Lecture 7: Powder diffraction and chemical analysis

Size: px
Start display at page:

Download "Lecture 7: Powder diffraction and chemical analysis"

Transcription

1 Lecture 7: Powder diffraction and chemical analysis Contents 1 Introduction 1 2 Indexing pattern for cubic crystals 2 3 Indexing for non-cubic systems 5 4 Phase diagram determination 9 5 Super lattice structures 12 6 Qualitative analysis by XRD 15 7 Quantitative analysis by XRD External standard Direct comparison Internal standard method Chemical analysis - x-ray fluorescence 18 1 Introduction The original reason for doing x-ray diffraction is to identify the structure of the unknown material. Single crystals are favorable but for most metals, ceramics, intermetallics, single crystals are not necessarily available. For such materials powder patterns from polycrystals are used for identifying the crystal structure. Powder patterns give two useful information 1. The shape and size of the unit cell - this is from the position of the diffraction lines (2θ) 1

2 2. The arrangement of atoms in the unit cell - this is from the relative intensities of the different lines. To give an example, for a cubic system the lattice constant a determines the values of 2θ for the various planes. The arrangement of atoms in the cubic system, whether simple cubic, bcc, or fcc, determines the relative intensities and the absence and presence of some lines. Thus, given a structure it is easy to calculate the diffraction pattern, especially for simple metals and intermetallics. But doing the reverse (which is what is expected from X-ray diffraction) is not easy. This is especially true for following phase transformations in multi component systems where more than one system, with closely spaced diffraction lines, is present. Finding the different phases and their relative amounts becomes challenging. There are three major steps involved in phase determination. 1. From the angular position (2θ) of the lines we get an idea of the shape and size. We start by assigning a crystal system to the material (out of 7) and based on that calculate Miller indices to the various lines. If they do t fit go back and reassign a new crystal system and iterate. 2. From the density, known chemical composition, and shape and size of the unit cell the number of atoms per unit cell are calculated. 3. Finally, from the intensity of the lines the atom positions are calculated. There are some sources of error in this approach. 1. Lack of truly monochromatic source - if the X-ray is not truly monochromatic, K β lines are also present along with the K α line then there will be extra lines in the diffraction pattern. Usually, these can be minimized by using the appropriate filters. Also, the extra lines have a specific angular relation with the lines from the K α radiation which can be calculated and then eliminated. 2. Impurities in the unknown material - any presence of crystalline impurities in the sample will again cause extra lines. This depends on the specimen properties and can be eliminated by processing. 2 Indexing pattern for cubic crystals A cubic crystal gives diffraction lines where the angle (θ) obeys the following relation sin 2 θ h 2 + k 2 + l = sin2 θ = λ2 = constant (1) 2 s 2 4a2 2

3 Table 1: 2θ values for Al. First 5 diffraction lines Intensity 2θ (in deg) where a is the lattice constant, λ is the x-ray wavelength, and (hkl) refers to the Miller indices of the plane. Equation 1 is obtained using Bragg s law and the fraction is a constant for diffraction lines from a given x-ray source. Since, hkl are integers s is also an integer and can only take certain values. The values that s can take changes for the different cubic systems (sc, bcc, and fcc) and this is based on the structure factor rules. The problem is finding the values of s for the different 2θ values. The s values for the different cubic systems are simple cubic - All (hkl): 1, 2, 3, 4, 5, 6, 8, 9, bcc - (h + k + l) = even: 2, 4, 6, 8, 10, fcc - (hkl) all even or odd: 3, 4, 8, 11, From the diffraction lines it is possible to calculate the various values of s using equation 1. This information is summarized graphically in figure 1 for the different cubic systems. These can be tried against the different sets for the cubic systems. If there is no match then the system is not cubic. Consider the case of Al. The first five diffraction lines for Al, in order of increasing 2θ are given in table 1. The radiation used is Cu Kα with wavelength 1.54 Å. Using equation 1 it is possible to calculate the values of sin2 θ s taking different values of s for simple cubic, fcc, and bcc. These are tabulated in table 2. From table 2 it is clear that only for the fcc system does sin2 θ s become a constant as indicated in equation 1. Thus, Al crystallizes in a fcc structure. The lattice spacing can be calculated using equation 1 where the value of the constant from table 2 is sin 2 θ s = λ2 = (2) 4a2 From equation 2 the lattice constant a of Al is 4.06 Å. Given that the density of Al (ρ) is 2.7 gcm 3 it is possible to calculate the number of atoms per unit 3

4 Figure 1: Calculated diffraction patterns for the various lattices. Taken from Elements of X-ray diffraction - B.D. Cullity. 4

5 Table 2: 2θ values for Al with corresponding values of sin2 θ s cubic systems for the various sin 2 θ Intensity 2θ (in deg) d Å sin 2 θ sc s bcc fcc cell, Z. This is given by the relation ρ = Z. at.wt a 3 N A (3) where N A is Avogadro s number. From equation 3 the value of Z is 4. Thus, Al has a fcc structure with 4 atoms per unit cell. 3 Indexing for non-cubic systems Cubic systems are easy to solve, since they have only one lattice constant and the angle are all 90. Things before more difficult if we have non-cubic systems. Usually, graphical methods are used for solving these systems. Consider a tetragonal system with a = b c and all 3 angle 90. The relation between d spacing and the lattice constants for this system is 1 d 2 = h2 a 2 + k2 b 2 1 d = h2 + k 2 2 a 2 + l2 c 2 + l2 c 2 1 d 2 = 1 a 2 [(h2 + k 2 ) + l2 (c/a) 2 ] (4) Taking logarithm on both sides give 2 log d = 2 log a log[(h 2 + k 2 ) + l2 (c/a) 2 ] (5) 5

6 If there are 2 planes with spacing d 1 and d 2 and Miller indices (h 1 k 1 l 1 ) and (h 2 k 2 l 2 ) then equation 5 modifies to 2 log d 1 2 log d 2 = log[(h k 2 1) + l2 1 (c/a) 2 ] log[(h2 2 + k 2 2) + l2 2 (c/a) 2 ] (6) Equation 6 shows that the logarithm of the difference between d spacing for 2 planes in the tetragonal system depends only on the logarithm of the (c/a) ratio and the Miller indices. It is possible to make log plots of the second term in the right hand side of equation 5 vs. (c/a) for all possible (hkl). This will give a series of curves. The experimental pattern can be superimposed on these curves and the (c/a) value can be obtained. Such types of curves are called Hull-Davey curves. A partial Hull-Davey curve for the tetragonal system is shown in figure 2. A complete one for the body centered tetragonal system is shown in figure 3. Hull-Davey curves can be constructed for different crystal systems taking into account the relation between the lattice constants and the lattice angles. In the case of the hexagonal system the relation between the d spacing and the lattice constants is 1 d = 4 (h 2 + k 2 + hk) + l2 (7) 2 3 a 2 c 2 After a similar manipulation followed for the tetragonal system, this can be rearranged as 2 log d = 2 log a log[ 4 3 (h2 + k 2 + hk) + l2 (c/a) 2 ] (8) A Hull-Davey chart can be constructed similar to than for the tetragonal system to get the lattice constants. As the number of independent lattice constants of the of the crystal increases (length and angles) it becomes more difficult to use the graphical methods. Now, there are computer programs that are used to index patterns by searching and matching with known databases. The powder diffraction patterns for known materials are stored in the ICDD (International Center for Diffraction Data) database. For unknown systems with more than one type of atom in the unit cell we need the intensities of the lines to find the atom positions. This is done by relating then intensities to the structure factor, F, which is related to the atomic scattering factors, and atom positions. This is usually a trial and error process, where an initial structure is assumed and the diffraction pattern calculated. This is matched with the experimental pattern and refinement is carried out to the trial structure. This process is repeated until there is a match. Sometimes, for complex molecules (e.g. organic), single crystals are needed for structure determination. 6

7 Figure 2: Partial Hull-Davey curve for the tetragonal system with the experimental pattern superimposed. Taken from Elements of X-ray diffraction - B.D. Cullity. 7

8 Figure 3: Complete Hull-Davey curve for the body centered tetragonal system. Taken from Elements of X-ray diffraction - B.D. Cullity. 8

9 4 Phase diagram determination Another area where x-ray diffraction is useful is in phase diagram determination. If we want to construct a phase diagram the classical way to do it is thermal analysis followed by microstructure information. But this does not give structure information of the phases. For this we need diffraction. The diffraction pattern for each phase is independent of the other phases. It is also possible to get quantitative information on the relative amounts of the various phases i.e. phase boundaries can also be constructed using XRD. It is also important how the changing composition of the different phases can affect the diffraction patterns 1. If there is solid solubility then as the concentration increases the d- spacing changes. This is because the lattice constant changes. There can either be an increase or decrease in lattice constant depending on the relative atomic sizes of the constituent elements. This leads to a shift in the position of the lines. 2. If there is a 2 phase region then as the concentration change the relative intensity of the different lines changes but there is no change in line position. The following are the principles for collecting x-ray diffraction patterns for phase diagram determination 1. Each alloy must be at equilibrium at the temperature of interest. For high temperature phases not stable at room temperature there are two options for studying the crystal structure. (a) Quench to room temperature and do diffraction. (b) Use x-ray diffraction with high temperature attachment for direct determination. This option is preferred when available for it eliminates the need for preparing large number of samples. 2. The phase sequence: a horizontal line (constant temperature)must pass through a single phase region and 2 phase region alternatively. A line cannot pass from one 2 phase region to the next without passing through a single phase region, can be a line compound. These principles can be understood by looking at figure 4. If we draw a horizontal line then the phases go from single phase α to a mixture of α + γ and then a line compound γ. From γ we again get a two phase region γ + β and then finally single phase β. Within a single phase region as the 9

10 Figure 4: Phase diagram and lattice constant of a hypothetical binary phase diagram. Taken from Elements of X-ray diffraction - B.D. Cullity. composition changes then line position changes but in the two phase region the relative line intensities change. This information is captured in the series of diffraction patterns for the phase diagram shown in figure 4 and shown in figure 5. In the single phase region where we have a solid solution, these can be of two types 1. Interstitial - when solute atom is much smaller than the solvent atom e.g. C, N, H, B atoms then we can have interstitial solid solutions. Interstitial solid solutions always lead to an increase in lattice parameters. For non cubic structures not all lattice constant change equally. 2. Substitutional - These are of 3 types - random, ordered, or defect. Random and ordered substitutional solid solutions are more common than defect structures. Depending on the relative sizes of the two atoms the lattice constants can increase or decrease. In defect structures the increase in concentration of atom B is accompanied by creating holes where A atoms are present. This is prevalent in compounds that have partial covalent characteristics. They can affect the peak intensities by affecting the structure factor. An example of a defect structure is in NiAl which has a simple cubic structure with Ni atoms at the corner and Al at the center. The phase exists over a composition range 45-61% Ni. For off stoichiometry compositions there will be Ni or Al vacancies in the lattice i.e. defect structures. 10

11 Figure 5: XRD patterns for different alloys from the hypothetical binary phase diagram in figure 4. Taken from Elements of X-ray diffraction - B.D. Cullity. 11

12 Figure 6: Ordered and disordered configuration in AuCu 3. Taken from Elements of X-ray diffraction - B.D. Cullity. 5 Super lattice structures These are also called order-disorder transformations. In this a substitutional solid solution that has atoms located at random positions at high temperature transforms into an ordered structure where the different kinds of atoms are located at specific positions. In x-ray diffraction an order-disorder transformation will not affect the positions of the peaks but relative intensities will change. Sometime new peaks are also formed. Ordered structures are also called super lattice structures. The new lines seen in the diffraction pattern are called super lattice lines. The original lines are called fundamental lines. To understand the formation of super lattice lines in XRD consider the example of AuCu 3. The disordered and ordered structure for this is shown in figure 6. AuCu 3 has an fcc structure with 4 atoms per unit cell. From the formula, there are 3 Cu atoms for 1 Au atom. In the disordered structure, the 4 atoms are randomly located in the unit cell while in the ordered structure, Au atoms are located at the corners and the Cu atoms are located at the face center positions. The order-disorder transition temperature for this system is 390 C. Consider the completely disordered structure. The probability of a site being occupied by Au atom is 1 4 while the probability of occupation by Cu is 3 4. Hence it is possible to define an average atomic factor term, f av that is given by f av = 1 4 f Au f Cu (9) where f Au and f Cu are the atomic scattering factors for Au and Cu. The disordered structure can be considered as a regular fcc structure so that the 12

13 structure factor F hkl is given by F hkl = f av [1 + exp(iπh + k) + exp(iπk + l) + exp(iπl + h)] (10) The structure factor rules for the disordered structure are also similar to a regular fcc lattice i.e. the structure factor F hkl vanishes when hkl are mixed and is non-zero when they are all even or all odd. The difference arises when we have the ordered structure. Now the Cu and Au atoms are located at specific positions and hence the structure factor is calculated by using these specific positions. This gives the structure factor for the ordered structure as F hkl = f Au + f Cu [exp(iπh + k) + exp(iπk + l) + exp(iπl + h)] (11) Using equation 11 we can see that the structure factor does not vanish for certain (hkl). F = (f Au + 3f Cu ) when (hkl) are all even or odd F = (f Au f Cu ) when (hkl) are mixed Thus, the ordered structure has extra diffraction lines, which are called super lattice lines. This can be seen in the case of powder patterns of CuAu 3 in figure 7 where extra lines are visible. Complete order and complete disorder represent the two extremes. In most cases, it is possible to get a mixture of both. In such cases, it is possible to define a long range order parameter, S, given by S = r A F A 1 F A (12) where r A refers to the fraction of A sites occupied by A atoms and F A refers to the fraction of A atoms in the material. In the case of complete order r A = 1 and hence S = 1. In complete disorder r A = F A and S = 0. It is possible to calculate the long range order parameter by comparing the intensity of the super lattice lines with the expected intensity when there is complete order (S = 1). There are certain cases when the super lattice lines have a low intensity and are not visible in the powder pattern. Consider the case of CuZn. The disordered structure is a bcc unit cell with Cu and Zn atoms randomly located either at the corner locations or the body center. In the ordered structure the Cu atoms are located at the corner and the Zn atoms at the center. This is shown in figure 8. In CuZn the order-disorder transformation takes place at 460 C. The disordered structure behaves like a bcc structure with an 13

14 Figure 7: Powder patterns of (a) disordered (b) partially ordered and (c) completely ordered AuCu 3. Taken from Elements of X-ray diffraction - B.D. Cullity. Figure 8: Ordered and disordered structures in CuZn. Taken from Elements of X-ray diffraction - B.D. Cullity. 14

15 average atomic scattering factor defined by the average of f Cu and f Zn. In the ordered structure the scattering factor is given by F hkl = f Cu + f Zn [exp(iπh + k + l)] (13) Using equation 13 it is possible to calculate the structure factors for the various values of (hkl) F = (f Cu + f Zn ) when (h + k + l) is even F undamental line F = (f Cu f Zn ) when (h + k + l) is odd Super lattice line Since the super lattice line is given by the difference of the atomic scattering factors its intensity is very weak compared to the fundamental line. Since intensity is directly proportional to the square of the structure factor I super I fundamental = (f Zn f Cu ) 2 (f Zn + f Cu ) 2 (14) For θ = 0 the atomic scattering factors are equal to the atomic numbers so that f Cu = 29 and f Zn = 30. Substituting in equation 14 this gives the ratio to be It is thus possible for the super lattice lines to be too weak to be detected. Order-disorder transition is an example of long range ordering. It is harder to detect short range order or clustering using x-ray diffraction. 6 Qualitative analysis by XRD X-ray diffraction pattern for a given material does not depend on whether the material is a pure substance or is in a physical mixture. Both qualitative i.e. identification of the crystal structure of the material and quantitative i.e. percentage of the material in a physical mixture analysis are possible. Diffraction patterns provide information on the state of the material but a pure chemical analysis might not be able to do this. In qualitative analysis we are interested in knowing the structure of the unknown material or materials in the given sample. The standard procedure is to compare the unknown diffraction pattern with standard patterns from known materials until there is a match. The problem is given that there are tens of thousands of diffraction patterns and multiple diffraction lines for each pattern doing a match would be almost impossible for an unknown material. It would be better if there is some idea of the constitutive elements so we can narrow down the parameter space for searching. Even then the number of patterns to search could become large. Consider an example 15

16 Figure 9: Standard ASTM diffraction data card for Molybdenum Carbide. Taken from Elements of X-ray diffraction - B.D. Cullity. of a compound formed by reaction between Ni and Al at elevated temperature. The resultant mixture could be a single intermetallic compound or mixture of intermetallics or mixture of intermetallics and unreacted material. Thus the diffraction pattern of the product has to be checked against Ni, Al, Al 3 Ni, Al 3 Ni 2, AlNi, Al 9 Ni 2, and other Ni-Al intermetallics to find out the constituent phases. Given that there are tens of thousands of diffraction patterns (and the number can only grow) it is a very had indexing pattern to solve an unknown diffraction pattern. Need a system for classifying patterns so that fast indexing is possible. The practice of classifying known diffraction patterns was initiated by Hanawalt and associates in the mid 1930s. Instead of using 2θ and Intensity he used d-spacing and Intensity. The advantage is that the index is independent of the incident x-ray radiation, unlike 2θ. He arranged the patterns in order of decreasing d (or increasing 2θ) and used this to generate a search procedure. Hanawalt started building a collection of known diffraction patterns. This was taken by the Joint Committee on Powder Diffraction Standards (JCPDS). This was later called the International Center for Diffraction Data (ICDD). A standard diffraction data card is shown in figure 9. Earlier printed cards were used for manually searching through the diffraction patterns. Usually the strongest 3 lines were used to characterize each material. This has be replaced by automatic computer searches. Most commercial x-ray diffraction software are preloaded with standard diffraction 16

17 patterns or with a license to access ICDD diffraction data and come with automatic search and index features. Usually the constituent elements have to be identified but the program will search all possible combinations of the elements to index the patterns. For a single phase search and index is fairly straightforward but it becomes more difficult for mixture of phases. Also, preferred orientation of the material has to be taken into account especially for vapor deposited of grown films where complete polycrystalline samples are might not be available. 7 Quantitative analysis by XRD For quantitative analysis, the intensity of line of a given material in a mixture must be related to its relative amount. The intensity is usually proportional to the relative concentration but it also depends on the absorption coefficient of the mixture. The relation between intensity of a phase (I α )and concentration (c α ) is given by the equation I α = K 1c α µ m (15) where K 1 is a constant which depends on other factors like the Bragg angle and structure factor and µ m is the absorption coefficient of the mixture. The factor K 1 can be eliminated by measuring the intensity with a known standard. There are two approaches for this 7.1 External standard In the case of an external standard we can compare the intensity of the α phase, I α, with the intensity of the same line for the pure material, (I α ) pure. This can be written using equation 15 as I α (I α ) pure = c α (µ m /µ α ) (16) The absorption coefficient of the mixture is still unknown but for a physical mixture µ m can be written as a linear mixture of the absorption coefficients of the components weighted by their relative concentrations. Thus, µ m can be written as µ m = c α µ α + c β µ β (17) Using equations 17 it is possible to rewrite equation 16 as I α (I α ) pure = c α c α (1 µ β µ α ) + µ β µ α (18) 17

18 Thus knowing the absorption coefficient of the individual components and measuring the line intensity of the pure standard it is possible to calculate the concentration of the α phase in the mixture. 7.2 Direct comparison In the direct comparison method a lien from another phase in the mixture is used to calculate the concentration. The advantage of this method is that multiple spectra, one from the sample and from the standards is not needed. We can also use this technique when pure standard is not possible, for e.g. precipitate phase in an alloy. In the case of direct comparison two line of intensity I α and I β from the 2 phases are used. The ratio of the intensities is given by I α I β = K α K β c α c β (19) The factors K α and K β are dependent on Bragg angle but on other factors that are independent of θ. For more that 2 component systems the calculation of intensities for the individual phases becomes difficult. 7.3 Internal standard method In this method the intensity of the line from the α phase whose concentration is to be measured is compared with the intensity from a known standard material which is mixed with the sample in a specific proportion. The ratio of the intensity of line from the α phase and the standard is linearly related to the weight fraction. Usually, calibration curves are prepared with varying amounts of the α phase and standard. These calibration curves can be compared with the sample with the unknown concentration to know the fraction of the α phase. The standard material has to chosen carefully so that its X-ray lines do not overlap with the x-ray line of the sample so that line intensities can be measured. 8 Chemical analysis - x-ray fluorescence X-rays can also be used for chemical analysis i.e. identification of the constituents (elements) of the unknown material and also the ratios of the constituents. This is based on the concept of x-ray fluorescence. A basic x-ray fluorescence setup is shown in figure 10. The basic idea is that the characteristic x-rays (K α, K β, L α ) are unique for an element and does not depending 18

19 Figure 10: X-ray fluorescence setup. Taken from Elements of X-ray diffraction - B.D. Cullity. on the chemical nature of the element in the sample. This is because characteristic x-rays are produced when electrons are removed from an inner shell and electrons from an outer shell fall into the inner shell releasing energy as x-rays. Since inner shells usually do not take part in bonding the energies of the lines are insensitive to the chemical state of the atom. A typical fluorescence spectrum from a stainless steel sample is shown in figure 11. X-ray fluorescence does not need a monochromatic x-ray source since only the secondary radiation from the sample is analyzed. The analysis of the secondary radiation can be done by two ways 1. Wavelength dispersive- the output spectrum is analyzed using a crystal with known d-spacing. For each angle (2θ) a certain wavelength (λ) is diffracted and the intensity is measured. 2. Energy dispersive - the output spectrum is analyzed using a Si(Li) counter (cooled to lq. N 2 ) which produces an output current which is proportional to the incident energy. A multi channel analyzer is used to sort out the various pulse heights. The incident radiation can be of two types 1. X-rays - when the incident radiation is x-rays this is called x-ray fluorescence. 2. Electrons - when the incident beam is electrons (could be from an electron microscope) it is called energy dispersive x-ray analysis (EDAX). 19

20 Figure 11: X-ray fluorescence spectrum from a stainless steel sample. Taken from Elements of X-ray diffraction - B.D. Cullity. 20

21 In EDAX the Si(Li) or Ge detector is used, which is an energy dispersive detector. The wavelength range of the incident radiation depends on the accelerating voltage. Typical wavelength range is around Å. X-ray fluorescence technique is complementary with another technique called Auger electron emission. They will be considered in detail when dealing with electron interaction with a material. It is possible to define a fluorescence yield that depends on the atomic number and is complementary to the Auger yield. For light elements (atomic number less than 17, Cl) Auger emission is more common while for heavier elements fluorescence is more common. This limits the ability of x-ray fluorescence to detect light elements. Also, for the light elements the wavelength of the emitted x-rays are large and can get easily absorbed by the atmosphere. Some of this can be eliminated by using an evacuated tube. For qualitative analysis the fluorescence spectra can be compared with known standards to identify the material. Quantitative analysis can be done similar to x-ray diffraction. The intensity depends on the concentration but also on the absorption by the matrix. Sometime matrix enhancement is also possible if the fluorescent lines from one phase can be absorbed by the other phase to enhance its fluorescence. This has to be taken into account when calculating intensities. 21

Crystal Structure Determination I

Crystal Structure Determination I Crystal Structure Determination I Dr. Falak Sher Pakistan Institute of Engineering and Applied Sciences National Workshop on Crystal Structure Determination using Powder XRD, organized by the Khwarzimic

More information

Experiment: Crystal Structure Analysis in Engineering Materials

Experiment: Crystal Structure Analysis in Engineering Materials Experiment: Crystal Structure Analysis in Engineering Materials Objective The purpose of this experiment is to introduce students to the use of X-ray diffraction techniques for investigating various types

More information

X-Ray Diffraction HOW IT WORKS WHAT IT CAN AND WHAT IT CANNOT TELL US. Hanno zur Loye

X-Ray Diffraction HOW IT WORKS WHAT IT CAN AND WHAT IT CANNOT TELL US. Hanno zur Loye X-Ray Diffraction HOW IT WORKS WHAT IT CAN AND WHAT IT CANNOT TELL US Hanno zur Loye X-rays are electromagnetic radiation of wavelength about 1 Å (10-10 m), which is about the same size as an atom. The

More information

Introduction to X-Ray Powder Diffraction Data Analysis

Introduction to X-Ray Powder Diffraction Data Analysis Introduction to X-Ray Powder Diffraction Data Analysis Center for Materials Science and Engineering at MIT http://prism.mit.edu/xray An X-ray diffraction pattern is a plot of the intensity of X-rays scattered

More information

Defects Introduction. Bonding + Structure + Defects. Properties

Defects Introduction. Bonding + Structure + Defects. Properties Defects Introduction Bonding + Structure + Defects Properties The processing determines the defects Composition Bonding type Structure of Crystalline Processing factors Defects Microstructure Types of

More information

Lecture 19: Eutectoid Transformation in Steels: a typical case of Cellular

Lecture 19: Eutectoid Transformation in Steels: a typical case of Cellular Lecture 19: Eutectoid Transformation in Steels: a typical case of Cellular Precipitation Today s topics Understanding of Cellular transformation (or precipitation): when applied to phase transformation

More information

The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R

The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R 3.5 Show that the atomic packing factor for BCC is 0.68. The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C Since there are two spheres associated

More information

Relevant Reading for this Lecture... Pages 83-87.

Relevant Reading for this Lecture... Pages 83-87. LECTURE #06 Chapter 3: X-ray Diffraction and Crystal Structure Determination Learning Objectives To describe crystals in terms of the stacking of planes. How to use a dot product to solve for the angles

More information

Crystal Structure of High Temperature Superconductors. Marie Nelson East Orange Campus High School NJIT Professor: Trevor Tyson

Crystal Structure of High Temperature Superconductors. Marie Nelson East Orange Campus High School NJIT Professor: Trevor Tyson Crystal Structure of High Temperature Superconductors Marie Nelson East Orange Campus High School NJIT Professor: Trevor Tyson Introduction History of Superconductors Superconductors are material which

More information

X Ray Flourescence (XRF)

X Ray Flourescence (XRF) X Ray Flourescence (XRF) Aspiring Geologist XRF Technique XRF is a rapid, relatively non destructive process that produces chemical analysis of rocks, minerals, sediments, fluids, and soils It s purpose

More information

Amptek Application Note XRF-1: XRF Spectra and Spectra Analysis Software By R.Redus, Chief Scientist, Amptek Inc, 2008.

Amptek Application Note XRF-1: XRF Spectra and Spectra Analysis Software By R.Redus, Chief Scientist, Amptek Inc, 2008. Amptek Application Note XRF-1: XRF Spectra and Spectra Analysis Software By R.Redus, Chief Scientist, Amptek Inc, 2008. X-Ray Fluorescence (XRF) is a very simple analytical technique: X-rays excite atoms

More information

Structure Factors 59-553 78

Structure Factors 59-553 78 78 Structure Factors Until now, we have only typically considered reflections arising from planes in a hypothetical lattice containing one atom in the asymmetric unit. In practice we will generally deal

More information

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.

More information

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Jon H. Hardesty, PhD and Bassam Attili, PhD Collin College Department of Chemistry Introduction: In the last lab

More information

Chapter Outline Dislocations and Strengthening Mechanisms

Chapter Outline Dislocations and Strengthening Mechanisms Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

More information

X-RAY FLUORESCENCE SPECTROSCOPY IN PLASTICS RECYCLING

X-RAY FLUORESCENCE SPECTROSCOPY IN PLASTICS RECYCLING X-RAY FLUORESCENCE SPECTROSCOPY IN PLASTICS RECYCLING Brian L. Riise and Michael B. Biddle MBA Polymers, Inc., Richmond, CA, USA Michael M. Fisher American Plastics Council, Arlington, VA, USA X-Ray Fluorescence

More information

Fundamentals of modern UV-visible spectroscopy. Presentation Materials

Fundamentals of modern UV-visible spectroscopy. Presentation Materials Fundamentals of modern UV-visible spectroscopy Presentation Materials The Electromagnetic Spectrum E = hν ν = c / λ 1 Electronic Transitions in Formaldehyde 2 Electronic Transitions and Spectra of Atoms

More information

Ch. 4: Imperfections in Solids Part 1. Dr. Feras Fraige

Ch. 4: Imperfections in Solids Part 1. Dr. Feras Fraige Ch. 4: Imperfections in Solids Part 1 Dr. Feras Fraige Outline Defects in Solids 0D, Point defects vacancies Interstitials impurities, weight and atomic composition 1D, Dislocations edge screw 2D, Grain

More information

X-ray Diffraction and EBSD

X-ray Diffraction and EBSD X-ray Diffraction and EBSD Jonathan Cowen Swagelok Center for the Surface Analysis of Materials Case School of Engineering Case Western Reserve University October 27, 2014 Outline X-ray Diffraction (XRD)

More information

MSE 528 - PRECIPITATION HARDENING IN 7075 ALUMINUM ALLOY

MSE 528 - PRECIPITATION HARDENING IN 7075 ALUMINUM ALLOY MSE 528 - PRECIPITATION HARDENING IN 7075 ALUMINUM ALLOY Objective To study the time and temperature variations in the hardness and electrical conductivity of Al-Zn-Mg-Cu high strength alloy on isothermal

More information

ATOMIC ABSORTION SPECTROSCOPY: rev. 4/2011 ANALYSIS OF COPPER IN FOOD AND VITAMINS

ATOMIC ABSORTION SPECTROSCOPY: rev. 4/2011 ANALYSIS OF COPPER IN FOOD AND VITAMINS 1 ATOMIC ABSORTION SPECTROSCOPY: rev. 4/2011 ANALYSIS OF COPPER IN FOOD AND VITAMINS Buck Scientific Atomic Absorption Spectrophotometer, Model 200 Atomic absorption spectroscopy (AAS) has for many years

More information

Chapter Outline Dislocations and Strengthening Mechanisms

Chapter Outline Dislocations and Strengthening Mechanisms Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

More information

Chapter 7: Basics of X-ray Diffraction

Chapter 7: Basics of X-ray Diffraction Providing Solutions To Your Diffraction Needs. Chapter 7: Basics of X-ray Diffraction Scintag has prepared this section for use by customers and authorized personnel. The information contained herein is

More information

Introduction to Powder X-Ray Diffraction History Basic Principles

Introduction to Powder X-Ray Diffraction History Basic Principles Introduction to Powder X-Ray Diffraction History Basic Principles Folie.1 History: Wilhelm Conrad Röntgen Wilhelm Conrad Röntgen discovered 1895 the X-rays. 1901 he was honoured by the Noble prize for

More information

X-ray Diffraction (XRD)

X-ray Diffraction (XRD) X-ray Diffraction (XRD) 1.0 What is X-ray Diffraction 2.0 Basics of Crystallography 3.0 Production of X-rays 4.0 Applications of XRD 5.0 Instrumental Sources of Error 6.0 Conclusions Bragg s Law n l =2dsinq

More information

Chapter Outline. How do atoms arrange themselves to form solids?

Chapter Outline. How do atoms arrange themselves to form solids? Chapter Outline How do atoms arrange themselves to form solids? Fundamental concepts and language Unit cells Crystal structures Simple cubic Face-centered cubic Body-centered cubic Hexagonal close-packed

More information

Introduction to Geiger Counters

Introduction to Geiger Counters Introduction to Geiger Counters A Geiger counter (Geiger-Muller tube) is a device used for the detection and measurement of all types of radiation: alpha, beta and gamma radiation. Basically it consists

More information

X-ray thin-film measurement techniques

X-ray thin-film measurement techniques Technical articles X-ray thin-film measurement techniques II. Out-of-plane diffraction measurements Toru Mitsunaga* 1. Introduction A thin-film sample is two-dimensionally formed on the surface of a substrate,

More information

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance. .1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations

More information

CH3 Stoichiometry. The violent chemical reaction of bromine and phosphorus. P.76

CH3 Stoichiometry. The violent chemical reaction of bromine and phosphorus. P.76 CH3 Stoichiometry The violent chemical reaction of bromine and phosphorus. P.76 Contents 3.1 Counting by Weighing 3.2 Atomic Masses 3.3 The Mole 3.4 Molar Mass 3.5 Percent Composition of Compounds 3.6

More information

Chapter 5: Diffusion. 5.1 Steady-State Diffusion

Chapter 5: Diffusion. 5.1 Steady-State Diffusion : Diffusion Diffusion: the movement of particles in a solid from an area of high concentration to an area of low concentration, resulting in the uniform distribution of the substance Diffusion is process

More information

Coating Thickness and Composition Analysis by Micro-EDXRF

Coating Thickness and Composition Analysis by Micro-EDXRF Application Note: XRF Coating Thickness and Composition Analysis by Micro-EDXRF www.edax.com Coating Thickness and Composition Analysis by Micro-EDXRF Introduction: The use of coatings in the modern manufacturing

More information

Lectures about XRF (X-Ray Fluorescence)

Lectures about XRF (X-Ray Fluorescence) 1 / 38 Lectures about XRF (X-Ray Fluorescence) Advanced Physics Laboratory Laurea Magistrale in Fisica year 2013 - Camerino 2 / 38 X-ray Fluorescence XRF is an acronym for X-Ray Fluorescence. The XRF technique

More information

Solid State Theory Physics 545

Solid State Theory Physics 545 Solid State Theory Physics 545 CRYSTAL STRUCTURES Describing periodic structures Terminology Basic Structures Symmetry Operations Ionic crystals often have a definite habit which gives rise to particular

More information

CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS

CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS 7-1 CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS Basic Concepts of Dislocations Characteristics of Dislocations 7.1 The dislocation density is just the total dislocation length

More information

EDXRF of Used Automotive Catalytic Converters

EDXRF of Used Automotive Catalytic Converters EDXRF of Used Automotive Catalytic Converters Energy Dispersive X-Ray Fluorescence (EDXRF) is a very powerful technique for measuring the concentration of elements in a sample. It is fast, nondestructive,

More information

Chapter 8. Low energy ion scattering study of Fe 4 N on Cu(100)

Chapter 8. Low energy ion scattering study of Fe 4 N on Cu(100) Low energy ion scattering study of 4 on Cu(1) Chapter 8. Low energy ion scattering study of 4 on Cu(1) 8.1. Introduction For a better understanding of the reconstructed 4 surfaces one would like to know

More information

Phase. Gibbs Phase rule

Phase. Gibbs Phase rule Phase diagrams Phase A phase can be defined as a physically distinct and chemically homogeneous portion of a system that has a particular chemical composition and structure. Water in liquid or vapor state

More information

EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions.

EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions. EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions. Outcomes After completing this experiment, the student should be able to: 1. Prepare

More information

Chapter 3. 1. 3 types of materials- amorphous, crystalline, and polycrystalline. 5. Same as #3 for the ceramic and diamond crystal structures.

Chapter 3. 1. 3 types of materials- amorphous, crystalline, and polycrystalline. 5. Same as #3 for the ceramic and diamond crystal structures. Chapter Highlights: Notes: 1. types of materials- amorphous, crystalline, and polycrystalline.. Understand the meaning of crystallinity, which refers to a regular lattice based on a repeating unit cell..

More information

Molecular Spectroscopy

Molecular Spectroscopy Molecular Spectroscopy UV-Vis Spectroscopy Absorption Characteristics of Some Common Chromophores UV-Vis Spectroscopy Absorption Characteristics of Aromatic Compounds UV-Vis Spectroscopy Effect of extended

More information

Iron-Carbon Phase Diagram (a review) see Callister Chapter 9

Iron-Carbon Phase Diagram (a review) see Callister Chapter 9 Iron-Carbon Phase Diagram (a review) see Callister Chapter 9 University of Tennessee, Dept. of Materials Science and Engineering 1 The Iron Iron Carbide (Fe Fe 3 C) Phase Diagram In their simplest form,

More information

GAMMA-RAY SPECTRA REFERENCES

GAMMA-RAY SPECTRA REFERENCES GAMMA-RAY SPECTRA REFERENCES 1. K. Siegbahn, Alpha, Beta and Gamma-Ray Spectroscopy, Vol. I, particularly Chapts. 5, 8A. 2. Nucleonics Data Sheets, Nos. 1-45 (available from the Resource Centre) 3. H.E.

More information

EDS system. CRF Oxford Instruments INCA CRF EDAX Genesis EVEX- NanoAnalysis Table top system

EDS system. CRF Oxford Instruments INCA CRF EDAX Genesis EVEX- NanoAnalysis Table top system EDS system Most common X-Ray measurement system in the SEM lab. Major elements (10 wt% or greater) identified in ~10 secs. Minor elements identifiable in ~100 secs. Rapid qualitative and accurate quantitative

More information

X-ray diffraction techniques for thin films

X-ray diffraction techniques for thin films X-ray diffraction techniques for thin films Rigaku Corporation Application Laboratory Takayuki Konya 1 Today s contents (PM) Introduction X-ray diffraction method Out-of-Plane In-Plane Pole figure Reciprocal

More information

The photoionization detector (PID) utilizes ultraviolet

The photoionization detector (PID) utilizes ultraviolet Chapter 6 Photoionization Detectors The photoionization detector (PID) utilizes ultraviolet light to ionize gas molecules, and is commonly employed in the detection of volatile organic compounds (VOCs).

More information

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING Essential Standard: STUDENTS WILL UNDERSTAND THAT THE PROPERTIES OF MATTER AND THEIR INTERACTIONS ARE A CONSEQUENCE OF THE STRUCTURE OF MATTER,

More information

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

More information

Vacuum Evaporation Recap

Vacuum Evaporation Recap Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.

More information

Lecture: 33. Solidification of Weld Metal

Lecture: 33. Solidification of Weld Metal Lecture: 33 Solidification of Weld Metal This chapter presents common solidification mechanisms observed in weld metal and different modes of solidification. Influence of welding speed and heat input on

More information

Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law

Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law Purpose To become familiar with using a spectrophotometer and gain an understanding of Beer s law and it s relationship to solution concentration. Introduction Scientists use many methods to determine

More information

A Beer s Law Experiment

A Beer s Law Experiment A Beer s Law Experiment Introduction There are many ways to determine concentrations of a substance in solution. So far, the only experiences you may have are acid-base titrations or possibly determining

More information

Lecture 3: Models of Solutions

Lecture 3: Models of Solutions Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP4, Thermodynamics and Phase Diagrams, H. K. D. H. Bhadeshia Lecture 3: Models of Solutions List of Symbols Symbol G M

More information

Using the Spectrophotometer

Using the Spectrophotometer Using the Spectrophotometer Introduction In this exercise, you will learn the basic principals of spectrophotometry and and serial dilution and their practical application. You will need these skills to

More information

Chemistry 111 Laboratory Experiment 7: Determination of Reaction Stoichiometry and Chemical Equilibrium

Chemistry 111 Laboratory Experiment 7: Determination of Reaction Stoichiometry and Chemical Equilibrium Chemistry 111 Laboratory Experiment 7: Determination of Reaction Stoichiometry and Chemical Equilibrium Introduction The word equilibrium suggests balance or stability. The fact that a chemical reaction

More information

Chapter Outline: Phase Transformations in Metals

Chapter Outline: Phase Transformations in Metals Chapter Outline: Phase Transformations in Metals Heat Treatment (time and temperature) Microstructure Mechanical Properties Kinetics of phase transformations Multiphase Transformations Phase transformations

More information

Lösungen Übung Verformung

Lösungen Übung Verformung Lösungen Übung Verformung 1. (a) What is the meaning of T G? (b) To which materials does it apply? (c) What effect does it have on the toughness and on the stress- strain diagram? 2. Name the four main

More information

KINETIC MOLECULAR THEORY OF MATTER

KINETIC MOLECULAR THEORY OF MATTER KINETIC MOLECULAR THEORY OF MATTER The kinetic-molecular theory is based on the idea that particles of matter are always in motion. The theory can be used to explain the properties of solids, liquids,

More information

Science Standard Articulated by Grade Level Strand 5: Physical Science

Science Standard Articulated by Grade Level Strand 5: Physical Science Concept 1: Properties of Objects and Materials Classify objects and materials by their observable properties. Kindergarten Grade 1 Grade 2 Grade 3 Grade 4 PO 1. Identify the following observable properties

More information

QUANTITATIVE INFRARED SPECTROSCOPY. Willard et. al. Instrumental Methods of Analysis, 7th edition, Wadsworth Publishing Co., Belmont, CA 1988, Ch 11.

QUANTITATIVE INFRARED SPECTROSCOPY. Willard et. al. Instrumental Methods of Analysis, 7th edition, Wadsworth Publishing Co., Belmont, CA 1988, Ch 11. QUANTITATIVE INFRARED SPECTROSCOPY Objective: The objectives of this experiment are: (1) to learn proper sample handling procedures for acquiring infrared spectra. (2) to determine the percentage composition

More information

X-ray Powder Diffraction Pattern Indexing for Pharmaceutical Applications

X-ray Powder Diffraction Pattern Indexing for Pharmaceutical Applications The published version of this manuscript may be found at the following webpage: http://www.pharmtech.com/pharmtech/peer-reviewed+research/x-ray-powder-diffraction-pattern-indexing-for- Phar/ArticleStandard/Article/detail/800851

More information

Each grain is a single crystal with a specific orientation. Imperfections

Each grain is a single crystal with a specific orientation. Imperfections Crystal Structure / Imperfections Almost all materials crystallize when they solidify; i.e., the atoms are arranged in an ordered, repeating, 3-dimensional pattern. These structures are called crystals

More information

In order to solve this problem it is first necessary to use Equation 5.5: x 2 Dt. = 1 erf. = 1.30, and x = 2 mm = 2 10-3 m. Thus,

In order to solve this problem it is first necessary to use Equation 5.5: x 2 Dt. = 1 erf. = 1.30, and x = 2 mm = 2 10-3 m. Thus, 5.3 (a) Compare interstitial and vacancy atomic mechanisms for diffusion. (b) Cite two reasons why interstitial diffusion is normally more rapid than vacancy diffusion. Solution (a) With vacancy diffusion,

More information

Chapter Outline. Diffusion - how do atoms move through solids?

Chapter Outline. Diffusion - how do atoms move through solids? Chapter Outline iffusion - how do atoms move through solids? iffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities The mathematics of diffusion Steady-state diffusion (Fick s first law)

More information

2 Absorbing Solar Energy

2 Absorbing Solar Energy 2 Absorbing Solar Energy 2.1 Air Mass and the Solar Spectrum Now that we have introduced the solar cell, it is time to introduce the source of the energy the sun. The sun has many properties that could

More information

Jorge E. Fernández Laboratory of Montecuccolino (DIENCA), Alma Mater Studiorum University of Bologna, via dei Colli, 16, 40136 Bologna, Italy

Jorge E. Fernández Laboratory of Montecuccolino (DIENCA), Alma Mater Studiorum University of Bologna, via dei Colli, 16, 40136 Bologna, Italy Information technology (IT) for teaching X- and gamma-ray transport: the computer codes MUPLOT and SHAPE, and the web site dedicated to photon transport Jorge E. Fernández Laboratory of Montecuccolino

More information

Chemistry B11 Chapter 4 Chemical reactions

Chemistry B11 Chapter 4 Chemical reactions Chemistry B11 Chapter 4 Chemical reactions Chemical reactions are classified into five groups: A + B AB Synthesis reactions (Combination) H + O H O AB A + B Decomposition reactions (Analysis) NaCl Na +Cl

More information

Powder diffraction and synchrotron radiation

Powder diffraction and synchrotron radiation Powder diffraction and synchrotron radiation Gilberto Artioli Dip. Geoscienze UNIPD CIRCe Center for Cement Materials single xl diffraction powder diffraction Ideal powder Powder averaging Textured sample

More information

2.02 DETERMINATION OF THE FORMULA OF A COMPLEX BY SPECTROPHOTOMETRY

2.02 DETERMINATION OF THE FORMULA OF A COMPLEX BY SPECTROPHOTOMETRY 2nd/3rd Year Physical Chemistry Practical Course, Oxford University 2.02 DETERMINATION OF THE FORMULA OF A COMPLEX BY SPECTROPHOTOMETRY (4 points) Outline Spectrometry is widely used to monitor the progress

More information

Introduction to Materials Science, Chapter 9, Phase Diagrams. Phase Diagrams. University of Tennessee, Dept. of Materials Science and Engineering 1

Introduction to Materials Science, Chapter 9, Phase Diagrams. Phase Diagrams. University of Tennessee, Dept. of Materials Science and Engineering 1 Phase Diagrams University of Tennessee, Dept. of Materials Science and Engineering 1 Chapter Outline: Phase Diagrams Microstructure and Phase Transformations in Multicomponent Systems Definitions and basic

More information

Chapter 12 - Liquids and Solids

Chapter 12 - Liquids and Solids Chapter 12 - Liquids and Solids 12-1 Liquids I. Properties of Liquids and the Kinetic Molecular Theory A. Fluids 1. Substances that can flow and therefore take the shape of their container B. Relative

More information

Glancing XRD and XRF for the Study of Texture Development in SmCo Based Films Sputtered Onto Silicon Substrates

Glancing XRD and XRF for the Study of Texture Development in SmCo Based Films Sputtered Onto Silicon Substrates 161 162 Glancing XRD and XRF for the Study of Texture Development in SmCo Based Films Sputtered Onto Silicon Substrates F. J. Cadieu*, I. Vander, Y. Rong, and R. W. Zuneska Physics Department Queens College

More information

The Basics of FEA Procedure

The Basics of FEA Procedure CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring

More information

ANALYSIS OF ASPIRIN INFRARED (IR) SPECTROSCOPY AND MELTING POINT DETERMINATION

ANALYSIS OF ASPIRIN INFRARED (IR) SPECTROSCOPY AND MELTING POINT DETERMINATION Chem 306 Section (Circle) M Tu W Th Name Partners Date ANALYSIS OF ASPIRIN INFRARED (IR) SPECTROSCOPY AND MELTING POINT DETERMINATION Materials: prepared acetylsalicylic acid (aspirin), stockroom samples

More information

Problem Set 6 UV-Vis Absorption Spectroscopy. 13-1. Express the following absorbances in terms of percent transmittance:

Problem Set 6 UV-Vis Absorption Spectroscopy. 13-1. Express the following absorbances in terms of percent transmittance: Problem Set 6 UV-Vis Absorption Spectroscopy 13-1. Express the following absorbances in terms of percent transmittance: a 0.051 b 0.918 c 0.379 d 0.261 e 0.485 f 0.072 A = log P o /P = log1/t = - log T

More information

GRID AND PRISM SPECTROMETERS

GRID AND PRISM SPECTROMETERS FYSA230/2 GRID AND PRISM SPECTROMETERS 1. Introduction Electromagnetic radiation (e.g. visible light) experiences reflection, refraction, interference and diffraction phenomena when entering and passing

More information

Alloys & Their Phase Diagrams

Alloys & Their Phase Diagrams Alloys & Their Phase Diagrams Objectives of the class Gibbs phase rule Introduction to phase diagram Practice phase diagram Lever rule Important Observation: One question in the midterm Consider the Earth

More information

High Resolution Spatial Electroluminescence Imaging of Photovoltaic Modules

High Resolution Spatial Electroluminescence Imaging of Photovoltaic Modules High Resolution Spatial Electroluminescence Imaging of Photovoltaic Modules Abstract J.L. Crozier, E.E. van Dyk, F.J. Vorster Nelson Mandela Metropolitan University Electroluminescence (EL) is a useful

More information

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided. CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. ideal gas

More information

Chapter 8. Phase Diagrams

Chapter 8. Phase Diagrams Phase Diagrams A phase in a material is a region that differ in its microstructure and or composition from another region Al Al 2 CuMg H 2 O(solid, ice) in H 2 O (liquid) 2 phases homogeneous in crystal

More information

Lab #11: Determination of a Chemical Equilibrium Constant

Lab #11: Determination of a Chemical Equilibrium Constant Lab #11: Determination of a Chemical Equilibrium Constant Objectives: 1. Determine the equilibrium constant of the formation of the thiocyanatoiron (III) ions. 2. Understand the application of using a

More information

Nuclear Structure. particle relative charge relative mass proton +1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass

Nuclear Structure. particle relative charge relative mass proton +1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass Protons, neutrons and electrons Nuclear Structure particle relative charge relative mass proton 1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass Protons and neutrons make up

More information

Forensic Science Standards and Benchmarks

Forensic Science Standards and Benchmarks Forensic Science Standards and Standard 1: Understands and applies principles of scientific inquiry Power : Identifies questions and concepts that guide science investigations Uses technology and mathematics

More information

The mechanical properties of metal affected by heat treatment are:

The mechanical properties of metal affected by heat treatment are: Training Objective After watching this video and reviewing the printed material, the student/trainee will learn the basic concepts of the heat treating processes as they pertain to carbon and alloy steels.

More information

POWDER X-RAY DIFFRACTION: STRUCTURAL DETERMINATION OF ALKALI HALIDE SALTS

POWDER X-RAY DIFFRACTION: STRUCTURAL DETERMINATION OF ALKALI HALIDE SALTS EXPERIMENT 4 POWDER X-RAY DIFFRACTION: STRUCTURAL DETERMINATION OF ALKALI HALIDE SALTS I. Introduction The determination of the chemical structure of molecules is indispensable to chemists in their effort

More information

14:635:407:02 Homework III Solutions

14:635:407:02 Homework III Solutions 14:635:407:0 Homework III Solutions 4.1 Calculate the fraction of atom sites that are vacant for lead at its melting temperature of 37 C (600 K). Assume an energy for vacancy formation of 0.55 ev/atom.

More information

Chem 106 Thursday Feb. 3, 2011

Chem 106 Thursday Feb. 3, 2011 Chem 106 Thursday Feb. 3, 2011 Chapter 13: -The Chemistry of Solids -Phase Diagrams - (no Born-Haber cycle) 2/3/2011 1 Approx surface area (Å 2 ) 253 258 Which C 5 H 12 alkane do you think has the highest

More information

Insertion Devices Lecture 4 Permanent Magnet Undulators. Jim Clarke ASTeC Daresbury Laboratory

Insertion Devices Lecture 4 Permanent Magnet Undulators. Jim Clarke ASTeC Daresbury Laboratory Insertion Devices Lecture 4 Permanent Magnet Undulators Jim Clarke ASTeC Daresbury Laboratory Introduction to Lecture 4 So far we have discussed at length what the properties of SR are, when it is generated,

More information

Theory of X-Ray Diffraction. Kingshuk Majumdar

Theory of X-Ray Diffraction. Kingshuk Majumdar Theory of X-Ray Diffraction Kingshuk Majumdar Contents Introduction to X-Rays Crystal Structures: Introduction to Lattices Different types of lattices Reciprocal Lattice Index Planes X-Ray Diffraction:

More information

Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs

Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs Spectroscopy Biogeochemical Methods OCN 633 Rebecca Briggs Definitions of Spectrometry Defined by the method used to prepare the sample 1. Optical spectrometry Elements are converted to gaseous atoms or

More information

Blackbody Radiation References INTRODUCTION

Blackbody Radiation References INTRODUCTION Blackbody Radiation References 1) R.A. Serway, R.J. Beichner: Physics for Scientists and Engineers with Modern Physics, 5 th Edition, Vol. 2, Ch.40, Saunders College Publishing (A Division of Harcourt

More information

The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD

The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD TN-100 The Fundamentals of Infrared Spectroscopy The Principles of Infrared Spectroscopy Joe Van Gompel, PhD Spectroscopy is the study of the interaction of electromagnetic radiation with matter. The electromagnetic

More information

Reaction Stoichiometry and the Formation of a Metal Ion Complex

Reaction Stoichiometry and the Formation of a Metal Ion Complex Reaction Stoichiometry and the Formation of a Metal Ion Complex Objectives The objectives of this laboratory are as follows: To use the method of continuous variation to determine the reaction stoichiometry

More information

Sputtering by Particle Bombardment I

Sputtering by Particle Bombardment I Sputtering by Particle Bombardment I Physical Sputtering of Single-Element Solids Edited by R. Behrisch With Contributions by H. H. Andersen H. L. Bay R. Behrisch M. T. Robinson H. E. Roosendaal P. Sigmund

More information

Part B 2. Allow a total of 15 credits for this part. The student must answer all questions in this part.

Part B 2. Allow a total of 15 credits for this part. The student must answer all questions in this part. Part B 2 Allow a total of 15 credits for this part. The student must answer all questions in this part. 51 [1] Allow 1 credit for 3 Mg(s) N 2 (g) Mg 3 N 2 (s). Allow credit even if the coefficient 1 is

More information

13C NMR Spectroscopy

13C NMR Spectroscopy 13 C NMR Spectroscopy Introduction Nuclear magnetic resonance spectroscopy (NMR) is the most powerful tool available for structural determination. A nucleus with an odd number of protons, an odd number

More information

Experiment #5: Qualitative Absorption Spectroscopy

Experiment #5: Qualitative Absorption Spectroscopy Experiment #5: Qualitative Absorption Spectroscopy One of the most important areas in the field of analytical chemistry is that of spectroscopy. In general terms, spectroscopy deals with the interactions

More information

Polarization Dependence in X-ray Spectroscopy and Scattering. S P Collins et al Diamond Light Source UK

Polarization Dependence in X-ray Spectroscopy and Scattering. S P Collins et al Diamond Light Source UK Polarization Dependence in X-ray Spectroscopy and Scattering S P Collins et al Diamond Light Source UK Overview of talk 1. Experimental techniques at Diamond: why we care about x-ray polarization 2. How

More information

LECTURE SUMMARY September 30th 2009

LECTURE SUMMARY September 30th 2009 LECTURE SUMMARY September 30 th 2009 Key Lecture Topics Crystal Structures in Relation to Slip Systems Resolved Shear Stress Using a Stereographic Projection to Determine the Active Slip System Slip Planes

More information

Introduction to Fourier Transform Infrared Spectrometry

Introduction to Fourier Transform Infrared Spectrometry Introduction to Fourier Transform Infrared Spectrometry What is FT-IR? I N T R O D U C T I O N FT-IR stands for Fourier Transform InfraRed, the preferred method of infrared spectroscopy. In infrared spectroscopy,

More information