Bildverarbeitung und Mustererkennung Image Processing and Pattern Recognition


 Carmel Cooper
 3 years ago
 Views:
Transcription
1 Bildverarbeitung und Mustererkennung Image Processing and Pattern Recognition 1. Image PreProcessing  Pixel Brightness Transformation  Geometric Transformation  Image Denoising 1
2 1. Image PreProcessing Does not increase the information content of images Typically, the information is reduced (filtered) Major aims: Improvement of the image data Suppress irrelevant information Enhance important features Image preprocessing is comparable to lowlevel vison of the human visual system 2
3 Pixel Brightness Transformation Position dependent E.g. to account for systematic errors of the camera system Linear model: Error coefficient can be obtained by performing a calibration with a constant image 3
4 Pixel Brightness Transformation Position independent Define a transformation which maps a grayscale interval to a new grayscale interval The transformation is then given by Fast implementation using lookup tables 4
5 Example q q q p p p1 p2 c p Negativbild Kontrasterhöhung Binärer Schwellwert 5
6 Example Volume rendering  ray casting Uses several transferfunctions for visualization of 3D data 6
7 Histogram Discrete probability density function of gray values in the image 7
8 Histogram equalization A technique to automatically find an image with equally distributed gray values Find such that the histogram of the output image has a uniform distribution H(p) G(q) p q 8
9 Example Input image Image after histogram equalization 9
10 Geometric Transformations Geometric transformations are important for many applications Lense distortion Image stitching Image registration (warping) A geometric transformation is a vector function that maps a pixel position to a new position 10
11 Geometric Transformations Geometric transformation can be available in Parametric form, e.g. affine transformation Nonparametric form, e.g. displacement field Geometric transformation consists of two steps Coordinate Transformation Image Interpolation 11
12 Polynomial approximation Geometric transformations are often approximated using polynomial equations Linear in the coefficients Computing the coefficients amounts for solving a system of linear equations Robust estimation using overdetermined system Most applications: m=2,3 12
13 Bilinear Transformation Simple Transformation Used for many applications 4 corresponding points are needed Affine Transformation Even simpler, 3 corresponding Points are needed Rotation, scaling, skewing 13
14 Jacobi Coefficient Determinant of the Jacobi matrix of Provides information about the change of the coordinate system J = 0: No inverse exists J = 1: Inverse exists, area of the image is invariant under this transformations. 14
15 Brightness interpolation Forward transformation does not (in general) fit the discrete pixel grid Use backward (inverse) transformation instead Use brightness interpolation to compute intermediate values Image is given by discrete samples 15
16 Brightness interpolation Interpolation can be written as the convolution with an interpolation kernel Different kernels in the literature Nearest Neighbor Bilinear Bicubic... 16
17 Nearest Neighbor Interpolation h x Assigns the brightness of the nearest point on the grid 17
18 Bilinear Interpolation h Takes into account the brightness values of the 4 neighboring points x 18
19 Bicubic Interpolation Approximation of the image data using a bicubic polynomial Uses 16 neighboring points on the grid Keeps fine details in the image 19
20 Example Original Rotate 36 times by 10 bicubic bilinear 20
21 Image Denoising Image data often contains noise, e.g. sensor noise,... Exploit the fact that the image data has a high degree of redundancy Averaging of the gray values in a certain neighborhood supresses noise but has the problem of blurring sharp edges in the image Need for edge preserving smoothing 21
22 Averaging of several images Several images of the same scene Original image One noisy image Denoised image 22
23 Local filtering Often, only one image is available Need to design local filter Sliding window approach: Compute local average in a small window shifted over the image Can be written as the convolution with a filter mask h Matlab: u = imfilter(f,h) 23
24 origin Illustration y h(1,1) h(1,0) h(1,1) mask h(0,1) h(0,0) h(0,1) h(1,1) h(1,0) h(1,1) f(x1,y1) f(x1,y) f(x1,y+1) Mask coefficients x f(x,y1) f(x,y) f(x,y+1) f(x+1,y1) f(x+1,y) f(x+1,y+1) Image section under mask 24
25 Local averaging Smoothing using a 3x3 average filter. Matlab: fspecial( average, [3 3]) f(x1,y1) f(x1,y) f(x1,y+1) 1/9 1/9 1/9 f(x,y1) f(x,y) f(x,y+1) 1/9 1/9 1/9 f(x+1,y1) f(x+1,y) f(x+1,y+1) 1/9 1/9 1/9 25
26 Border handling Problem: Filter mask does not fit the image at borders Several possibilities Ignore border smaller result Zero padding Image data replication Mirroring Circular replication 26
27 Example Noisy image 3x3 filter 7x7 filter 27
28 Gaussian Filter Average filter gives the same weight to all pixels under the filter mask Gaussian filter gives a higher weight to pixels being closer to the center better results Filter coefficients are computed using the Gaussian formula Parameter controlls the amount of smoothing 28
29 Discrete approximation: Kernels size always odd Gaussian Filter Sum of coefficients is always equal to one Matlab: fspecial( gaussian,[n n], ) Example: 29
30 Example Noisy image 3x3 average 3x3 Gaussian 30
31 Example original sigma =1 sigma =2 sigma =3 31
32 Separable Filters Isotropic filters (Average, Gaussian) can be easily seperated Twofold convolution in x and y direction with 1D filters Comparison: Original: n 2 multiplications und n 21 additions Separable: 2n multiplications, 2n2 additions Many filters are separable use it! 32
33 Smoothing using rotating masks Nonlinear smoothing technique Avoids the blurring of image edges Smoothing in using the most homogeneous part of the current pixel neighborhood A brighness dispersion is used as the homogeinity measure. 33
34 Smoothing using rotating masks Take the average under the mask with the minimum dispersion 34
35 Adaptive Filtering Mean filter that locally adapts to the image data Mean under the mask Variance of the image Current grayscale Variance under the mask Variant implemented in Matlab: wiener2(f,[n n]) 35
36 Adaptive Filtering If variance under the mask is large compared to the variance of the image, then take original gray value If the variance under the mask is small compared to the variance of the image take the average. Example Noisy image Average Adaptive 36
Brightness and geometric transformations
Brightness and geometric transformations Václav Hlaváč Czech Technical University in Prague Center for Machine Perception (bridging groups of the) Czech Institute of Informatics, Robotics and Cybernetics
More informationConvolution. 1D Formula: 2D Formula: Example on the web: http://www.jhu.edu/~signals/convolve/
Basic Filters (7) Convolution/correlation/Linear filtering Gaussian filters Smoothing and noise reduction First derivatives of Gaussian Second derivative of Gaussian: Laplacian Oriented Gaussian filters
More informationDigital Imaging and Multimedia. Filters. Ahmed Elgammal Dept. of Computer Science Rutgers University
Digital Imaging and Multimedia Filters Ahmed Elgammal Dept. of Computer Science Rutgers University Outlines What are Filters Linear Filters Convolution operation Properties of Linear Filters Application
More informationLectures 6&7: Image Enhancement
Lectures 6&7: Image Enhancement Leena Ikonen Pattern Recognition (MVPR) Lappeenranta University of Technology (LUT) leena.ikonen@lut.fi http://www.it.lut.fi/ip/research/mvpr/ 1 Content Background Spatial
More informationEECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines
EECS 556 Image Processing W 09 Interpolation Interpolation techniques B splines What is image processing? Image processing is the application of 2D signal processing methods to images Image representation
More informationComputer Vision: Filtering
Computer Vision: Filtering Raquel Urtasun TTI Chicago Jan 10, 2013 Raquel Urtasun (TTIC) Computer Vision Jan 10, 2013 1 / 82 Today s lecture... Image formation Image Filtering Raquel Urtasun (TTIC) Computer
More informationjorge s. marques image processing
image processing images images: what are they? what is shown in this image? What is this? what is an image images describe the evolution of physical variables (intensity, color, reflectance, condutivity)
More informationSharpening through spatial filtering
Sharpening through spatial filtering Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Elaborazione delle immagini (Image processing I) academic year 2011 2012 Sharpening The term
More informationIntroduction Bilateral Filtering Results. Bilateral Filtering. Mathias Eitz. TU Berlin. November, 21st 2006
Introduction TU Berlin November, 21st 2006 About Me Introduction Student at TU Berlin since 2002 eitz@cs.tuberlin.de Outline Introduction 1 Introduction Smoothing Filters Comparison 2 Intuition Mathematical
More informationHigh Quality Image Magnification using CrossScale SelfSimilarity
High Quality Image Magnification using CrossScale SelfSimilarity André Gooßen 1, Arne Ehlers 1, Thomas Pralow 2, RolfRainer Grigat 1 1 Vision Systems, Hamburg University of Technology, D21079 Hamburg
More informationSEARCHING OF METEORS IN ASTRONOMICAL IMAGES ON THE BASIS OF MATLAB TOOLBOX
SEARCHING OF METEORS IN ASTRONOMICAL IMAGES ON THE BASIS OF MATLAB TOOLBOX Eliška Anna Kubičková 1 University of West Bohemia in Pilsen, Department of Cybernetics Abstract The paper deals with the use
More information What is a feature?  Image processing essentials  Edge detection (Sobel & Canny)  Hough transform  Some images
Seminar: Feature extraction by André Aichert I Feature detection  What is a feature?  Image processing essentials  Edge detection (Sobel & Canny)  Hough transform  Some images II An Entropybased
More informationImage Segmentation and Registration
Image Segmentation and Registration Dr. Christine Tanner (tanner@vision.ee.ethz.ch) Computer Vision Laboratory, ETH Zürich Dr. Verena Kaynig, Machine Learning Laboratory, ETH Zürich Outline Segmentation
More informationResolution Enhancement of images with Interpolation and DWTSWT Wavelet Domain Components
Resolution Enhancement of images with Interpolation and DWTSWT Wavelet Domain Components Mr. G.M. Khaire 1, Prof. R.P.Shelkikar 2 1 PG Student, college of engg, Osmanabad. 2 Associate Professor, college
More informationImage Projection. Goal: Introduce the basic concepts and mathematics for image projection.
Image Projection Goal: Introduce the basic concepts and mathematics for image projection. Motivation: The mathematics of image projection allow us to answer two questions: Given a 3D scene, how does it
More informationPoint Lattices in Computer Graphics and Visualization how signal processing may help computer graphics
Point Lattices in Computer Graphics and Visualization how signal processing may help computer graphics Dimitri Van De Ville Ecole Polytechnique Fédérale de Lausanne Biomedical Imaging Group dimitri.vandeville@epfl.ch
More informationRemote Sensing Image Processing
Remote Sensing Image Processing Preprocessing Geometric Correction Atmospheric correction Image enhancement Image classification Division of Spatial Information Science Graduate School Life and Environment
More informationImage Processing and Computer Graphics. Texture Mapping. Matthias Teschner. Computer Science Department University of Freiburg
Image Processing and Computer Graphics Texture Mapping Matthias Teschner Computer Science Department University of Freiburg Motivation adding perpixel surface details without raising the geometric complexity
More informationCanny Edge Detection
Canny Edge Detection 09gr820 March 23, 2009 1 Introduction The purpose of edge detection in general is to significantly reduce the amount of data in an image, while preserving the structural properties
More information(Refer Slide Time: 06:10)
Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture  43 Digital Image Processing Welcome back to the last part of the lecture
More informationSachin Patel HOD I.T Department PCST, Indore, India. Parth Bhatt I.T Department, PCST, Indore, India. Ankit Shah CSE Department, KITE, Jaipur, India
Image Enhancement Using Various Interpolation Methods Parth Bhatt I.T Department, PCST, Indore, India Ankit Shah CSE Department, KITE, Jaipur, India Sachin Patel HOD I.T Department PCST, Indore, India
More informationGeometric Image Transformations
Geometric Image Transformations Part One 2D Transformations Spatial Coordinates (x,y) are mapped to new coords (u,v) pixels of source image > pixels of destination image Types of 2D Transformations Affine
More informationFace detection is a process of localizing and extracting the face region from the
Chapter 4 FACE NORMALIZATION 4.1 INTRODUCTION Face detection is a process of localizing and extracting the face region from the background. The detected face varies in rotation, brightness, size, etc.
More information7. Lecture. Image restoration: Spatial domain
7. Lecture Image restoration: Spatial domain 1 Example: Movie restoration ² Very popular  digital remastering of old movies ² e.g. Limelight from Joanneum Research 2 Example: Scan from old film 3 Example:
More informationRemoval of Noise from MRI using Spectral Subtraction
International Journal of Electronic and Electrical Engineering. ISSN 09742174, Volume 7, Number 3 (2014), pp. 293298 International Research Publication House http://www.irphouse.com Removal of Noise
More informationAdmin stuff. 4 Image Pyramids. Spatial Domain. Projects. Fourier domain 2/26/2008. Fourier as a change of basis
Admin stuff 4 Image Pyramids Change of office hours on Wed 4 th April Mon 3 st March 9.3.3pm (right after class) Change of time/date t of last class Currently Mon 5 th May What about Thursday 8 th May?
More informationHigh Performance GPUbased Preprocessing for TimeofFlight Imaging in Medical Applications
High Performance GPUbased Preprocessing for TimeofFlight Imaging in Medical Applications Jakob Wasza 1, Sebastian Bauer 1, Joachim Hornegger 1,2 1 Pattern Recognition Lab, FriedrichAlexander University
More informationImage Processing with. ImageJ. Biology. Imaging
Image Processing with ImageJ 1. Spatial filters Outlines background correction image denoising edges detection 2. Fourier domain filtering correction of periodic artefacts 3. Binary operations masks morphological
More informationOptical Flow. Shenlong Wang CSC2541 Course Presentation Feb 2, 2016
Optical Flow Shenlong Wang CSC2541 Course Presentation Feb 2, 2016 Outline Introduction Variation Models Feature Matching Methods Endtoend Learning based Methods Discussion Optical Flow Goal: Pixel motion
More informationAccurate and robust image superresolution by neural processing of local image representations
Accurate and robust image superresolution by neural processing of local image representations Carlos Miravet 1,2 and Francisco B. Rodríguez 1 1 Grupo de Neurocomputación Biológica (GNB), Escuela Politécnica
More informationLecture 19 Camera Matrices and Calibration
Lecture 19 Camera Matrices and Calibration Project Suggestions Texture Synthesis for InPainting Section 10.5.1 in Szeliski Text Project Suggestions Image Stitching (Chapter 9) Face Recognition Chapter
More informationImage Interpolation by Pixel Level DataDependent Triangulation
Volume xx (200y), Number z, pp. 1 7 Image Interpolation by Pixel Level DataDependent Triangulation Dan Su, Philip Willis Department of Computer Science, University of Bath, Bath, BA2 7AY, U.K. mapds,
More informationCorrelation and Convolution Class Notes for CMSC 426, Fall 2005 David Jacobs
Correlation and Convolution Class otes for CMSC 46, Fall 5 David Jacobs Introduction Correlation and Convolution are basic operations that we will perform to extract information from images. They are in
More informationFace Recognition in Lowresolution Images by Using Local Zernike Moments
Proceedings of the International Conference on Machine Vision and Machine Learning Prague, Czech Republic, August1415, 014 Paper No. 15 Face Recognition in Lowresolution Images by Using Local Zernie
More informationPCA to Eigenfaces. CS 510 Lecture #16 March 23 th A 9 dimensional PCA example
PCA to Eigenfaces CS 510 Lecture #16 March 23 th 2015 A 9 dimensional PCA example is dark around the edges and bright in the middle. is light with dark vertical bars. is light with dark horizontal bars.
More informationWe want to define smooth curves:  for defining paths of cameras or objects.  for defining 1D shapes of objects
lecture 10  cubic curves  cubic splines  bicubic surfaces We want to define smooth curves:  for defining paths of cameras or objects  for defining 1D shapes of objects We want to define smooth surfaces
More informationC4 Computer Vision. 4 Lectures Michaelmas Term Tutorial Sheet Prof A. Zisserman. fundamental matrix, recovering egomotion, applications.
C4 Computer Vision 4 Lectures Michaelmas Term 2004 1 Tutorial Sheet Prof A. Zisserman Overview Lecture 1: Stereo Reconstruction I: epipolar geometry, fundamental matrix. Lecture 2: Stereo Reconstruction
More informationBlind Deconvolution of Barcodes via Dictionary Analysis and Wiener Filter of Barcode Subsections
Blind Deconvolution of Barcodes via Dictionary Analysis and Wiener Filter of Barcode Subsections Maximilian Hung, Bohyun B. Kim, Xiling Zhang August 17, 2013 Abstract While current systems already provide
More informationComputational Foundations of Cognitive Science
Computational Foundations of Cognitive Science Lecture 15: Convolutions and Kernels Frank Keller School of Informatics University of Edinburgh keller@inf.ed.ac.uk February 23, 2010 Frank Keller Computational
More informationA Novel Method to Improve Resolution of Satellite Images Using DWT and Interpolation
A Novel Method to Improve Resolution of Satellite Images Using DWT and Interpolation S.VENKATA RAMANA ¹, S. NARAYANA REDDY ² M.Tech student, Department of ECE, SVU college of Engineering, Tirupati, 517502,
More informationThe Scientific Data Mining Process
Chapter 4 The Scientific Data Mining Process When I use a word, Humpty Dumpty said, in rather a scornful tone, it means just what I choose it to mean neither more nor less. Lewis Carroll [87, p. 214] In
More informationImage Enhancement in the Frequency Domain
Image Enhancement in the Frequency Domain Jesus J. Caban Outline! Assignment #! Paper Presentation & Schedule! Frequency Domain! Mathematical Morphology %& Assignment #! Questions?! How s OpenCV?! You
More informationSummary: Transformations. Lecture 14 Parameter Estimation Readings T&V Sec 5.15.3. Parameter Estimation: Fitting Geometric Models
Summary: Transformations Lecture 14 Parameter Estimation eadings T&V Sec 5.15.3 Euclidean similarity affine projective Parameter Estimation We will talk about estimating parameters of 1) Geometric models
More informationRobust Noise Filtering in Image Sequences
International Journal of Computer Applications (0975 8887) Volume 50 No.18, July 2012 Robust Noise Filtering in Image Sequences Soumaya Hichri Faouzi Benzarti Hamid Amiri ABSTRACT Image sequences filtering
More informationPrecision edge detection with bayer pattern sensors
Precision edge detection with bayer pattern sensors Prof.Dr.Ing.habil. Gerhard Linß Dr.Ing. Peter Brückner Dr.Ing. Martin Correns Folie 1 Agenda 1. Introduction 2. State of the art 3. Key aspects 1.
More informationLecture 2: 2D Fourier transforms and applications
Lecture 2: 2D Fourier transforms and applications B14 Image Analysis Michaelmas 2014 A. Zisserman Fourier transforms and spatial frequencies in 2D Definition and meaning The Convolution Theorem Applications
More informationStitching of Xray Images
IT 12 057 Examensarbete 30 hp November 2012 Stitching of Xray Images Krishna Paudel Institutionen för informationsteknologi Department of Information Technology Abstract Stitching of Xray Images Krishna
More informationHigh Quality Image Deblurring Panchromatic Pixels
High Quality Image Deblurring Panchromatic Pixels ACM Transaction on Graphics vol. 31, No. 5, 2012 Sen Wang, Tingbo Hou, John Border, Hong Qin, and Rodney Miller Presented by BongSeok Choi School of Electrical
More informationImage Denoising. Alexander Kharlamov Victor Podlozhnyuk.
Image Denoising Alexander Kharlamov akharlamov@nvidia.com Victor Podlozhnyuk vpodlozhnyuk@nvidia.com Document Change History Version Date Responsible Reason for Change 0.9 04/16/007 akharlamov Initial
More informationThe Image Deblurring Problem
page 1 Chapter 1 The Image Deblurring Problem You cannot depend on your eyes when your imagination is out of focus. Mark Twain When we use a camera, we want the recorded image to be a faithful representation
More information3D Medical Image Enhancement based on Wavelet Transforms
YAVARIABDI et al.: 1 3D Medical Image Enhancement based on Wavelet Transforms Amir Yavariabdi amir.yavariabdi@uclermont1.fr Chafik Samir chafik.samir@uclermont1.fr Adrien Bartoli adrien.bartoli@uclermont1.fr
More informationNumerical Methods For Image Restoration
Numerical Methods For Image Restoration CIRAM Alessandro Lanza University of Bologna, Italy Faculty of Engineering CIRAM Outline 1. Image Restoration as an inverse problem 2. Image degradation models:
More informationA Study on SURF Algorithm and RealTime Tracking Objects Using Optical Flow
, pp.233237 http://dx.doi.org/10.14257/astl.2014.51.53 A Study on SURF Algorithm and RealTime Tracking Objects Using Optical Flow Giwoo Kim 1, HyeYoun Lim 1 and DaeSeong Kang 1, 1 Department of electronices
More informationDigital Image Processing
Digital Image Processing Using MATLAB Second Edition Rafael C. Gonzalez University of Tennessee Richard E. Woods MedData Interactive Steven L. Eddins The MathWorks, Inc. Gatesmark Publishing A Division
More informationA BRIEF STUDY OF VARIOUS NOISE MODEL AND FILTERING TECHNIQUES
Volume 4, No. 4, April 2013 Journal of Global Research in Computer Science REVIEW ARTICLE Available Online at www.jgrcs.info A BRIEF STUDY OF VARIOUS NOISE MODEL AND FILTERING TECHNIQUES Priyanka Kamboj
More informationDeinterlacing/interpolation of TV signals. Elham Shahinfard Advisors: Prof. M. Ahmadi Prof. M. SidAhmed
Deinterlacing/interpolation of TV signals Elham Shahinfard Advisors: Prof. M. Ahmadi Prof. M. SidAhmed Outline A Review of some terminologies Converting from NTSC to HDTV; What changes need to be considered?
More informationExample 1: Calculate and compare RiskMetrics TM and Historical Standard Deviation Compare the weights of the volatility parameter using,, and.
3.6 Compare and contrast different parametric and nonparametric approaches for estimating conditional volatility. 3.7 Calculate conditional volatility using parametric and nonparametric approaches. Parametric
More informationCGreen: A computer Vision System for Leaf Identification
CGreen: A computer Vision System for Leaf Identification Chinmai Basavaraj Indiana State University cbasavaraj@sycamores.indstate.edu December 16, 2014 Abstract I describe here a system which uses automatic
More informationForensic Image Processing. www.martinojerian.com
Forensic Image Processing www.martinojerian.com Forensic Image Processing Lesson 1 An introduction on digital images Purpose of the course What is a digital image? What use can images have for investigative
More informationRedundant Wavelet Transform Based Image Super Resolution
Redundant Wavelet Transform Based Image Super Resolution Arti Sharma, Prof. Preety D Swami Department of Electronics &Telecommunication Samrat Ashok Technological Institute Vidisha Department of Electronics
More informationPERFORMANCE ANALYSIS OF HIGH RESOLUTION IMAGES USING INTERPOLATION TECHNIQUES IN MULTIMEDIA COMMUNICATION SYSTEM
PERFORMANCE ANALYSIS OF HIGH RESOLUTION IMAGES USING INTERPOLATION TECHNIQUES IN MULTIMEDIA COMMUNICATION SYSTEM Apurva Sinha 1, Mukesh kumar 2, A.K. Jaiswal 3, Rohini Saxena 4 Department of Electronics
More informationJoint MAP Registration and High Resolution Image Estimation Using a Sequence of Undersampled Images 1
Joint MAP Registration and High Resolution Image Estimation Using a Sequence of Undersampled Images Russell C. Hardie, Kenneth J. Barnard and Ernest E. Armstrong Department of Electrical and Computer Engineering
More informationShear :: Blocks (Video and Image Processing Blockset )
1 of 6 15/12/2009 11:15 Shear Shift rows or columns of image by linearly varying offset Library Geometric Transformations Description The Shear block shifts the rows or columns of an image by a gradually
More informationComputational Optical Imaging  Optique Numerique.  Deconvolution 
Computational Optical Imaging  Optique Numerique  Deconvolution  Winter 2014 Ivo Ihrke Deconvolution Ivo Ihrke Outline Deconvolution Theory example 1D deconvolution Fourier method Algebraic method
More informationCS 591.03 Introduction to Data Mining Instructor: Abdullah Mueen
CS 591.03 Introduction to Data Mining Instructor: Abdullah Mueen LECTURE 3: DATA TRANSFORMATION AND DIMENSIONALITY REDUCTION Chapter 3: Data Preprocessing Data Preprocessing: An Overview Data Quality Major
More informationAlgorithms for the resizing of binary and grayscale images using a logical transform
Algorithms for the resizing of binary and grayscale images using a logical transform Ethan E. Danahy* a, Sos S. Agaian b, Karen A. Panetta a a Dept. of Electrical and Computer Eng., Tufts University, 161
More informationOptical Flow as a property of moving objects used for their registration
Optical Flow as a property of moving objects used for their registration Wolfgang Schulz Computer Vision Course Project York University Email:wschulz@cs.yorku.ca 1. Introduction A soccer game is a real
More informationCOMPONENT FORENSICS OF DIGITAL CAMERAS: A NONINTRUSIVE APPROACH
COMPONENT FORENSICS OF DIGITAL CAMERAS: A NONINTRUSIVE APPROACH Ashwin Swaminathan, Min Wu and K. J. Ray Liu Electrical and Computer Engineering Department, University of Maryland, College Park ABSTRACT
More informationGeometric Transformations and Image Warping: Mosaicing
Geometric Transformations and Image Warping: Mosaicing CS 6640 Ross Whitaker, Guido Gerig SCI Institute, School of Computing University of Utah (with slides from: Jinxiang Chai, TAMU) faculty.cs.tamu.edu/jchai/cpsc641_spring10/lectures/lecture8.ppt
More informationComputerGenerated Photorealistic Hair
ComputerGenerated Photorealistic Hair Alice J. Lin Department of Computer Science, University of Kentucky, Lexington, KY 40506, USA ajlin0@cs.uky.edu Abstract This paper presents an efficient method for
More informationVideo stabilization for high resolution images reconstruction
Advanced Project S9 Video stabilization for high resolution images reconstruction HIMMICH Youssef, KEROUANTON Thomas, PATIES Rémi, VILCHES José. Abstract Superresolution reconstruction produces one or
More informationMATLABbased Applications for Image Processing and Image Quality Assessment Part II: Experimental Results
154 L. KRASULA, M. KLÍMA, E. ROGARD, E. JEANBLANC, MATLAB BASED APPLICATIONS PART II: EXPERIMENTAL RESULTS MATLABbased Applications for Image Processing and Image Quality Assessment Part II: Experimental
More informationStar Detection and Removal in Night Airglow Images
Star Detection and Removal in Night Airglow Images Rohit P. Patil *1, S. B. Patil 1, R. N. Ghodpage 2, P. T. Patil 2 1 D.Y. Patil College of, Kolhapur, Maharashtra, India 2 M.F. Radar, Indian Institute
More informationAutomatic Traffic Estimation Using Image Processing
Automatic Traffic Estimation Using Image Processing Pejman Niksaz Science &Research Branch, Azad University of Yazd, Iran Pezhman_1366@yahoo.com Abstract As we know the population of city and number of
More informationSuperresolution method based on edge feature for high resolution imaging
Science Journal of Circuits, Systems and Signal Processing 2014; 3(61): 2429 Published online December 26, 2014 (http://www.sciencepublishinggroup.com/j/cssp) doi: 10.11648/j.cssp.s.2014030601.14 ISSN:
More informationHighresolution Imaging System for Omnidirectional Illuminant Estimation
Highresolution Imaging System for Omnidirectional Illuminant Estimation Shoji Tominaga*, Tsuyoshi Fukuda**, and Akira Kimachi** *Graduate School of Advanced Integration Science, Chiba University, Chiba
More informationAn Experimental Study of the Performance of Histogram Equalization for Image Enhancement
International Journal of Computer Sciences and Engineering Open Access Research Paper Volume4, Special Issue2, April 216 EISSN: 23472693 An Experimental Study of the Performance of Histogram Equalization
More informationIMAGE FORMATION. Antonino Furnari
IPLab  Image Processing Laboratory Dipartimento di Matematica e Informatica Università degli Studi di Catania http://iplab.dmi.unict.it IMAGE FORMATION Antonino Furnari furnari@dmi.unict.it http://dmi.unict.it/~furnari
More informationAssessment. Presenter: Yupu Zhang, Guoliang Jin, Tuo Wang Computer Vision 2008 Fall
Automatic Photo Quality Assessment Presenter: Yupu Zhang, Guoliang Jin, Tuo Wang Computer Vision 2008 Fall Estimating i the photorealism of images: Distinguishing i i paintings from photographs h Florin
More informationIntroduction to Computer Vision. Week 11, Fall 2010 Instructor: Prof. Ko Nishino
Introduction to Computer Vision Week 11, Fall 2010 Instructor: Prof. Ko Nishino The Projective Plane Why do we need homogeneous coordinates? represent points at infinity, homographies, perspective projection,
More informationComputer Graphics. Course SS 2007 Antialiasing. computer graphics & visualization
Computer Graphics Course SS 2007 Antialiasing How to avoid spatial aliasing caused by an undersampling of the signal, i.e. the sampling frequency is not high enough to cover all details Supersampling 
More informationComputer Vision  part II
Computer Vision  part II Review of main parts of Section B of the course School of Computer Science & Statistics Trinity College Dublin Dublin 2 Ireland www.scss.tcd.ie Lecture Name Course Name 1 1 2
More informationImage Hallucination Using Neighbor Embedding over Visual Primitive Manifolds
Image Hallucination Using Neighbor Embedding over Visual Primitive Manifolds Wei Fan & DitYan Yeung Department of Computer Science and Engineering, Hong Kong University of Science and Technology {fwkevin,dyyeung}@cse.ust.hk
More informationImproving Quality of Satellite Image by Wavelet Transforming & Morphological Filtering
Improving Quality of Satellite Image by Wavelet Transforming & Morphological Filtering Anumolu Lasmika 1, K. Raveendra 2 P.G. Student, Department of ECE, S. V. Engineering College for Women, Tirupati,
More informationComputer Graphics CS 543 Lecture 12 (Part 1) Curves. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI)
Computer Graphics CS 54 Lecture 1 (Part 1) Curves Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) So Far Dealt with straight lines and flat surfaces Real world objects include
More informationRESOLUTION IMPROVEMENT OF DIGITIZED IMAGES
Proceedings of ALGORITMY 2005 pp. 270 279 RESOLUTION IMPROVEMENT OF DIGITIZED IMAGES LIBOR VÁŠA AND VÁCLAV SKALA Abstract. A quick overview of preprocessing performed by digital still cameras is given
More informationResolution Enhancement of Photogrammetric Digital Images
DICTA2002: Digital Image Computing Techniques and Applications, 2122 January 2002, Melbourne, Australia 1 Resolution Enhancement of Photogrammetric Digital Images John G. FRYER and Gabriele SCARMANA
More informationCrater detection with segmentationbased image processing algorithm
Template reference : 100181708KEN Crater detection with segmentationbased image processing algorithm M. Spigai, S. Clerc (Thales Alenia SpaceFrance) V. SimardBilodeau (U. Sherbrooke and NGC Aerospace,
More informationConvolution, Noise and Filters
T H E U N I V E R S I T Y of T E X A S Convolution, Noise and Filters Philip Baldwin, Ph.D. Department of Biochemistry Response to an Entire Signal The response of a system with impulse response h(t) to
More informationLecture 14. Point Spread Function (PSF)
Lecture 14 Point Spread Function (PSF), Modulation Transfer Function (MTF), Signaltonoise Ratio (SNR), Contrasttonoise Ratio (CNR), and Receiver Operating Curves (ROC) Point Spread Function (PSF) Recollect
More informationAdvanced Signal Processing and Digital Noise Reduction
Advanced Signal Processing and Digital Noise Reduction Saeed V. Vaseghi Queen's University of Belfast UK WILEY HTEUBNER A Partnership between John Wiley & Sons and B. G. Teubner Publishers Chichester New
More informationScanners and How to Use Them
Written by Jonathan Sachs Copyright 19961999 Digital Light & Color Introduction A scanner is a device that converts images to a digital file you can use with your computer. There are many different types
More informationModule II: Multimedia Data Mining
ALMA MATER STUDIORUM  UNIVERSITÀ DI BOLOGNA Module II: Multimedia Data Mining Laurea Magistrale in Ingegneria Informatica University of Bologna Multimedia Data Retrieval Home page: http://wwwdb.disi.unibo.it/courses/dm/
More informationKriging Interpolation Filter to Reduce High Density Salt and Pepper Noise
World of Computer Science and Information Technology Journal (WCSIT) ISSN: 22210741 Vol. 3, No. 1, 814, 2013 Kriging Interpolation Filter to Reduce High Density Salt and Pepper Noise Firas Ajil Jassim
More informationImage Compression Using Gabor Filter
Mr.B.H.Deokate, Dr. P. M. Patil and Mr.S.S. Majgaonkar 28 Image Compression Using Gabor Filter Mr.B.H.Deokate, Dr. P. M. Patil and Mr.S.S. Majgaonkar Abstract: The data is the basic component of information.
More informationIntelligent Recognition Technology using Artificial Neural Network for Graphics
Intelligent Recognition Technology using Artificial Neural Network for Graphics FAN Bin 1, ZENG XiaoJing *2,a, ZHAO Zhu 3 1,2,3 College of Information technology and Media HeXi University, Zhangye 734000,
More information1. Redistributions of documents, or parts of documents, must retain the SWGIT cover page containing the disclaimer.
Disclaimer: As a condition to the use of this document and the information contained herein, the SWGIT requests notification by email before or contemporaneously to the introduction of this document,
More informationEpipolar Geometry. Readings: See Sections 10.1 and 15.6 of Forsyth and Ponce. Right Image. Left Image. e(p ) Epipolar Lines. e(q ) q R.
Epipolar Geometry We consider two perspective images of a scene as taken from a stereo pair of cameras (or equivalently, assume the scene is rigid and imaged with a single camera from two different locations).
More informationAn Iterative Image Registration Technique with an Application to Stereo Vision
An Iterative Image Registration Technique with an Application to Stereo Vision Bruce D. Lucas Takeo Kanade Computer Science Department CarnegieMellon University Pittsburgh, Pennsylvania 15213 Abstract
More informationRadiometric alignment and vignetting calibration. Pablo d'angelo University of Bielefeld
Radiometric alignment and vignetting calibration University of Bielefeld Overview Motivation Image formation Vignetting and exposure estimation Results Summary Motivation Determination of vignetting and
More information