Quick Tour of Basic Linear Algebra and Probability Theory

Size: px
Start display at page:

Download "Quick Tour of Basic Linear Algebra and Probability Theory"

Transcription

1 Quick Tour of and Probability Theory CS246: Mining Massive Data Sets Winter 2011

2 Outline 1 2 Basic Probability Theory

3 Matrices and Vectors Matrix: A rectangular array of numbers, e.g., A R m n : a 11 a a 1n a 21 a a 2n A =.... a m1 a m2... a mn

4 Matrices and Vectors Matrix: A rectangular array of numbers, e.g., A R m n : a 11 a a 1n a 21 a a 2n A =.... a m1 a m2... a mn Vector: A matrix consisting of only one column (default) or one row, e.g., x R n x = x 1 x 2. x n

5 Matrix Multiplication If A R m n, B R n p, C = AB, then C R m p : n C ij = A ik B kj k=1

6 Matrix Multiplication If A R m n, B R n p, C = AB, then C R m p : C ij = n A ik B kj k=1 Special cases: Matrix-vector product, inner product of two vectors. e.g., with x, y R n : x T y = n x i y i R i=1

7 Properties of Matrix Multiplication Associative: (AB)C = A(BC)

8 Properties of Matrix Multiplication Associative: (AB)C = A(BC) Distributive: A(B + C) = AB + AC

9 Properties of Matrix Multiplication Associative: (AB)C = A(BC) Distributive: A(B + C) = AB + AC Non-commutative: AB BA

10 Properties of Matrix Multiplication Associative: (AB)C = A(BC) Distributive: A(B + C) = AB + AC Non-commutative: AB BA Block multiplication: If A = [A ik ], B = [B kj ], where A ik s and B kj s are matrix blocks, and the number of columns in A ik is equal to the number of rows in B kj, then C = AB = [C ij ] where C ij = k A ikb kj

11 Properties of Matrix Multiplication Associative: (AB)C = A(BC) Distributive: A(B + C) = AB + AC Non-commutative: AB BA Block multiplication: If A = [A ik ], B = [B kj ], where A ik s and B kj s are matrix blocks, and the number of columns in A ik is equal to the number of rows in B kj, then C = AB = [C ij ] where C ij = k A ikb kj Example: If x R n and A = [ a 1 a 2... a n ] R m n, B = [ b 1 b 2... b p ] R n p : A x = n x i ai i=1 AB = [A b 1 A b 2... A b p ]

12 Operators and properties Transpose: A R m n, then A T R n m : (A T ) ij = A ji

13 Operators and properties Transpose: A R m n, then A T R n m : (A T ) ij = A ji Properties: (A T ) T = A (AB) T = B T A T (A + B) T = A T + B T

14 Operators and properties Transpose: A R m n, then A T R n m : (A T ) ij = A ji Properties: (A T ) T = A (AB) T = B T A T (A + B) T = A T + B T Trace: A R n n, then: tr(a) = n i=1 A ii

15 Operators and properties Transpose: A R m n, then A T R n m : (A T ) ij = A ji Properties: (A T ) T = A (AB) T = B T A T (A + B) T = A T + B T Trace: A R n n, then: tr(a) = n i=1 A ii Properties: tr(a) = tr(a T ) tr(a + B) = tr(a) + tr(b) tr(λa) = λtr(a) If AB is a square matrix, tr(ab) = tr(ba)

16 Special types of matrices Identity matrix: I = I n R n n : { 1 i=j, I ij = 0 otherwise. A R m n : AI n = I m A = A

17 Special types of matrices Identity matrix: I = I n R n n : { 1 i=j, I ij = 0 otherwise. A R m n : AI n = I m A = A Diagonal matrix: D = diag(d 1, d 2,..., d n ): { d i j=i, D ij = 0 otherwise.

18 Special types of matrices Identity matrix: I = I n R n n : { 1 i=j, I ij = 0 otherwise. A R m n : AI n = I m A = A Diagonal matrix: D = diag(d 1, d 2,..., d n ): { d i j=i, D ij = 0 otherwise. Symmetric matrices: A R n n is symmetric if A = A T.

19 Special types of matrices Identity matrix: I = I n R n n : { 1 i=j, I ij = 0 otherwise. A R m n : AI n = I m A = A Diagonal matrix: D = diag(d 1, d 2,..., d n ): { d i j=i, D ij = 0 otherwise. Symmetric matrices: A R n n is symmetric if A = A T. Orthogonal matrices: U R n n is orthogonal if UU T = I = U T U

20 Linear Independence and Rank A set of vectors {x 1,..., x n } is linearly independent if {α 1,..., α n }: n i=1 α ix i = 0

21 Linear Independence and Rank A set of vectors {x 1,..., x n } is linearly independent if {α 1,..., α n }: n i=1 α ix i = 0 Rank: A R m n, then rank(a) is the maximum number of linearly independent columns (or equivalently, rows)

22 Linear Independence and Rank A set of vectors {x 1,..., x n } is linearly independent if {α 1,..., α n }: n i=1 α ix i = 0 Rank: A R m n, then rank(a) is the maximum number of linearly independent columns (or equivalently, rows) Properties: rank(a) min{m, n} rank(a) = rank(a T ) rank(ab) min{rank(a), rank(b)} rank(a + B) rank(a) + rank(b)

23 Matrix Inversion If A R n n, rank(a) = n, then the inverse of A, denoted A 1 is the matrix that: AA 1 = A 1 A = I Properties: (A 1 ) 1 = A (AB) 1 = B 1 A 1 (A 1 ) T = (A T ) 1

24 Range and Nullspace of a Matrix Span: span({x 1,..., x n }) = { n i=1 α ix i α i R}

25 Range and Nullspace of a Matrix Span: span({x 1,..., x n }) = { n i=1 α ix i α i R} Projection: Proj(y; {x i } 1 i n ) = argmin v span({xi } 1 i n ){ y v 2 }

26 Range and Nullspace of a Matrix Span: span({x 1,..., x n }) = { n i=1 α ix i α i R} Projection: Proj(y; {x i } 1 i n ) = argmin v span({xi } 1 i n ){ y v 2 } Range: A R m n, then R(A) = {Ax x R n } is the span of the columns of A

27 Range and Nullspace of a Matrix Span: span({x 1,..., x n }) = { n i=1 α ix i α i R} Projection: Proj(y; {x i } 1 i n ) = argmin v span({xi } 1 i n ){ y v 2 } Range: A R m n, then R(A) = {Ax x R n } is the span of the columns of A Proj(y, A) = A(A T A) 1 A T y

28 Range and Nullspace of a Matrix Span: span({x 1,..., x n }) = { n i=1 α ix i α i R} Projection: Proj(y; {x i } 1 i n ) = argmin v span({xi } 1 i n ){ y v 2 } Range: A R m n, then R(A) = {Ax x R n } is the span of the columns of A Proj(y, A) = A(A T A) 1 A T y Nullspace: null(a) = {x R n Ax = 0}

29 Determinant A R n n, a 1,..., a n the rows of A, S = { n i=1 α ia i 0 α i 1}, then det(a) is the volume of S. Properties: det(i) = 1 det(λa) = λdet(a) det(a T ) = det(a) det(ab) = det(a)det(b) det(a) 0 if and only if A is invertible. If A invertible, then det(a 1) = det(a)

30 Quadratic Forms and Positive Semidefinite Matrices A R n n, x R n, x T Ax is called a quadratic form: x T Ax = A ij x i x j 1 i,j n

31 Quadratic Forms and Positive Semidefinite Matrices A R n n, x R n, x T Ax is called a quadratic form: x T Ax = A ij x i x j 1 i,j n A is positive definite if x R n : x T Ax > 0 A is positive semidefinite if x R n : x T Ax 0 A is negative definite if x R n : x T Ax < 0 A is negative semidefinite if x R n : x T Ax 0

32 Eigenvalues and Eigenvectors A R n n, λ C is an eigenvalue of A with the corresponding eigenvector x C n (x 0) if: Ax = λx eigenvalues: the n possibly complex roots of the polynomial equation det(a λi) = 0, and denoted as λ 1,..., λ n Properties: tr(a) = n i=1 λ i det(a) = n i=1 λ i rank(a) = {1 i n λ i 0}

33 Matrix Eigendecomposition A R n n, λ 1,..., λ n the eigenvalues, and x 1,..., x n the eigenvectors. X = [x 1 x 2... x n ], Λ = diag(λ 1,..., λ n ), then AX = XΛ. A called diagonalizable if X invertible: A = XΛX 1 If A symmetric, then all eigenvalues real, and X orthogonal (hence denoted by U = [u 1 u 2... u n ]): A = UΛU T = n λ i u i ui T i=1 A special case of Signular Value Decomposition

34 Basic Probability Theory Outline 1 2 Basic Probability Theory

35 Basic Probability Theory Elements of Probability Sample Space Ω: Set of all possible outcomes Event Space F: A family of subsets of Ω Probability Measure: Function P : F R with properties: 1 P(A) 0 ( A F) 2 P(Ω) = 1 3 A i s disjoint, then P( i A i) = i P(A i)

36 Basic Probability Theory Conditional Probability and Independence For events A, B: P(A B) = P(A B) P(B) A, B independent if P(A B) = P(A) or equivalently: P(A B) = P(A)P(B)

37 Basic Probability Theory Random Variables and Distributions A random variable X is a function X : Ω R Example: Number of heads in 20 tosses of a coin Probabilities of events associated with random variables defined based on the original probability function. e.g., P(X = k) = P({ω Ω X(ω) = k}) Cumulative Distribution Function (CDF) F X : R [0, 1]: F X (x) = P(X x) Probability Mass Function (pmf): X discrete then p X (x) = P(X = x) Probability Density Function (pdf): f X (x) = df X (x)/dx

38 Basic Probability Theory Properties of Distribution Functions CDF: 0 F X (x) 1 F X monotone increasing, with lim x F X (x) = 0, lim x F X (x) = 1 pmf: 0 p X (x) 1 x p X (x) = 1 x A p X (x) = p X (A) pdf: f X (x) 0 f X (x)dx = 1 x A f X (x)dx = P(X A)

39 Basic Probability Theory Expectation and Variance Assume random variable X has pdf f X (x), and g : R R. Then E[g(X)] = g(x)f X (x)dx for discrete X, E[g(X)] = x g(x)p X (x) Properties: for any constant a R, E[a] = a E[ag(X)] = ae[g(x)] Linearity of Expectation: E[g(X) + h(x)] = E[g(X)] + E[h(X)] Var[X] = E[(X E[X]) 2 ]

40 Basic Probability Theory Some Common Random Variables X Bernoulli(p) (0 p 1): { p x=1, p X (x) = 1 p x=0. X Geometric(p) (0 p 1): p X (x) = p(1 p) x 1 X Uniform(a, b) (a < b): { 1 f X (x) = b a a x b, 0 otherwise. X Normal(µ, σ 2 ): f X (x) = 1 2πσ e 1 2σ 2 (x µ)2

41 Basic Probability Theory Multiple Random Variables and Joint Distributions X 1,..., X n random variables Joint CDF: F X1,...,X n (x 1,..., x n ) = P(X 1 x 1,..., X n x n ) Joint pdf: f X1,...,X n (x 1,..., x n ) = n F X1,...,Xn (x 1,...,x n) x 1... x n Marginalization: f X1 (x 1 ) =... f X 1,...,X n (x 1,..., x n )dx 2... dx n Conditioning: f X1 X 2,...,X n (x 1 x 2,..., x n ) = f X 1,...,Xn (x 1,...,x n) f X2,...,Xn (x 2,...,x n) Chain Rule: f (x 1,..., x n ) = f (x 1 ) n i=2 f (x i x 1,..., x i 1 ) Independence: f (x 1,..., x n ) = n i=1 f (x i). More generally, events A 1,..., A n independent if P( i S A i) = i S P(A i) ( S {1,..., n}).

42 Basic Probability Theory Random Vectors X 1,..., X n random variables. X = [X 1 X 2... X n ] T random vector. If g : R n R, then E[g(X)] = R n g(x 1,..., x n )f X1,...,X n (x 1,..., x n )dx 1... dx n if g : R n R m, g = [g 1... g m ] T, then E[g(X)] = [ E[g 1 (X)]... E[g m (X)] ] T Covariance Matrix: Σ = Cov(X) = E [ (X E[X])(X E[X]) T ] Properties of Covariance Matrix: Σ ij = Cov[X i, X j ] = E [ (X i E[X i ])(X j E[X j ]) ] Σ symmetric, positive semidefinite

43 Basic Probability Theory Multivariate Gaussian Distribution µ R n, Σ R n n symmetric, positive semidefinite X N (µ, Σ) n-dimensional Gaussian distribution: f X (x) = 1 (2π) n/2 det(σ) 1/2 exp ( 1 2 (x µ)t Σ 1 (x µ) ) E[X] = µ Cov(X) = Σ

44 Basic Probability Theory Parameter Estimation: Maximum Likelihood Parametrized distribution f X (x; θ) with parameter(s) θ unknown. IID samples x 1,..., x n observed. Goal: Estimate θ MLE: ˆθ = argmax θ {f (x 1,..., x n ; θ)}

45 Basic Probability Theory MLE Example X Gaussian(µ, σ 2 ). θ = (µ, σ 2 ) unknown. Samples x 1,..., x n. Then: f (x 1,..., x n ; µ, σ 2 1 ) = ( 2πσ 2 )n/2 exp ( n i=1 (x i µ) 2 2σ 2 ) Setting: log f µ Gives: = 0 and log f σ = 0 n i=1 ˆµ MLE = x i n, ˆσ 2 MLE = n i=1 (x i ˆµ) 2 n If not possible to find the optimal point in closed form, iterative methods such as gradient decent can be used.

46 Basic Probability Theory Some Useful Inequalities Markov s Inequality: X random variable, and a > 0. Then: P( X a) E[ X ] a Chebyshev s Inequality: If E[X] = µ, Var(X) = σ 2, k > 0, then: Pr( X µ kσ) 1 k 2 Chernoff bound: X 1,..., X n iid random variables, with E[X i ] = µ, X i {0, 1} ( 1 i n). Then: P( 1 n X i µ ɛ) 2 exp( 2nɛ 2 ) n i=1 Multiple variants of Chernoff-type bounds exist, which can be useful in different settings

47 Basic Probability Theory References 1 CS229 notes on basic linear algebra and probability theory 2 Wikipedia!

1 Introduction to Matrices

1 Introduction to Matrices 1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns

More information

LINEAR ALGEBRA. September 23, 2010

LINEAR ALGEBRA. September 23, 2010 LINEAR ALGEBRA September 3, 00 Contents 0. LU-decomposition.................................... 0. Inverses and Transposes................................. 0.3 Column Spaces and NullSpaces.............................

More information

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2015 Timo Koski Matematisk statistik 24.09.2015 1 / 1 Learning outcomes Random vectors, mean vector, covariance matrix,

More information

Similar matrices and Jordan form

Similar matrices and Jordan form Similar matrices and Jordan form We ve nearly covered the entire heart of linear algebra once we ve finished singular value decompositions we ll have seen all the most central topics. A T A is positive

More information

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution

SF2940: Probability theory Lecture 8: Multivariate Normal Distribution SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2014 Timo Koski () Mathematisk statistik 24.09.2014 1 / 75 Learning outcomes Random vectors, mean vector, covariance

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra - 1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary

More information

Lecture 2 Matrix Operations

Lecture 2 Matrix Operations Lecture 2 Matrix Operations transpose, sum & difference, scalar multiplication matrix multiplication, matrix-vector product matrix inverse 2 1 Matrix transpose transpose of m n matrix A, denoted A T or

More information

Applied Linear Algebra I Review page 1

Applied Linear Algebra I Review page 1 Applied Linear Algebra Review 1 I. Determinants A. Definition of a determinant 1. Using sum a. Permutations i. Sign of a permutation ii. Cycle 2. Uniqueness of the determinant function in terms of properties

More information

15.062 Data Mining: Algorithms and Applications Matrix Math Review

15.062 Data Mining: Algorithms and Applications Matrix Math Review .6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop

More information

Linear Algebra Review and Reference

Linear Algebra Review and Reference Linear Algebra Review and Reference Zico Kolter (updated by Chuong Do) September 30, 2015 Contents 1 Basic Concepts and Notation 2 11 Basic Notation 2 2 Matrix Multiplication 3 21 Vector-Vector Products

More information

3. Let A and B be two n n orthogonal matrices. Then prove that AB and BA are both orthogonal matrices. Prove a similar result for unitary matrices.

3. Let A and B be two n n orthogonal matrices. Then prove that AB and BA are both orthogonal matrices. Prove a similar result for unitary matrices. Exercise 1 1. Let A be an n n orthogonal matrix. Then prove that (a) the rows of A form an orthonormal basis of R n. (b) the columns of A form an orthonormal basis of R n. (c) for any two vectors x,y R

More information

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions. 3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in three-space, we write a vector in terms

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka kosecka@cs.gmu.edu http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa Cogsci 8F Linear Algebra review UCSD Vectors The length

More information

Orthogonal Diagonalization of Symmetric Matrices

Orthogonal Diagonalization of Symmetric Matrices MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding

More information

Section 6.1 - Inner Products and Norms

Section 6.1 - Inner Products and Norms Section 6.1 - Inner Products and Norms Definition. Let V be a vector space over F {R, C}. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F,

More information

Chapter 6. Orthogonality

Chapter 6. Orthogonality 6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be

More information

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

More information

Similarity and Diagonalization. Similar Matrices

Similarity and Diagonalization. Similar Matrices MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

More information

Recall the basic property of the transpose (for any A): v A t Aw = v w, v, w R n.

Recall the basic property of the transpose (for any A): v A t Aw = v w, v, w R n. ORTHOGONAL MATRICES Informally, an orthogonal n n matrix is the n-dimensional analogue of the rotation matrices R θ in R 2. When does a linear transformation of R 3 (or R n ) deserve to be called a rotation?

More information

Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components

Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components The eigenvalues and eigenvectors of a square matrix play a key role in some important operations in statistics. In particular, they

More information

Factorization Theorems

Factorization Theorems Chapter 7 Factorization Theorems This chapter highlights a few of the many factorization theorems for matrices While some factorization results are relatively direct, others are iterative While some factorization

More information

The Characteristic Polynomial

The Characteristic Polynomial Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem

More information

October 3rd, 2012. Linear Algebra & Properties of the Covariance Matrix

October 3rd, 2012. Linear Algebra & Properties of the Covariance Matrix Linear Algebra & Properties of the Covariance Matrix October 3rd, 2012 Estimation of r and C Let rn 1, rn, t..., rn T be the historical return rates on the n th asset. rn 1 rṇ 2 r n =. r T n n = 1, 2,...,

More information

Notes on Symmetric Matrices

Notes on Symmetric Matrices CPSC 536N: Randomized Algorithms 2011-12 Term 2 Notes on Symmetric Matrices Prof. Nick Harvey University of British Columbia 1 Symmetric Matrices We review some basic results concerning symmetric matrices.

More information

Matrix Algebra. Some Basic Matrix Laws. Before reading the text or the following notes glance at the following list of basic matrix algebra laws.

Matrix Algebra. Some Basic Matrix Laws. Before reading the text or the following notes glance at the following list of basic matrix algebra laws. Matrix Algebra A. Doerr Before reading the text or the following notes glance at the following list of basic matrix algebra laws. Some Basic Matrix Laws Assume the orders of the matrices are such that

More information

Sections 2.11 and 5.8

Sections 2.11 and 5.8 Sections 211 and 58 Timothy Hanson Department of Statistics, University of South Carolina Stat 704: Data Analysis I 1/25 Gesell data Let X be the age in in months a child speaks his/her first word and

More information

MULTIVARIATE PROBABILITY DISTRIBUTIONS

MULTIVARIATE PROBABILITY DISTRIBUTIONS MULTIVARIATE PROBABILITY DISTRIBUTIONS. PRELIMINARIES.. Example. Consider an experiment that consists of tossing a die and a coin at the same time. We can consider a number of random variables defined

More information

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued). MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0

More information

Lecture Notes 1. Brief Review of Basic Probability

Lecture Notes 1. Brief Review of Basic Probability Probability Review Lecture Notes Brief Review of Basic Probability I assume you know basic probability. Chapters -3 are a review. I will assume you have read and understood Chapters -3. Here is a very

More information

Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models Introduction to General and Generalized Linear Models General Linear Models - part I Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby

More information

Inner Product Spaces and Orthogonality

Inner Product Spaces and Orthogonality Inner Product Spaces and Orthogonality week 3-4 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

Introduction to Probability

Introduction to Probability Introduction to Probability EE 179, Lecture 15, Handout #24 Probability theory gives a mathematical characterization for experiments with random outcomes. coin toss life of lightbulb binary data sequence

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

MATH 551 - APPLIED MATRIX THEORY

MATH 551 - APPLIED MATRIX THEORY MATH 55 - APPLIED MATRIX THEORY FINAL TEST: SAMPLE with SOLUTIONS (25 points NAME: PROBLEM (3 points A web of 5 pages is described by a directed graph whose matrix is given by A Do the following ( points

More information

A Tutorial on Probability Theory

A Tutorial on Probability Theory Paola Sebastiani Department of Mathematics and Statistics University of Massachusetts at Amherst Corresponding Author: Paola Sebastiani. Department of Mathematics and Statistics, University of Massachusetts,

More information

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

More information

DATA ANALYSIS II. Matrix Algorithms

DATA ANALYSIS II. Matrix Algorithms DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where

More information

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively. Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry

More information

Vector and Matrix Norms

Vector and Matrix Norms Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a non-empty

More information

Some probability and statistics

Some probability and statistics Appendix A Some probability and statistics A Probabilities, random variables and their distribution We summarize a few of the basic concepts of random variables, usually denoted by capital letters, X,Y,

More information

Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.

Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i. Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(

More information

What is Statistics? Lecture 1. Introduction and probability review. Idea of parametric inference

What is Statistics? Lecture 1. Introduction and probability review. Idea of parametric inference 0. 1. Introduction and probability review 1.1. What is Statistics? What is Statistics? Lecture 1. Introduction and probability review There are many definitions: I will use A set of principle and procedures

More information

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 3: Wednesday, Feb 8

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 3: Wednesday, Feb 8 Spaces and bases Week 3: Wednesday, Feb 8 I have two favorite vector spaces 1 : R n and the space P d of polynomials of degree at most d. For R n, we have a canonical basis: R n = span{e 1, e 2,..., e

More information

The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression

The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression The SVD is the most generally applicable of the orthogonal-diagonal-orthogonal type matrix decompositions Every

More information

Review Jeopardy. Blue vs. Orange. Review Jeopardy

Review Jeopardy. Blue vs. Orange. Review Jeopardy Review Jeopardy Blue vs. Orange Review Jeopardy Jeopardy Round Lectures 0-3 Jeopardy Round $200 How could I measure how far apart (i.e. how different) two observations, y 1 and y 2, are from each other?

More information

Matrix Differentiation

Matrix Differentiation 1 Introduction Matrix Differentiation ( and some other stuff ) Randal J. Barnes Department of Civil Engineering, University of Minnesota Minneapolis, Minnesota, USA Throughout this presentation I have

More information

Linear Algebra: Determinants, Inverses, Rank

Linear Algebra: Determinants, Inverses, Rank D Linear Algebra: Determinants, Inverses, Rank D 1 Appendix D: LINEAR ALGEBRA: DETERMINANTS, INVERSES, RANK TABLE OF CONTENTS Page D.1. Introduction D 3 D.2. Determinants D 3 D.2.1. Some Properties of

More information

Section 5.3. Section 5.3. u m ] l jj. = l jj u j + + l mj u m. v j = [ u 1 u j. l mj

Section 5.3. Section 5.3. u m ] l jj. = l jj u j + + l mj u m. v j = [ u 1 u j. l mj Section 5. l j v j = [ u u j u m ] l jj = l jj u j + + l mj u m. l mj Section 5. 5.. Not orthogonal, the column vectors fail to be perpendicular to each other. 5..2 his matrix is orthogonal. Check that

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Chapter 6 Eigenvalues and Eigenvectors 6. Introduction to Eigenvalues Linear equations Ax D b come from steady state problems. Eigenvalues have their greatest importance in dynamic problems. The solution

More information

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4) Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume

More information

Factor analysis. Angela Montanari

Factor analysis. Angela Montanari Factor analysis Angela Montanari 1 Introduction Factor analysis is a statistical model that allows to explain the correlations between a large number of observed correlated variables through a small number

More information

Linear Threshold Units

Linear Threshold Units Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear

More information

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all n-dimensional column

More information

Inner products on R n, and more

Inner products on R n, and more Inner products on R n, and more Peyam Ryan Tabrizian Friday, April 12th, 2013 1 Introduction You might be wondering: Are there inner products on R n that are not the usual dot product x y = x 1 y 1 + +

More information

Chapter 17. Orthogonal Matrices and Symmetries of Space

Chapter 17. Orthogonal Matrices and Symmetries of Space Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length

More information

u = [ 2 4 5] has one row with three components (a 3 v = [2 4 5] has three rows separated by semicolons (a 3 w = 2:5 generates the row vector w = [ 2 3

u = [ 2 4 5] has one row with three components (a 3 v = [2 4 5] has three rows separated by semicolons (a 3 w = 2:5 generates the row vector w = [ 2 3 MATLAB Tutorial You need a small numb e r of basic commands to start using MATLAB. This short tutorial describes those fundamental commands. You need to create vectors and matrices, to change them, and

More information

9 MATRICES AND TRANSFORMATIONS

9 MATRICES AND TRANSFORMATIONS 9 MATRICES AND TRANSFORMATIONS Chapter 9 Matrices and Transformations Objectives After studying this chapter you should be able to handle matrix (and vector) algebra with confidence, and understand the

More information

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1 (d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which

More information

F Matrix Calculus F 1

F Matrix Calculus F 1 F Matrix Calculus F 1 Appendix F: MATRIX CALCULUS TABLE OF CONTENTS Page F1 Introduction F 3 F2 The Derivatives of Vector Functions F 3 F21 Derivative of Vector with Respect to Vector F 3 F22 Derivative

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two

More information

CS229 Lecture notes. Andrew Ng

CS229 Lecture notes. Andrew Ng CS229 Lecture notes Andrew Ng Part X Factor analysis Whenwehavedatax (i) R n thatcomesfromamixtureofseveral Gaussians, the EM algorithm can be applied to fit a mixture model. In this setting, we usually

More information

Least-Squares Intersection of Lines

Least-Squares Intersection of Lines Least-Squares Intersection of Lines Johannes Traa - UIUC 2013 This write-up derives the least-squares solution for the intersection of lines. In the general case, a set of lines will not intersect at a

More information

Using row reduction to calculate the inverse and the determinant of a square matrix

Using row reduction to calculate the inverse and the determinant of a square matrix Using row reduction to calculate the inverse and the determinant of a square matrix Notes for MATH 0290 Honors by Prof. Anna Vainchtein 1 Inverse of a square matrix An n n square matrix A is called invertible

More information

Principle Component Analysis and Partial Least Squares: Two Dimension Reduction Techniques for Regression

Principle Component Analysis and Partial Least Squares: Two Dimension Reduction Techniques for Regression Principle Component Analysis and Partial Least Squares: Two Dimension Reduction Techniques for Regression Saikat Maitra and Jun Yan Abstract: Dimension reduction is one of the major tasks for multivariate

More information

Brief Introduction to Vectors and Matrices

Brief Introduction to Vectors and Matrices CHAPTER 1 Brief Introduction to Vectors and Matrices In this chapter, we will discuss some needed concepts found in introductory course in linear algebra. We will introduce matrix, vector, vector-valued

More information

Math 431 An Introduction to Probability. Final Exam Solutions

Math 431 An Introduction to Probability. Final Exam Solutions Math 43 An Introduction to Probability Final Eam Solutions. A continuous random variable X has cdf a for 0, F () = for 0 <

More information

Matrices and Linear Algebra

Matrices and Linear Algebra Chapter 2 Matrices and Linear Algebra 2. Basics Definition 2... A matrix is an m n array of scalars from a given field F. The individual values in the matrix are called entries. Examples. 2 3 A = 2 4 2

More information

Name: Section Registered In:

Name: Section Registered In: Name: Section Registered In: Math 125 Exam 3 Version 1 April 24, 2006 60 total points possible 1. (5pts) Use Cramer s Rule to solve 3x + 4y = 30 x 2y = 8. Be sure to show enough detail that shows you are

More information

A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form

A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form Section 1.3 Matrix Products A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form (scalar #1)(quantity #1) + (scalar #2)(quantity #2) +...

More information

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013 Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,

More information

LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

More information

Lecture Topic: Low-Rank Approximations

Lecture Topic: Low-Rank Approximations Lecture Topic: Low-Rank Approximations Low-Rank Approximations We have seen principal component analysis. The extraction of the first principle eigenvalue could be seen as an approximation of the original

More information

SALEM COMMUNITY COLLEGE Carneys Point, New Jersey 08069 COURSE SYLLABUS COVER SHEET. Action Taken (Please Check One) New Course Initiated

SALEM COMMUNITY COLLEGE Carneys Point, New Jersey 08069 COURSE SYLLABUS COVER SHEET. Action Taken (Please Check One) New Course Initiated SALEM COMMUNITY COLLEGE Carneys Point, New Jersey 08069 COURSE SYLLABUS COVER SHEET Course Title Course Number Department Linear Algebra Mathematics MAT-240 Action Taken (Please Check One) New Course Initiated

More information

[1] Diagonal factorization

[1] Diagonal factorization 8.03 LA.6: Diagonalization and Orthogonal Matrices [ Diagonal factorization [2 Solving systems of first order differential equations [3 Symmetric and Orthonormal Matrices [ Diagonal factorization Recall:

More information

Chapter 7. Matrices. Definition. An m n matrix is an array of numbers set out in m rows and n columns. Examples. ( 1 1 5 2 0 6

Chapter 7. Matrices. Definition. An m n matrix is an array of numbers set out in m rows and n columns. Examples. ( 1 1 5 2 0 6 Chapter 7 Matrices Definition An m n matrix is an array of numbers set out in m rows and n columns Examples (i ( 1 1 5 2 0 6 has 2 rows and 3 columns and so it is a 2 3 matrix (ii 1 0 7 1 2 3 3 1 is a

More information

5. Orthogonal matrices

5. Orthogonal matrices L Vandenberghe EE133A (Spring 2016) 5 Orthogonal matrices matrices with orthonormal columns orthogonal matrices tall matrices with orthonormal columns complex matrices with orthonormal columns 5-1 Orthonormal

More information

Lecture notes on linear algebra

Lecture notes on linear algebra Lecture notes on linear algebra David Lerner Department of Mathematics University of Kansas These are notes of a course given in Fall, 2007 and 2008 to the Honors sections of our elementary linear algebra

More information

T ( a i x i ) = a i T (x i ).

T ( a i x i ) = a i T (x i ). Chapter 2 Defn 1. (p. 65) Let V and W be vector spaces (over F ). We call a function T : V W a linear transformation form V to W if, for all x, y V and c F, we have (a) T (x + y) = T (x) + T (y) and (b)

More information

Torgerson s Classical MDS derivation: 1: Determining Coordinates from Euclidean Distances

Torgerson s Classical MDS derivation: 1: Determining Coordinates from Euclidean Distances Torgerson s Classical MDS derivation: 1: Determining Coordinates from Euclidean Distances It is possible to construct a matrix X of Cartesian coordinates of points in Euclidean space when we know the Euclidean

More information

3.1 Least squares in matrix form

3.1 Least squares in matrix form 118 3 Multiple Regression 3.1 Least squares in matrix form E Uses Appendix A.2 A.4, A.6, A.7. 3.1.1 Introduction More than one explanatory variable In the foregoing chapter we considered the simple regression

More information

Lecture 5: Singular Value Decomposition SVD (1)

Lecture 5: Singular Value Decomposition SVD (1) EEM3L1: Numerical and Analytical Techniques Lecture 5: Singular Value Decomposition SVD (1) EE3L1, slide 1, Version 4: 25-Sep-02 Motivation for SVD (1) SVD = Singular Value Decomposition Consider the system

More information

Solving Linear Systems, Continued and The Inverse of a Matrix

Solving Linear Systems, Continued and The Inverse of a Matrix , Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing

More information

CONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation

CONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation Chapter 2 CONTROLLABILITY 2 Reachable Set and Controllability Suppose we have a linear system described by the state equation ẋ Ax + Bu (2) x() x Consider the following problem For a given vector x in

More information

Probability for Estimation (review)

Probability for Estimation (review) Probability for Estimation (review) In general, we want to develop an estimator for systems of the form: x = f x, u + η(t); y = h x + ω(t); ggggg y, ffff x We will primarily focus on discrete time linear

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra 4 Introduction to Matrix Algebra In the previous chapter, we learned the algebraic results that form the foundation for the study of factor analysis and structural equation modeling. These results, powerful

More information

Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density

Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density HW MATH 461/561 Lecture Notes 15 1 Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density and marginal densities f(x, y), (x, y) Λ X,Y f X (x), x Λ X,

More information

Finite Dimensional Hilbert Spaces and Linear Inverse Problems

Finite Dimensional Hilbert Spaces and Linear Inverse Problems Finite Dimensional Hilbert Spaces and Linear Inverse Problems ECE 174 Lecture Supplement Spring 2009 Ken Kreutz-Delgado Electrical and Computer Engineering Jacobs School of Engineering University of California,

More information

Matrix Calculations: Applications of Eigenvalues and Eigenvectors; Inner Products

Matrix Calculations: Applications of Eigenvalues and Eigenvectors; Inner Products Matrix Calculations: Applications of Eigenvalues and Eigenvectors; Inner Products H. Geuvers Institute for Computing and Information Sciences Intelligent Systems Version: spring 2015 H. Geuvers Version:

More information

x1 x 2 x 3 y 1 y 2 y 3 x 1 y 2 x 2 y 1 0.

x1 x 2 x 3 y 1 y 2 y 3 x 1 y 2 x 2 y 1 0. Cross product 1 Chapter 7 Cross product We are getting ready to study integration in several variables. Until now we have been doing only differential calculus. One outcome of this study will be our ability

More information

NOV - 30211/II. 1. Let f(z) = sin z, z C. Then f(z) : 3. Let the sequence {a n } be given. (A) is bounded in the complex plane

NOV - 30211/II. 1. Let f(z) = sin z, z C. Then f(z) : 3. Let the sequence {a n } be given. (A) is bounded in the complex plane Mathematical Sciences Paper II Time Allowed : 75 Minutes] [Maximum Marks : 100 Note : This Paper contains Fifty (50) multiple choice questions. Each question carries Two () marks. Attempt All questions.

More information

Numerical Methods I Eigenvalue Problems

Numerical Methods I Eigenvalue Problems Numerical Methods I Eigenvalue Problems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course G63.2010.001 / G22.2420-001, Fall 2010 September 30th, 2010 A. Donev (Courant Institute)

More information

MAT188H1S Lec0101 Burbulla

MAT188H1S Lec0101 Burbulla Winter 206 Linear Transformations A linear transformation T : R m R n is a function that takes vectors in R m to vectors in R n such that and T (u + v) T (u) + T (v) T (k v) k T (v), for all vectors u

More information

A note on companion matrices

A note on companion matrices Linear Algebra and its Applications 372 (2003) 325 33 www.elsevier.com/locate/laa A note on companion matrices Miroslav Fiedler Academy of Sciences of the Czech Republic Institute of Computer Science Pod

More information

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar

More information

Lecture 4: Partitioned Matrices and Determinants

Lecture 4: Partitioned Matrices and Determinants Lecture 4: Partitioned Matrices and Determinants 1 Elementary row operations Recall the elementary operations on the rows of a matrix, equivalent to premultiplying by an elementary matrix E: (1) multiplying

More information

6. Cholesky factorization

6. Cholesky factorization 6. Cholesky factorization EE103 (Fall 2011-12) triangular matrices forward and backward substitution the Cholesky factorization solving Ax = b with A positive definite inverse of a positive definite matrix

More information

1 Determinants and the Solvability of Linear Systems

1 Determinants and the Solvability of Linear Systems 1 Determinants and the Solvability of Linear Systems In the last section we learned how to use Gaussian elimination to solve linear systems of n equations in n unknowns The section completely side-stepped

More information

The Analysis of Data. Volume 1. Probability. Guy Lebanon

The Analysis of Data. Volume 1. Probability. Guy Lebanon The Analysis of Data Volume 1 Probability Guy Lebanon First Edition 2012 Probability. The Analysis of Data, Volume 1. First Edition, First Printing, 2013 http://theanalysisofdata.com Copyright 2013 by

More information