Lecture Notes 1. Brief Review of Basic Probability


 Darcy Hudson
 1 years ago
 Views:
Transcription
1 Probability Review Lecture Notes Brief Review of Basic Probability I assume you know basic probability. Chapters 3 are a review. I will assume you have read and understood Chapters 3. Here is a very quick review.. Random Variables A random variable is a map X from a set Ω (equipped with a probability P ) to R. We write P (X A) = P ({ω Ω : X(ω) A}) and we write X P to mean that X has distribution P. function (cdf) of X is F X (x) = F (x) = P (X x). If X is discrete, its probability mass function (pmf) is The cumulative distribution p X (x) = p(x) = P (X = x). If X is continuous, then its probability density function function (pdf) satisfies P (X A) = p X (x)dx = p(x)dx A A and p X (x) = p(x) = F (x). The following are all equivalent: X P, X F, X p. Suppose that X P and Y Q. We say that X and Y have the same distribution if P (X A) = Q(Y A) for all A. In that case we say that X and Y are equal in distribution and we write X d = Y. Lemma X d = Y if and only if F X (t) = F Y (t) for all t.
2 .2 Expected Values The mean or expected value of g(x) is { g(x)p(x)dx if X is continuous E (g(x)) = g(x)df (x) = g(x)dp (x) = j g(x j)p(x j ) if X is discrete. Recall that:. E( k j= c jg j (X)) = k j= c je(g j (X)). 2. If X,..., X n are independent then ( n ) E X i = i= i E (X i ). 3. We often write µ = E(X). 4. σ 2 = Var (X) = E ((X µ) 2 ) is the Variance. 5. Var (X) = E (X 2 ) µ If X,..., X n are independent then ( n ) Var a i X i = i= i a 2 i Var (X i ). 7. The covariance is Cov(X, Y ) = E((X µ x )(Y µ y )) = E(XY ) µ X µ Y and the correlation is ρ(x, Y ) = Cov(X, Y )/σ x σ y. Recall that ρ(x, Y ). The conditional expectation of Y given X is the random variable E(Y X) whose value, when X = x is E(Y X = x) = y p(y x)dy where p(y x) = p(x, y)/p(x). 2
3 The Law of Total Expectation or Law of Iterated Expectation: E(Y ) = E [ E(Y X) ] = E(Y X = x)p X (x)dx. The Law of Total Variance is Var(Y ) = Var [ E(Y X) ] + E [ Var(Y X) ]. The moment generating function (mgf) is M X (t) = E ( e tx). If M X (t) = M Y (t) for all t in an interval around 0 then X d = Y. Exercise: show that M (n) X (t) t=0 = E (X n )..3 Transformations Let Y = g(x). Then F Y (y) = P(Y y) = P(g(X) y) = A(y) p X (x)dx where Then p Y (y) = F Y (y). If g is monotonic, then where h = g. A y = {x : g(x) y}. p Y (y) = p X (h(y)) dh(y) dy Example 2 Let p X (x) = e x for x > 0. Hence F X (x) = e x. Let Y = g(x) = log X. Then and p Y (y) = e y e ey for y R. F Y (y) = P (Y y) = P (log(x) y) = P (X e y ) = F X (e y ) = e ey Example 3 Practice problem. Let X be uniform on (, 2) and let Y = X 2. Find the density of Y. 3
4 Let Z = g(x, Y ). For exampe, Z = X + Y or Z = X/Y. Then we find the pdf of Z as follows:. For each z, find the set A z = {(x, y) : g(x, y) z}. 2. Find the CDF F Z (z) = P (Z z) = P (g(x, Y ) z) = P ({(x, y) : g(x, y) z}) = p X,Y (x, y)dxdy. A z 3. The pdf is p Z (z) = F Z (z). Example 4 Practice problem. Let (X, Y ) be uniform on the unit square. Let Z = X/Y. Find the density of Z..4 Independence X and Y are independent if and only if for all A and B. P(X A, Y B) = P(X A)P(Y B) Theorem 5 Let (X, Y ) be a bivariate random vector with p X,Y (x, y). X and Y are independent iff p X,Y (x, y) = p X (x)p Y (y). X,..., X n are independent if and only if P(X A,..., X n A n ) = n P(X i A i ). Thus, p X,...,X n (x,..., x n ) = n i= p X i (x i ). If X,..., X n are independent and identically distributed we say they are iid (or that they are a random sample) and we write X,..., X n P or X,..., X n F or X,..., X n p..5 Important Distributions X N(µ, σ 2 ) if i= p(x) = σ 2π e (x µ)2 /(2σ2). If X R d then X N(µ, Σ) if ( p(x) = (2π) d/2 Σ exp ) 2 (x µ)t Σ (x µ). 4
5 X χ 2 p if X = p j= Z2 j where Z,..., Z p N(0, ). X Bernoulli(θ) if P(X = ) = θ and P(X = 0) = θ and hence p(x) = θ x ( θ) x x = 0,. X Binomial(θ) if p(x) = P(X = x) = ( ) n θ x ( θ) n x x x {0,..., n}. X Uniform(0, θ) if p(x) = I(0 x θ)/θ..6 Sample Mean and Variance The sample mean is and the sample variance is X = X i, n S 2 = n i (X i X) 2. Let X,..., X n be iid with µ = E(X i ) = µ and σ 2 = Var(X i ) = σ 2. Then E(X) = µ, Theorem 6 If X,..., X n N(µ, σ 2 ) then (a) X N(µ, σ2 n ) i Var(X) = σ2 n, E(S2 ) = σ 2. (b) (n )S2 σ 2 χ 2 n (c) X and S 2 are independent.7 Delta Method If X N(µ, σ 2 ), Y = g(x) and σ 2 is small then To see this, note that Y N(g(µ), σ 2 (g (µ)) 2 ). Y = g(x) = g(µ) + (X µ)g (µ) + 5 (X µ)2 g (ξ) 2
6 for some ξ. Now E((X µ) 2 ) = σ 2 which we are assuming is small and so Y = g(x) g(µ) + (X µ)g (µ). Thus Hence, E(Y ) g(µ), Var(Y ) (g (µ)) 2 σ 2. g(x) N ( g(µ), (g (µ)) 2 σ 2). 6
7 Appendix: Common Distributions Discrete Uniform X U (,..., N) X takes values x =, 2,..., N P (X = x) = /N E (X) = x xp (X = x) = x x N = N E (X 2 ) = x x2 P (X = x) = x x2 N = N Binomial X Bin(n, p) X takes values x = 0,,..., n P (X = x) = ( ) n x p x ( p) n x Hypergeometric X Hypergeometric(N, M, K) P (X = x) = (M x )( N M K x ) ( N K) Geometric X Geom(p) P (X = x) = ( p) x p, x =, 2,... E (X) = x x( p)x = p x Poisson X Poisson(λ) P (X = x) = e λ λ x x! x = 0,, 2,... E (X) = Var (X) = λ N(N+) = (N+) 2 2 N(N+)(2N+) 6 d ( ( dp p)x ) = p p =. p 2 p M X (t) = x=0 etx e λ λ x = e λ (λe t ) x x! x=0 = e λ e λet = e λ(et ). x! 7
8 E (X) = λe t e λ(et ) t=0 = λ. Use mgf to show: if X Poisson(λ ), X 2 Poisson(λ 2 ), independent then Y = X + X 2 Poisson(λ + λ 2 ). Multinomial Distribution The multivariate version of a Binomial is called a Multinomial. Consider drawing a ball from an urn with has balls with k different colors labeled color, color 2,..., color k. Let p = (p, p 2,..., p k ) where j p j = and p j is the probability of drawing color j. Draw n balls from the urn (independently and with replacement) and let X = (X, X 2,..., X k ) be the count of the number of balls of each color drawn. We say that X has a Multinomial (n, p) distribution. The pdf is ( ) n p(x) = p x... p x k k x,..., x. k Continuous Distributions Normal X N(µ, σ 2 ) p(x) = 2πσ exp{ 2σ 2 (x µ) 2 }, x R mgf M X (t) = exp{µt + σ 2 t 2 /2}. E (X) = µ Var (X) = σ 2. e.g., If Z N(0, ) and X = µ + σz, then X N(µ, σ 2 ). Show this... Proof. M X (t) = E ( e tx) = E ( e t(µ+σz)) = e tµ E ( e tσz) = e tµ M Z (tσ) = e tµ e (tσ)2/2 = e tµ+t2 σ 2 /2 which is the mgf of a N(µ, σ 2 ). 8
9 Gamma Alternative proof: F X (x) = P (X x) = P (µ + σz x) = P ( ) x µ = F Z σ ( ) x µ p X (x) = F X(x) = p Z σ σ { = exp ( ) } 2 x µ 2π 2 σ σ { = exp ( ) } 2 x µ, 2πσ 2 σ which is the pdf of a N(µ, σ 2 ). X Γ(α, β). p X (x) = Γ(α)β α x α e x/β, x a positive real. Γ(α) = 0 x α e x/β dx. β α Important statistical distribution: χ 2 p = Γ( p 2, 2). χ 2 p = p i= X2 i, where X i N(0, ), iid. Exponential X exp(β) p X (x) = β e x/β, x a positive real. exp(β) = Γ(, β). ( Z x µ ) σ e.g., Used to model waiting time of a Poisson Process. Suppose N is the number of phone calls in hour and N P oisson(λ). Let T be the time between consecutive phone calls, then T exp(/λ) and E (T ) = (/λ). If X,..., X n are iid exp(β), then i X i Γ(n, β). Memoryless Property: If X exp(β), then P (X > t + s X > t) = P (X > s). 9
10 Multivariate Normal Distribution Let Y R d. Then Y N(µ, Σ) if ( p(y) = exp ) (2π) d/2 Σ /2 2 (y µ)t Σ (y µ). Then E(Y ) = µ and cov(y ) = Σ. The moment generating function is ( ) M(t) = exp µ T t + tt Σt. 2 Theorem 7 (a). If Y N(µ, Σ), then E(Y ) = µ, cov(y ) = Σ. (b). If Y N(µ, Σ) and c is a scalar, then cy N(cµ, c 2 Σ). (c). Let Y N(µ, Σ). If A is p n and b is p, then AY + b N(Aµ + b, AΣA T ). Theorem 8 Suppose that Y N(µ, Σ). Let ( ) Y Y =, µ = Y 2 ( µ µ 2 ), Σ = ( Σ Σ 2 Σ 2 Σ 22 where Y and µ are p, and Σ is p p. (a). Y N p (µ, Σ ), Y 2 N n p (µ 2, Σ 22 ). (b). Y and Y 2 are independent if and only if Σ 2 = 0. (c). If Σ 22 > 0, then the condition distribution of Y given Y 2 is ). Y Y 2 N p (µ + Σ 2 Σ 22 (Y 2 µ 2 ), Σ Σ 2 Σ 22 Σ 2 ). Lemma 9 Let Y N(µ, σ 2 I), where Y T = (Y,..., Y n ), µ T = (µ,..., µ n ) and σ 2 > 0 is a scalar. Then the Y i are independent, Y i N (µ, σ 2 ) and Y 2 σ 2 Theorem 0 Let Y N(µ, Σ). Then: (a). Y T Σ Y χ 2 n(µ T Σ µ). (b). (Y µ) T Σ (Y µ) χ 2 n(0). = Y T Y σ 2 χ 2 n ( µ T µ σ 2 ). 0
What is Statistics? Lecture 1. Introduction and probability review. Idea of parametric inference
0. 1. Introduction and probability review 1.1. What is Statistics? What is Statistics? Lecture 1. Introduction and probability review There are many definitions: I will use A set of principle and procedures
More informationDefinition: Suppose that two random variables, either continuous or discrete, X and Y have joint density
HW MATH 461/561 Lecture Notes 15 1 Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density and marginal densities f(x, y), (x, y) Λ X,Y f X (x), x Λ X,
More informationJointly Distributed Random Variables
Jointly Distributed Random Variables COMP 245 STATISTICS Dr N A Heard Contents 1 Jointly Distributed Random Variables 1 1.1 Definition......................................... 1 1.2 Joint cdfs..........................................
More information4. Joint Distributions of Two Random Variables
4. Joint Distributions of Two Random Variables 4.1 Joint Distributions of Two Discrete Random Variables Suppose the discrete random variables X and Y have supports S X and S Y, respectively. The joint
More informationChapters 5. Multivariate Probability Distributions
Chapters 5. Multivariate Probability Distributions Random vectors are collection of random variables defined on the same sample space. Whenever a collection of random variables are mentioned, they are
More informationP (x) 0. Discrete random variables Expected value. The expected value, mean or average of a random variable x is: xp (x) = v i P (v i )
Discrete random variables Probability mass function Given a discrete random variable X taking values in X = {v 1,..., v m }, its probability mass function P : X [0, 1] is defined as: P (v i ) = Pr[X =
More informationSections 2.11 and 5.8
Sections 211 and 58 Timothy Hanson Department of Statistics, University of South Carolina Stat 704: Data Analysis I 1/25 Gesell data Let X be the age in in months a child speaks his/her first word and
More informationECE302 Spring 2006 HW7 Solutions March 11, 2006 1
ECE32 Spring 26 HW7 Solutions March, 26 Solutions to HW7 Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in italics where
More informationLecture 6: Discrete & Continuous Probability and Random Variables
Lecture 6: Discrete & Continuous Probability and Random Variables D. Alex Hughes Math Camp September 17, 2015 D. Alex Hughes (Math Camp) Lecture 6: Discrete & Continuous Probability and Random September
More informationMT426 Notebook 3 Fall 2012 prepared by Professor Jenny Baglivo. 3 MT426 Notebook 3 3. 3.1 Definitions... 3. 3.2 Joint Discrete Distributions...
MT426 Notebook 3 Fall 2012 prepared by Professor Jenny Baglivo c Copyright 20042012 by Jenny A. Baglivo. All Rights Reserved. Contents 3 MT426 Notebook 3 3 3.1 Definitions............................................
More informationLesson 5 Chapter 4: Jointly Distributed Random Variables
Lesson 5 Chapter 4: Jointly Distributed Random Variables Department of Statistics The Pennsylvania State University 1 Marginal and Conditional Probability Mass Functions The Regression Function Independence
More informationLecture 8: Signal Detection and Noise Assumption
ECE 83 Fall Statistical Signal Processing instructor: R. Nowak, scribe: Feng Ju Lecture 8: Signal Detection and Noise Assumption Signal Detection : X = W H : X = S + W where W N(, σ I n n and S = [s, s,...,
More informationST 371 (VIII): Theory of Joint Distributions
ST 371 (VIII): Theory of Joint Distributions So far we have focused on probability distributions for single random variables. However, we are often interested in probability statements concerning two or
More informationIntroduction to Probability
Introduction to Probability EE 179, Lecture 15, Handout #24 Probability theory gives a mathematical characterization for experiments with random outcomes. coin toss life of lightbulb binary data sequence
More information3 Multiple Discrete Random Variables
3 Multiple Discrete Random Variables 3.1 Joint densities Suppose we have a probability space (Ω, F,P) and now we have two discrete random variables X and Y on it. They have probability mass functions f
More informationJoint Exam 1/P Sample Exam 1
Joint Exam 1/P Sample Exam 1 Take this practice exam under strict exam conditions: Set a timer for 3 hours; Do not stop the timer for restroom breaks; Do not look at your notes. If you believe a question
More informationOverview of Monte Carlo Simulation, Probability Review and Introduction to Matlab
Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?
More informationStatistics 100A Homework 8 Solutions
Part : Chapter 7 Statistics A Homework 8 Solutions Ryan Rosario. A player throws a fair die and simultaneously flips a fair coin. If the coin lands heads, then she wins twice, and if tails, the onehalf
More informationTopic 4: Multivariate random variables. Multiple random variables
Topic 4: Multivariate random variables Joint, marginal, and conditional pmf Joint, marginal, and conditional pdf and cdf Independence Expectation, covariance, correlation Conditional expectation Two jointly
More informationFor a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i )
Probability Review 15.075 Cynthia Rudin A probability space, defined by Kolmogorov (19031987) consists of: A set of outcomes S, e.g., for the roll of a die, S = {1, 2, 3, 4, 5, 6}, 1 1 2 1 6 for the roll
More informationStatistics 100A Homework 7 Solutions
Chapter 6 Statistics A Homework 7 Solutions Ryan Rosario. A television store owner figures that 45 percent of the customers entering his store will purchase an ordinary television set, 5 percent will purchase
More information5. Continuous Random Variables
5. Continuous Random Variables Continuous random variables can take any value in an interval. They are used to model physical characteristics such as time, length, position, etc. Examples (i) Let X be
More informationMath 431 An Introduction to Probability. Final Exam Solutions
Math 43 An Introduction to Probability Final Eam Solutions. A continuous random variable X has cdf a for 0, F () = for 0 <
More informationSF2940: Probability theory Lecture 8: Multivariate Normal Distribution
SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2015 Timo Koski Matematisk statistik 24.09.2015 1 / 1 Learning outcomes Random vectors, mean vector, covariance matrix,
More informatione.g. arrival of a customer to a service station or breakdown of a component in some system.
Poisson process Events occur at random instants of time at an average rate of λ events per second. e.g. arrival of a customer to a service station or breakdown of a component in some system. Let N(t) be
More informationMAS108 Probability I
1 QUEEN MARY UNIVERSITY OF LONDON 2:30 pm, Thursday 3 May, 2007 Duration: 2 hours MAS108 Probability I Do not start reading the question paper until you are instructed to by the invigilators. The paper
More informationMaster s Theory Exam Spring 2006
Spring 2006 This exam contains 7 questions. You should attempt them all. Each question is divided into parts to help lead you through the material. You should attempt to complete as much of each problem
More informationA Tutorial on Probability Theory
Paola Sebastiani Department of Mathematics and Statistics University of Massachusetts at Amherst Corresponding Author: Paola Sebastiani. Department of Mathematics and Statistics, University of Massachusetts,
More informationAggregate Loss Models
Aggregate Loss Models Chapter 9 Stat 477  Loss Models Chapter 9 (Stat 477) Aggregate Loss Models Brian Hartman  BYU 1 / 22 Objectives Objectives Individual risk model Collective risk model Computing
More informationDepartment of Mathematics, Indian Institute of Technology, Kharagpur Assignment 23, Probability and Statistics, March 2015. Due:March 25, 2015.
Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 3, Probability and Statistics, March 05. Due:March 5, 05.. Show that the function 0 for x < x+ F (x) = 4 for x < for x
More informationPSTAT 120B Probability and Statistics
 Week University of California, Santa Barbara April 10, 013 Discussion section for 10B Information about TA: FangI CHU Office: South Hall 5431 T Office hour: TBA email: chu@pstat.ucsb.edu Slides will
More informationUNIT I: RANDOM VARIABLES PART A TWO MARKS
UNIT I: RANDOM VARIABLES PART A TWO MARKS 1. Given the probability density function of a continuous random variable X as follows f(x) = 6x (1x) 0
More informationChapter 4. Multivariate Distributions
1 Chapter 4. Multivariate Distributions Joint p.m.f. (p.d.f.) Independent Random Variables Covariance and Correlation Coefficient Expectation and Covariance Matrix Multivariate (Normal) Distributions Matlab
More informationSTAT 430/510 Probability Lecture 14: Joint Probability Distribution, Continuous Case
STAT 430/510 Probability Lecture 14: Joint Probability Distribution, Continuous Case Pengyuan (Penelope) Wang June 20, 2011 Joint density function of continuous Random Variable When X and Y are two continuous
More informationWorked examples Multiple Random Variables
Worked eamples Multiple Random Variables Eample Let X and Y be random variables that take on values from the set,, } (a) Find a joint probability mass assignment for which X and Y are independent, and
More informationPoisson Processes. Chapter 5. 5.1 Exponential Distribution. The gamma function is defined by. Γ(α) = t α 1 e t dt, α > 0.
Chapter 5 Poisson Processes 5.1 Exponential Distribution The gamma function is defined by Γ(α) = t α 1 e t dt, α >. Theorem 5.1. The gamma function satisfies the following properties: (a) For each α >
More informationSTAT 3502. x 0 < x < 1
Solution  Assignment # STAT 350 Total mark=100 1. A large industrial firm purchases several new word processors at the end of each year, the exact number depending on the frequency of repairs in the previous
More informationMULTIVARIATE PROBABILITY DISTRIBUTIONS
MULTIVARIATE PROBABILITY DISTRIBUTIONS. PRELIMINARIES.. Example. Consider an experiment that consists of tossing a die and a coin at the same time. We can consider a number of random variables defined
More informationStat 704 Data Analysis I Probability Review
1 / 30 Stat 704 Data Analysis I Probability Review Timothy Hanson Department of Statistics, University of South Carolina Course information 2 / 30 Logistics: Tuesday/Thursday 11:40am to 12:55pm in LeConte
More informationSF2940: Probability theory Lecture 8: Multivariate Normal Distribution
SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2014 Timo Koski () Mathematisk statistik 24.09.2014 1 / 75 Learning outcomes Random vectors, mean vector, covariance
More informationM2S1 Lecture Notes. G. A. Young http://www2.imperial.ac.uk/ ayoung
M2S1 Lecture Notes G. A. Young http://www2.imperial.ac.uk/ ayoung September 2011 ii Contents 1 DEFINITIONS, TERMINOLOGY, NOTATION 1 1.1 EVENTS AND THE SAMPLE SPACE......................... 1 1.1.1 OPERATIONS
More informationExponential Distribution
Exponential Distribution Definition: Exponential distribution with parameter λ: { λe λx x 0 f(x) = 0 x < 0 The cdf: F(x) = x Mean E(X) = 1/λ. f(x)dx = Moment generating function: φ(t) = E[e tx ] = { 1
More informationSection 5.1 Continuous Random Variables: Introduction
Section 5. Continuous Random Variables: Introduction Not all random variables are discrete. For example:. Waiting times for anything (train, arrival of customer, production of mrna molecule from gene,
More informationMath 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 2 Solutions
Math 370, Spring 008 Prof. A.J. Hildebrand Practice Test Solutions About this test. This is a practice test made up of a random collection of 5 problems from past Course /P actuarial exams. Most of the
More information6. Jointly Distributed Random Variables
6. Jointly Distributed Random Variables We are often interested in the relationship between two or more random variables. Example: A randomly chosen person may be a smoker and/or may get cancer. Definition.
More informationGenerating Random Numbers Variance Reduction QuasiMonte Carlo. Simulation Methods. Leonid Kogan. MIT, Sloan. 15.450, Fall 2010
Simulation Methods Leonid Kogan MIT, Sloan 15.450, Fall 2010 c Leonid Kogan ( MIT, Sloan ) Simulation Methods 15.450, Fall 2010 1 / 35 Outline 1 Generating Random Numbers 2 Variance Reduction 3 QuasiMonte
More informationJoint Distributions. Tieming Ji. Fall 2012
Joint Distributions Tieming Ji Fall 2012 1 / 33 X : univariate random variable. (X, Y ): bivariate random variable. In this chapter, we are going to study the distributions of bivariate random variables
More informationPrinciple of Data Reduction
Chapter 6 Principle of Data Reduction 6.1 Introduction An experimenter uses the information in a sample X 1,..., X n to make inferences about an unknown parameter θ. If the sample size n is large, then
More informationRandom Vectors and the Variance Covariance Matrix
Random Vectors and the Variance Covariance Matrix Definition 1. A random vector X is a vector (X 1, X 2,..., X p ) of jointly distributed random variables. As is customary in linear algebra, we will write
More information6.041/6.431 Spring 2008 Quiz 2 Wednesday, April 16, 7:309:30 PM. SOLUTIONS
6.4/6.43 Spring 28 Quiz 2 Wednesday, April 6, 7:39:3 PM. SOLUTIONS Name: Recitation Instructor: TA: 6.4/6.43: Question Part Score Out of 3 all 36 2 a 4 b 5 c 5 d 8 e 5 f 6 3 a 4 b 6 c 6 d 6 e 6 Total
More informationMath 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand. Practice Test, 1/28/2008 (with solutions)
Math 370, Actuarial Problemsolving Spring 008 A.J. Hildebrand Practice Test, 1/8/008 (with solutions) About this test. This is a practice test made up of a random collection of 0 problems from past Course
More informationECE302 Spring 2006 HW3 Solutions February 2, 2006 1
ECE302 Spring 2006 HW3 Solutions February 2, 2006 1 Solutions to HW3 Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in
More informationSection 6.1 Joint Distribution Functions
Section 6.1 Joint Distribution Functions We often care about more than one random variable at a time. DEFINITION: For any two random variables X and Y the joint cumulative probability distribution function
More informationSTA 256: Statistics and Probability I
Al Nosedal. University of Toronto. Fall 2014 1 2 3 4 5 My momma always said: Life was like a box of chocolates. You never know what you re gonna get. Forrest Gump. Experiment, outcome, sample space, and
More informationP(a X b) = f X (x)dx. A p.d.f. must integrate to one: f X (x)dx = 1. Z b
Continuous Random Variables The probability that a continuous random variable, X, has a value between a and b is computed by integrating its probability density function (p.d.f.) over the interval [a,b]:
More information( ) is proportional to ( 10 + x)!2. Calculate the
PRACTICE EXAMINATION NUMBER 6. An insurance company eamines its pool of auto insurance customers and gathers the following information: i) All customers insure at least one car. ii) 64 of the customers
More informationChapter 4 Lecture Notes
Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a realvalued function defined on the sample space of some experiment. For instance,
More informationMath 141. Lecture 7: Variance, Covariance, and Sums. Albyn Jones 1. 1 Library 304. jones/courses/141
Math 141 Lecture 7: Variance, Covariance, and Sums Albyn Jones 1 1 Library 304 jones@reed.edu www.people.reed.edu/ jones/courses/141 Last Time Variance: expected squared deviation from the mean: Standard
More information32. PROBABILITY P(A B)
32. PROBABILITY 32. Probability 1 Revised September 2011 by G. Cowan (RHUL). 32.1. General [1 8] An abstract definition of probability can be given by considering a set S, called the sample space, and
More information( ) = 1 x. ! 2x = 2. The region where that joint density is positive is indicated with dotted lines in the graph below. y = x
Errata for the ASM Study Manual for Exam P, Eleventh Edition By Dr. Krzysztof M. Ostaszewski, FSA, CERA, FSAS, CFA, MAAA Web site: http://www.krzysio.net Email: krzysio@krzysio.net Posted September 21,
More informationCovariance and Correlation. Consider the joint probability distribution f XY (x, y).
Chapter 5: JOINT PROBABILITY DISTRIBUTIONS Part 2: Section 52 Covariance and Correlation Consider the joint probability distribution f XY (x, y). Is there a relationship between X and Y? If so, what kind?
More informationSome probability and statistics
Appendix A Some probability and statistics A Probabilities, random variables and their distribution We summarize a few of the basic concepts of random variables, usually denoted by capital letters, X,Y,
More informationUniversity of California, Berkeley, Statistics 134: Concepts of Probability
University of California, Berkeley, Statistics 134: Concepts of Probability Michael Lugo, Spring 211 Exam 2 solutions 1. A fair twentysided die has its faces labeled 1, 2, 3,..., 2. The die is rolled
More informationTopic 8 The Expected Value
Topic 8 The Expected Value Functions of Random Variables 1 / 12 Outline Names for Eg(X ) Variance and Standard Deviation Independence Covariance and Correlation 2 / 12 Names for Eg(X ) If g(x) = x, then
More information4. Joint Distributions
Virtual Laboratories > 2. Distributions > 1 2 3 4 5 6 7 8 4. Joint Distributions Basic Theory As usual, we start with a random experiment with probability measure P on an underlying sample space. Suppose
More informationProbability Calculator
Chapter 95 Introduction Most statisticians have a set of probability tables that they refer to in doing their statistical wor. This procedure provides you with a set of electronic statistical tables that
More informationParametric Models Part I: Maximum Likelihood and Bayesian Density Estimation
Parametric Models Part I: Maximum Likelihood and Bayesian Density Estimation Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Fall 2015 CS 551, Fall 2015
More informationLecture 8. Confidence intervals and the central limit theorem
Lecture 8. Confidence intervals and the central limit theorem Mathematical Statistics and Discrete Mathematics November 25th, 2015 1 / 15 Central limit theorem Let X 1, X 2,... X n be a random sample of
More informationRandom Variables. Chapter 2. Random Variables 1
Random Variables Chapter 2 Random Variables 1 Roulette and Random Variables A Roulette wheel has 38 pockets. 18 of them are red and 18 are black; these are numbered from 1 to 36. The two remaining pockets
More informationTHE CENTRAL LIMIT THEOREM TORONTO
THE CENTRAL LIMIT THEOREM DANIEL RÜDT UNIVERSITY OF TORONTO MARCH, 2010 Contents 1 Introduction 1 2 Mathematical Background 3 3 The Central Limit Theorem 4 4 Examples 4 4.1 Roulette......................................
More informationMTH135/STA104: Probability
MTH135/STA14: Probability Homework # 8 Due: Tuesday, Nov 8, 5 Prof Robert Wolpert 1 Define a function f(x, y) on the plane R by { 1/x < y < x < 1 f(x, y) = other x, y a) Show that f(x, y) is a joint probability
More informationSTAT 830 Convergence in Distribution
STAT 830 Convergence in Distribution Richard Lockhart Simon Fraser University STAT 830 Fall 2011 Richard Lockhart (Simon Fraser University) STAT 830 Convergence in Distribution STAT 830 Fall 2011 1 / 31
More informationProbability Generating Functions
page 39 Chapter 3 Probability Generating Functions 3 Preamble: Generating Functions Generating functions are widely used in mathematics, and play an important role in probability theory Consider a sequence
More informationSOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve
SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives
More informationInstitute of Actuaries of India Subject CT3 Probability and Mathematical Statistics
Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in
More informationProbability Distribution
Lecture 4 Probability Distribution Continuous Case Definition: A random variable that can take on any value in an interval is called continuous. Definition: Let Y be any r.v. The distribution function
More informationLecture 21. The Multivariate Normal Distribution
Lecture. The Multivariate Normal Distribution. Definitions and Comments The joint momentgenerating function of X,...,X n [also called the momentgenerating function of the random vector (X,...,X n )]
More informationExercises with solutions (1)
Exercises with solutions (). Investigate the relationship between independence and correlation. (a) Two random variables X and Y are said to be correlated if and only if their covariance C XY is not equal
More informationNotes on Continuous Random Variables
Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes
More informationProbability density function : An arbitrary continuous random variable X is similarly described by its probability density function f x = f X
Week 6 notes : Continuous random variables and their probability densities WEEK 6 page 1 uniform, normal, gamma, exponential,chisquared distributions, normal approx'n to the binomial Uniform [,1] random
More information0 x = 0.30 x = 1.10 x = 3.05 x = 4.15 x = 6 0.4 x = 12. f(x) =
. A mailorder computer business has si telephone lines. Let X denote the number of lines in use at a specified time. Suppose the pmf of X is as given in the accompanying table. 0 2 3 4 5 6 p(.0.5.20.25.20.06.04
More informationECE302 Spring 2006 HW4 Solutions February 6, 2006 1
ECE302 Spring 2006 HW4 Solutions February 6, 2006 1 Solutions to HW4 Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in
More informationChapter 4  Lecture 1 Probability Density Functions and Cumul. Distribution Functions
Chapter 4  Lecture 1 Probability Density Functions and Cumulative Distribution Functions October 21st, 2009 Review Probability distribution function Useful results Relationship between the pdf and the
More informationMaximum Likelihood Estimation
Math 541: Statistical Theory II Lecturer: Songfeng Zheng Maximum Likelihood Estimation 1 Maximum Likelihood Estimation Maximum likelihood is a relatively simple method of constructing an estimator for
More informationHomework set 4  Solutions
Homework set 4  Solutions Math 495 Renato Feres Problems R for continuous time Markov chains The sequence of random variables of a Markov chain may represent the states of a random system recorded at
More informationSome special discrete probability distributions
University of California, Los Angeles Department of Statistics Statistics 100A Instructor: Nicolas Christou Some special discrete probability distributions Bernoulli random variable: It is a variable that
More informationECE302 Spring 2006 HW5 Solutions February 21, 2006 1
ECE3 Spring 6 HW5 Solutions February 1, 6 1 Solutions to HW5 Note: Most of these solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in italics
More informationFEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL
FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL STATIsTICs 4 IV. RANDOm VECTORs 1. JOINTLY DIsTRIBUTED RANDOm VARIABLEs If are two rom variables defined on the same sample space we define the joint
More informationNotes 11 Autumn 2005
MAS 08 Probabilit I Notes Autumn 005 Two discrete random variables If X and Y are discrete random variables defined on the same sample space, then events such as X = and Y = are well defined. The joint
More informationRANDOM VARIABLES MATH CIRCLE (ADVANCED) 3/3/2013. 3 k) ( 52 3 )
RANDOM VARIABLES MATH CIRCLE (ADVANCED) //0 0) a) Suppose you flip a fair coin times. i) What is the probability you get 0 heads? ii) head? iii) heads? iv) heads? For = 0,,,, P ( Heads) = ( ) b) Suppose
More informationMath 461 Fall 2006 Test 2 Solutions
Math 461 Fall 2006 Test 2 Solutions Total points: 100. Do all questions. Explain all answers. No notes, books, or electronic devices. 1. [105+5 points] Assume X Exponential(λ). Justify the following two
More informationChapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution
Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 3: Discrete Uniform Distribution Binomial Distribution Sections 35, 36 Special discrete random variable distributions we will cover
More informationManual for SOA Exam MLC.
Chapter 5. Life annuities. Extract from: Arcones Manual for the SOA Exam MLC. Spring 2010 Edition. available at http://www.actexmadriver.com/ 1/114 Whole life annuity A whole life annuity is a series of
More informationi=1 In practice, the natural logarithm of the likelihood function, called the loglikelihood function and denoted by
Statistics 580 Maximum Likelihood Estimation Introduction Let y (y 1, y 2,..., y n be a vector of iid, random variables from one of a family of distributions on R n and indexed by a pdimensional parameter
More informationTenth Problem Assignment
EECS 40 Due on April 6, 007 PROBLEM (8 points) Dave is taking a multiplechoice exam. You may assume that the number of questions is infinite. Simultaneously, but independently, his conscious and subconscious
More informationSummary of Formulas and Concepts. Descriptive Statistics (Ch. 14)
Summary of Formulas and Concepts Descriptive Statistics (Ch. 14) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume
More informationSYSM 6304: Risk and Decision Analysis Lecture 3 Monte Carlo Simulation
SYSM 6304: Risk and Decision Analysis Lecture 3 Monte Carlo Simulation M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu September 19, 2015 Outline
More informationLecture 3: Continuous distributions, expected value & mean, variance, the normal distribution
Lecture 3: Continuous distributions, expected value & mean, variance, the normal distribution 8 October 2007 In this lecture we ll learn the following: 1. how continuous probability distributions differ
More informationDefinition 6.1.1. A r.v. X has a normal distribution with mean µ and variance σ 2, where µ R, and σ > 0, if its density is f(x) = 1. 2σ 2.
Chapter 6 Brownian Motion 6. Normal Distribution Definition 6... A r.v. X has a normal distribution with mean µ and variance σ, where µ R, and σ > 0, if its density is fx = πσ e x µ σ. The previous definition
More information1. Let A, B and C are three events such that P(A) = 0.45, P(B) = 0.30, P(C) = 0.35,
1. Let A, B and C are three events such that PA =.4, PB =.3, PC =.3, P A B =.6, P A C =.6, P B C =., P A B C =.7. a Compute P A B, P A C, P B C. b Compute P A B C. c Compute the probability that exactly
More information