Gradient Clustering Algorithm for Features Analysis of X-ray Images

A Complete Gradient Clustering Algorithm for Features Analysis of X-ray Images A Complete Gradient Clustering Algorithm for Features Analysis of X-ray Images Małgorzata Charytanowicz, Jerzy Niewczas, Piotr A. Kowalski, Piotr Kulczycki, Szymon Łukasik, and Sławomir Żak Abstract Methods

More information

Mean-Shift Tracking with Random Sampling

Mean-Shift Tracking with Random Sampling 1 Mean-Shift Tracking with Random Sampling Alex Po Leung, Shaogang Gong Department of Computer Science Queen Mary, University of London, London, E1 4NS Abstract In this work, boosting the efficiency of

More information

Logistic Regression. Jia Li. Department of Statistics The Pennsylvania State University. Logistic Regression

Logistic Regression. Jia Li. Department of Statistics The Pennsylvania State University. Logistic Regression Logistic Regression Department of Statistics The Pennsylvania State University Email: jiali@stat.psu.edu Logistic Regression Preserve linear classification boundaries. By the Bayes rule: Ĝ(x) = arg max

More information

Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not.

Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not. Statistical Learning: Chapter 4 Classification 4.1 Introduction Supervised learning with a categorical (Qualitative) response Notation: - Feature vector X, - qualitative response Y, taking values in C

More information

Hyperspectral images retrieval with Support Vector Machines (SVM)

Hyperspectral images retrieval with Support Vector Machines (SVM) Hyperspectral images retrieval with Support Vector Machines (SVM) Miguel A. Veganzones Grupo Inteligencia Computacional Universidad del País Vasco (Grupo Inteligencia SVM-retrieval Computacional Universidad

More information

Multivariate Normal Distribution

Multivariate Normal Distribution Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #4-7/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues

More information

Predict Influencers in the Social Network

Predict Influencers in the Social Network Predict Influencers in the Social Network Ruishan Liu, Yang Zhao and Liuyu Zhou Email: rliu2, yzhao2, lyzhou@stanford.edu Department of Electrical Engineering, Stanford University Abstract Given two persons

More information

Least-Squares Intersection of Lines

Least-Squares Intersection of Lines Least-Squares Intersection of Lines Johannes Traa - UIUC 2013 This write-up derives the least-squares solution for the intersection of lines. In the general case, a set of lines will not intersect at a

More information

Section 12.6: Directional Derivatives and the Gradient Vector

Section 12.6: Directional Derivatives and the Gradient Vector Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate

More information

Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models Introduction to General and Generalized Linear Models General Linear Models - part I Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby

More information

Statistical Models in Data Mining

Statistical Models in Data Mining Statistical Models in Data Mining Sargur N. Srihari University at Buffalo The State University of New York Department of Computer Science and Engineering Department of Biostatistics 1 Srihari Flood of

More information

The Artificial Prediction Market

The Artificial Prediction Market The Artificial Prediction Market Adrian Barbu Department of Statistics Florida State University Joint work with Nathan Lay, Siemens Corporate Research 1 Overview Main Contributions A mathematical theory

More information

Vision based Vehicle Tracking using a high angle camera

Vision based Vehicle Tracking using a high angle camera Vision based Vehicle Tracking using a high angle camera Raúl Ignacio Ramos García Dule Shu gramos@clemson.edu dshu@clemson.edu Abstract A vehicle tracking and grouping algorithm is presented in this work

More information

Linear and quadratic Taylor polynomials for functions of several variables.

Linear and quadratic Taylor polynomials for functions of several variables. ams/econ 11b supplementary notes ucsc Linear quadratic Taylor polynomials for functions of several variables. c 010, Yonatan Katznelson Finding the extreme (minimum or maximum) values of a function, is

More information

LABEL PROPAGATION ON GRAPHS. SEMI-SUPERVISED LEARNING. ----Changsheng Liu 10-30-2014

LABEL PROPAGATION ON GRAPHS. SEMI-SUPERVISED LEARNING. ----Changsheng Liu 10-30-2014 LABEL PROPAGATION ON GRAPHS. SEMI-SUPERVISED LEARNING ----Changsheng Liu 10-30-2014 Agenda Semi Supervised Learning Topics in Semi Supervised Learning Label Propagation Local and global consistency Graph

More information

10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS. The Jacobi Method

10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS. The Jacobi Method 578 CHAPTER 1 NUMERICAL METHODS 1. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS As a numerical technique, Gaussian elimination is rather unusual because it is direct. That is, a solution is obtained after

More information

How To Understand The Theory Of Probability

How To Understand The Theory Of Probability Graduate Programs in Statistics Course Titles STAT 100 CALCULUS AND MATR IX ALGEBRA FOR STATISTICS. Differential and integral calculus; infinite series; matrix algebra STAT 195 INTRODUCTION TO MATHEMATICAL

More information

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system 1. Systems of linear equations We are interested in the solutions to systems of linear equations. A linear equation is of the form 3x 5y + 2z + w = 3. The key thing is that we don t multiply the variables

More information

Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued.

Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued. Linear Programming Widget Factory Example Learning Goals. Introduce Linear Programming Problems. Widget Example, Graphical Solution. Basic Theory:, Vertices, Existence of Solutions. Equivalent formulations.

More information

A.II. Kernel Estimation of Densities

A.II. Kernel Estimation of Densities A.II. Kernel Estimation of Densities Olivier Scaillet University of Geneva and Swiss Finance Institute Outline 1 Introduction 2 Issues with Empirical Averages 3 Kernel Estimator 4 Optimal Bandwidth 5 Bivariate

More information

Semi-Supervised Support Vector Machines and Application to Spam Filtering

Semi-Supervised Support Vector Machines and Application to Spam Filtering Semi-Supervised Support Vector Machines and Application to Spam Filtering Alexander Zien Empirical Inference Department, Bernhard Schölkopf Max Planck Institute for Biological Cybernetics ECML 2006 Discovery

More information

University of Lille I PC first year list of exercises n 7. Review

University of Lille I PC first year list of exercises n 7. Review University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients

More information

CHAPTER 2. Eigenvalue Problems (EVP s) for ODE s

CHAPTER 2. Eigenvalue Problems (EVP s) for ODE s A SERIES OF CLASS NOTES FOR 005-006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 4 A COLLECTION OF HANDOUTS ON PARTIAL DIFFERENTIAL EQUATIONS

More information

DERIVATIVES AS MATRICES; CHAIN RULE

DERIVATIVES AS MATRICES; CHAIN RULE DERIVATIVES AS MATRICES; CHAIN RULE 1. Derivatives of Real-valued Functions Let s first consider functions f : R 2 R. Recall that if the partial derivatives of f exist at the point (x 0, y 0 ), then we

More information

Gaussian Processes in Machine Learning

Gaussian Processes in Machine Learning Gaussian Processes in Machine Learning Carl Edward Rasmussen Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany carl@tuebingen.mpg.de WWW home page: http://www.tuebingen.mpg.de/ carl

More information

Statistics in Retail Finance. Chapter 6: Behavioural models

Statistics in Retail Finance. Chapter 6: Behavioural models Statistics in Retail Finance 1 Overview > So far we have focussed mainly on application scorecards. In this chapter we shall look at behavioural models. We shall cover the following topics:- Behavioural

More information

Numerical Analysis. Professor Donna Calhoun. Fall 2013 Math 465/565. Office : MG241A Office Hours : Wednesday 10:00-12:00 and 1:00-3:00

Numerical Analysis. Professor Donna Calhoun. Fall 2013 Math 465/565. Office : MG241A Office Hours : Wednesday 10:00-12:00 and 1:00-3:00 Numerical Analysis Professor Donna Calhoun Office : MG241A Office Hours : Wednesday 10:00-12:00 and 1:00-3:00 Fall 2013 Math 465/565 http://math.boisestate.edu/~calhoun/teaching/math565_fall2013 What is

More information

AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS

AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS Revised Edition James Epperson Mathematical Reviews BICENTENNIAL 0, 1 8 0 7 z ewiley wu 2007 r71 BICENTENNIAL WILEY-INTERSCIENCE A John Wiley & Sons, Inc.,

More information

An Overview of Knowledge Discovery Database and Data mining Techniques

An Overview of Knowledge Discovery Database and Data mining Techniques An Overview of Knowledge Discovery Database and Data mining Techniques Priyadharsini.C 1, Dr. Antony Selvadoss Thanamani 2 M.Phil, Department of Computer Science, NGM College, Pollachi, Coimbatore, Tamilnadu,

More information

Bildverarbeitung und Mustererkennung Image Processing and Pattern Recognition

Bildverarbeitung und Mustererkennung Image Processing and Pattern Recognition Bildverarbeitung und Mustererkennung Image Processing and Pattern Recognition 1. Image Pre-Processing - Pixel Brightness Transformation - Geometric Transformation - Image Denoising 1 1. Image Pre-Processing

More information

24. The Branch and Bound Method

24. The Branch and Bound Method 24. The Branch and Bound Method It has serious practical consequences if it is known that a combinatorial problem is NP-complete. Then one can conclude according to the present state of science that no

More information

Methods of Data Analysis Working with probability distributions

Methods of Data Analysis Working with probability distributions Methods of Data Analysis Working with probability distributions Week 4 1 Motivation One of the key problems in non-parametric data analysis is to create a good model of a generating probability distribution,

More information

CS 688 Pattern Recognition Lecture 4. Linear Models for Classification

CS 688 Pattern Recognition Lecture 4. Linear Models for Classification CS 688 Pattern Recognition Lecture 4 Linear Models for Classification Probabilistic generative models Probabilistic discriminative models 1 Generative Approach ( x ) p C k p( C k ) Ck p ( ) ( x Ck ) p(

More information

Reject Inference in Credit Scoring. Jie-Men Mok

Reject Inference in Credit Scoring. Jie-Men Mok Reject Inference in Credit Scoring Jie-Men Mok BMI paper January 2009 ii Preface In the Master programme of Business Mathematics and Informatics (BMI), it is required to perform research on a business

More information

Computational Statistics for Big Data

Computational Statistics for Big Data Lancaster University Computational Statistics for Big Data Author: 1 Supervisors: Paul Fearnhead 1 Emily Fox 2 1 Lancaster University 2 The University of Washington September 1, 2015 Abstract The amount

More information

Facebook Friend Suggestion Eytan Daniyalzade and Tim Lipus

Facebook Friend Suggestion Eytan Daniyalzade and Tim Lipus Facebook Friend Suggestion Eytan Daniyalzade and Tim Lipus 1. Introduction Facebook is a social networking website with an open platform that enables developers to extract and utilize user information

More information

Component Ordering in Independent Component Analysis Based on Data Power

Component Ordering in Independent Component Analysis Based on Data Power Component Ordering in Independent Component Analysis Based on Data Power Anne Hendrikse Raymond Veldhuis University of Twente University of Twente Fac. EEMCS, Signals and Systems Group Fac. EEMCS, Signals

More information

So which is the best?

So which is the best? Manifold Learning Techniques: So which is the best? Todd Wittman Math 8600: Geometric Data Analysis Instructor: Gilad Lerman Spring 2005 Note: This presentation does not contain information on LTSA, which

More information

(Quasi-)Newton methods

(Quasi-)Newton methods (Quasi-)Newton methods 1 Introduction 1.1 Newton method Newton method is a method to find the zeros of a differentiable non-linear function g, x such that g(x) = 0, where g : R n R n. Given a starting

More information

Constrained curve and surface fitting

Constrained curve and surface fitting Constrained curve and surface fitting Simon Flöry FSP-Meeting Strobl (June 20, 2006), floery@geoemtrie.tuwien.ac.at, Vienna University of Technology Overview Introduction Motivation, Overview, Problem

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

Numerical Analysis An Introduction

Numerical Analysis An Introduction Walter Gautschi Numerical Analysis An Introduction 1997 Birkhauser Boston Basel Berlin CONTENTS PREFACE xi CHAPTER 0. PROLOGUE 1 0.1. Overview 1 0.2. Numerical analysis software 3 0.3. Textbooks and monographs

More information

2WB05 Simulation Lecture 8: Generating random variables

2WB05 Simulation Lecture 8: Generating random variables 2WB05 Simulation Lecture 8: Generating random variables Marko Boon http://www.win.tue.nl/courses/2wb05 January 7, 2013 Outline 2/36 1. How do we generate random variables? 2. Fitting distributions Generating

More information

Semi-Supervised Learning in Inferring Mobile Device Locations

Semi-Supervised Learning in Inferring Mobile Device Locations Semi-Supervised Learning in Inferring Mobile Device Locations Rong Duan, Olivia Hong, Guangqin Ma rduan,ohong,gma @research.att.com AT&T Labs 200 S Laurel Ave Middletown, NJ 07748 Abstract With the development

More information

Statistics, Data Mining and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data. and Alex Gray

Statistics, Data Mining and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data. and Alex Gray Statistics, Data Mining and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data Željko Ivezić, Andrew J. Connolly, Jacob T. VanderPlas University of Washington and Alex

More information

Mean value theorem, Taylors Theorem, Maxima and Minima.

Mean value theorem, Taylors Theorem, Maxima and Minima. MA 001 Preparatory Mathematics I. Complex numbers as ordered pairs. Argand s diagram. Triangle inequality. De Moivre s Theorem. Algebra: Quadratic equations and express-ions. Permutations and Combinations.

More information

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop Music and Machine Learning (IFT6080 Winter 08) Prof. Douglas Eck, Université de Montréal These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher

More information

Logistic Regression. Vibhav Gogate The University of Texas at Dallas. Some Slides from Carlos Guestrin, Luke Zettlemoyer and Dan Weld.

Logistic Regression. Vibhav Gogate The University of Texas at Dallas. Some Slides from Carlos Guestrin, Luke Zettlemoyer and Dan Weld. Logistic Regression Vibhav Gogate The University of Texas at Dallas Some Slides from Carlos Guestrin, Luke Zettlemoyer and Dan Weld. Generative vs. Discriminative Classifiers Want to Learn: h:x Y X features

More information

Pattern Analysis. Logistic Regression. 12. Mai 2009. Joachim Hornegger. Chair of Pattern Recognition Erlangen University

Pattern Analysis. Logistic Regression. 12. Mai 2009. Joachim Hornegger. Chair of Pattern Recognition Erlangen University Pattern Analysis Logistic Regression 12. Mai 2009 Joachim Hornegger Chair of Pattern Recognition Erlangen University Pattern Analysis 2 / 43 1 Logistic Regression Posteriors and the Logistic Function Decision

More information

Lecture 6: Logistic Regression

Lecture 6: Logistic Regression Lecture 6: CS 194-10, Fall 2011 Laurent El Ghaoui EECS Department UC Berkeley September 13, 2011 Outline Outline Classification task Data : X = [x 1,..., x m]: a n m matrix of data points in R n. y { 1,

More information

Spatial Statistics Chapter 3 Basics of areal data and areal data modeling

Spatial Statistics Chapter 3 Basics of areal data and areal data modeling Spatial Statistics Chapter 3 Basics of areal data and areal data modeling Recall areal data also known as lattice data are data Y (s), s D where D is a discrete index set. This usually corresponds to data

More information

Java Modules for Time Series Analysis

Java Modules for Time Series Analysis Java Modules for Time Series Analysis Agenda Clustering Non-normal distributions Multifactor modeling Implied ratings Time series prediction 1. Clustering + Cluster 1 Synthetic Clustering + Time series

More information

Smoothing and Non-Parametric Regression

Smoothing and Non-Parametric Regression Smoothing and Non-Parametric Regression Germán Rodríguez grodri@princeton.edu Spring, 2001 Objective: to estimate the effects of covariates X on a response y nonparametrically, letting the data suggest

More information

Data Mining. Cluster Analysis: Advanced Concepts and Algorithms

Data Mining. Cluster Analysis: Advanced Concepts and Algorithms Data Mining Cluster Analysis: Advanced Concepts and Algorithms Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 1 More Clustering Methods Prototype-based clustering Density-based clustering Graph-based

More information

Learning Gaussian process models from big data. Alan Qi Purdue University Joint work with Z. Xu, F. Yan, B. Dai, and Y. Zhu

Learning Gaussian process models from big data. Alan Qi Purdue University Joint work with Z. Xu, F. Yan, B. Dai, and Y. Zhu Learning Gaussian process models from big data Alan Qi Purdue University Joint work with Z. Xu, F. Yan, B. Dai, and Y. Zhu Machine learning seminar at University of Cambridge, July 4 2012 Data A lot of

More information

APPM4720/5720: Fast algorithms for big data. Gunnar Martinsson The University of Colorado at Boulder

APPM4720/5720: Fast algorithms for big data. Gunnar Martinsson The University of Colorado at Boulder APPM4720/5720: Fast algorithms for big data Gunnar Martinsson The University of Colorado at Boulder Course objectives: The purpose of this course is to teach efficient algorithms for processing very large

More information

A Stochastic 3MG Algorithm with Application to 2D Filter Identification

A Stochastic 3MG Algorithm with Application to 2D Filter Identification A Stochastic 3MG Algorithm with Application to 2D Filter Identification Emilie Chouzenoux 1, Jean-Christophe Pesquet 1, and Anisia Florescu 2 1 Laboratoire d Informatique Gaspard Monge - CNRS Univ. Paris-Est,

More information

Blind Deconvolution of Barcodes via Dictionary Analysis and Wiener Filter of Barcode Subsections

Blind Deconvolution of Barcodes via Dictionary Analysis and Wiener Filter of Barcode Subsections Blind Deconvolution of Barcodes via Dictionary Analysis and Wiener Filter of Barcode Subsections Maximilian Hung, Bohyun B. Kim, Xiling Zhang August 17, 2013 Abstract While current systems already provide

More information

Using Mixtures-of-Distributions models to inform farm size selection decisions in representative farm modelling. Philip Kostov and Seamus McErlean

Using Mixtures-of-Distributions models to inform farm size selection decisions in representative farm modelling. Philip Kostov and Seamus McErlean Using Mixtures-of-Distributions models to inform farm size selection decisions in representative farm modelling. by Philip Kostov and Seamus McErlean Working Paper, Agricultural and Food Economics, Queen

More information

Numerical methods for American options

Numerical methods for American options Lecture 9 Numerical methods for American options Lecture Notes by Andrzej Palczewski Computational Finance p. 1 American options The holder of an American option has the right to exercise it at any moment

More information

Depth and Excluded Courses

Depth and Excluded Courses Depth and Excluded Courses Depth Courses for Communication, Control, and Signal Processing EECE 5576 Wireless Communication Systems 4 SH EECE 5580 Classical Control Systems 4 SH EECE 5610 Digital Control

More information

Reference: Introduction to Partial Differential Equations by G. Folland, 1995, Chap. 3.

Reference: Introduction to Partial Differential Equations by G. Folland, 1995, Chap. 3. 5 Potential Theory Reference: Introduction to Partial Differential Equations by G. Folland, 995, Chap. 3. 5. Problems of Interest. In what follows, we consider Ω an open, bounded subset of R n with C 2

More information

Simple and efficient online algorithms for real world applications

Simple and efficient online algorithms for real world applications Simple and efficient online algorithms for real world applications Università degli Studi di Milano Milano, Italy Talk @ Centro de Visión por Computador Something about me PhD in Robotics at LIRA-Lab,

More information

Data Mining: An Overview. David Madigan http://www.stat.columbia.edu/~madigan

Data Mining: An Overview. David Madigan http://www.stat.columbia.edu/~madigan Data Mining: An Overview David Madigan http://www.stat.columbia.edu/~madigan Overview Brief Introduction to Data Mining Data Mining Algorithms Specific Eamples Algorithms: Disease Clusters Algorithms:

More information

How To Register Point Sets

How To Register Point Sets Non-rigid point set registration: Coherent Point Drift Andriy Myronenko Xubo Song Miguel Á. Carreira-Perpiñán Department of Computer Science and Electrical Engineering OGI School of Science and Engineering

More information

Big Data Interpolation: An Effcient Sampling Alternative for Sensor Data Aggregation

Big Data Interpolation: An Effcient Sampling Alternative for Sensor Data Aggregation Big Data Interpolation: An Effcient Sampling Alternative for Sensor Data Aggregation Hadassa Daltrophe, Shlomi Dolev, Zvi Lotker Ben-Gurion University Outline Introduction Motivation Problem definition

More information

CCNY. BME I5100: Biomedical Signal Processing. Linear Discrimination. Lucas C. Parra Biomedical Engineering Department City College of New York

CCNY. BME I5100: Biomedical Signal Processing. Linear Discrimination. Lucas C. Parra Biomedical Engineering Department City College of New York BME I5100: Biomedical Signal Processing Linear Discrimination Lucas C. Parra Biomedical Engineering Department CCNY 1 Schedule Week 1: Introduction Linear, stationary, normal - the stuff biology is not

More information

Classification Techniques for Remote Sensing

Classification Techniques for Remote Sensing Classification Techniques for Remote Sensing Selim Aksoy Department of Computer Engineering Bilkent University Bilkent, 06800, Ankara saksoy@cs.bilkent.edu.tr http://www.cs.bilkent.edu.tr/ saksoy/courses/cs551

More information

Lecture 14. Point Spread Function (PSF)

Lecture 14. Point Spread Function (PSF) Lecture 14 Point Spread Function (PSF), Modulation Transfer Function (MTF), Signal-to-noise Ratio (SNR), Contrast-to-noise Ratio (CNR), and Receiver Operating Curves (ROC) Point Spread Function (PSF) Recollect

More information

Digital Imaging and Multimedia. Filters. Ahmed Elgammal Dept. of Computer Science Rutgers University

Digital Imaging and Multimedia. Filters. Ahmed Elgammal Dept. of Computer Science Rutgers University Digital Imaging and Multimedia Filters Ahmed Elgammal Dept. of Computer Science Rutgers University Outlines What are Filters Linear Filters Convolution operation Properties of Linear Filters Application

More information

Airport Planning and Design. Excel Solver

Airport Planning and Design. Excel Solver Airport Planning and Design Excel Solver Dr. Antonio A. Trani Professor of Civil and Environmental Engineering Virginia Polytechnic Institute and State University Blacksburg, Virginia Spring 2012 1 of

More information

EM Clustering Approach for Multi-Dimensional Analysis of Big Data Set

EM Clustering Approach for Multi-Dimensional Analysis of Big Data Set EM Clustering Approach for Multi-Dimensional Analysis of Big Data Set Amhmed A. Bhih School of Electrical and Electronic Engineering Princy Johnson School of Electrical and Electronic Engineering Martin

More information

HT2015: SC4 Statistical Data Mining and Machine Learning

HT2015: SC4 Statistical Data Mining and Machine Learning HT2015: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Bayesian Nonparametrics Parametric vs Nonparametric

More information

Statistical Machine Learning from Data

Statistical Machine Learning from Data Samy Bengio Statistical Machine Learning from Data 1 Statistical Machine Learning from Data Gaussian Mixture Models Samy Bengio IDIAP Research Institute, Martigny, Switzerland, and Ecole Polytechnique

More information

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives

More information

TOPIC 4: DERIVATIVES

TOPIC 4: DERIVATIVES TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the

More information

Data Mining in Pharmaceutical Marketing and Sales Analysis. Andrew Chabak Rembrandt Group

Data Mining in Pharmaceutical Marketing and Sales Analysis. Andrew Chabak Rembrandt Group Data Mining in Pharmaceutical Marketing and Sales Analysis Andrew Chabak Rembrandt Group 1 Contents What is Data Mining? Data Mining vs. Statistics: what is the difference? Why Data Mining is important

More information

Tensor Methods for Machine Learning, Computer Vision, and Computer Graphics

Tensor Methods for Machine Learning, Computer Vision, and Computer Graphics Tensor Methods for Machine Learning, Computer Vision, and Computer Graphics Part I: Factorizations and Statistical Modeling/Inference Amnon Shashua School of Computer Science & Eng. The Hebrew University

More information

Differential Operators and their Adjoint Operators

Differential Operators and their Adjoint Operators Differential Operators and their Adjoint Operators Differential Operators inear functions from E n to E m may be described, once bases have been selected in both spaces ordinarily one uses the standard

More information

Unsupervised and supervised dimension reduction: Algorithms and connections

Unsupervised and supervised dimension reduction: Algorithms and connections Unsupervised and supervised dimension reduction: Algorithms and connections Jieping Ye Department of Computer Science and Engineering Evolutionary Functional Genomics Center The Biodesign Institute Arizona

More information

Unsupervised Data Mining (Clustering)

Unsupervised Data Mining (Clustering) Unsupervised Data Mining (Clustering) Javier Béjar KEMLG December 01 Javier Béjar (KEMLG) Unsupervised Data Mining (Clustering) December 01 1 / 51 Introduction Clustering in KDD One of the main tasks in

More information

Towards better accuracy for Spam predictions

Towards better accuracy for Spam predictions Towards better accuracy for Spam predictions Chengyan Zhao Department of Computer Science University of Toronto Toronto, Ontario, Canada M5S 2E4 czhao@cs.toronto.edu Abstract Spam identification is crucial

More information

Numerical Methods For Image Restoration

Numerical Methods For Image Restoration Numerical Methods For Image Restoration CIRAM Alessandro Lanza University of Bologna, Italy Faculty of Engineering CIRAM Outline 1. Image Restoration as an inverse problem 2. Image degradation models:

More information

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming

More information

On Correlating Performance Metrics

On Correlating Performance Metrics On Correlating Performance Metrics Yiping Ding and Chris Thornley BMC Software, Inc. Kenneth Newman BMC Software, Inc. University of Massachusetts, Boston Performance metrics and their measurements are

More information

Basics of Statistical Machine Learning

Basics of Statistical Machine Learning CS761 Spring 2013 Advanced Machine Learning Basics of Statistical Machine Learning Lecturer: Xiaojin Zhu jerryzhu@cs.wisc.edu Modern machine learning is rooted in statistics. You will find many familiar

More information

Machine Learning and Data Analysis overview. Department of Cybernetics, Czech Technical University in Prague. http://ida.felk.cvut.

Machine Learning and Data Analysis overview. Department of Cybernetics, Czech Technical University in Prague. http://ida.felk.cvut. Machine Learning and Data Analysis overview Jiří Kléma Department of Cybernetics, Czech Technical University in Prague http://ida.felk.cvut.cz psyllabus Lecture Lecturer Content 1. J. Kléma Introduction,

More information

Using kernel methods to visualise crime data

Using kernel methods to visualise crime data Submission for the 2013 IAOS Prize for Young Statisticians Using kernel methods to visualise crime data Dr. Kieran Martin and Dr. Martin Ralphs kieran.martin@ons.gov.uk martin.ralphs@ons.gov.uk Office

More information