In order to solve this problem it is first necessary to use Equation 5.5: x 2 Dt. = 1 erf. = 1.30, and x = 2 mm = m. Thus,


 Oswald Randall
 3 years ago
 Views:
Transcription
1 5.3 (a) Compare interstitial and vacancy atomic mechanisms for diffusion. (b) Cite two reasons why interstitial diffusion is normally more rapid than vacancy diffusion. Solution (a) With vacancy diffusion, atomic motion is from one lattice site to an adjacent vacancy. Selfdiffusion and the diffusion of substitutional impurities proceed via this mechanism. On the other hand, atomic motion is from interstitial site to adjacent interstitial site for the interstitial diffusion mechanism. (b) Interstitial diffusion is normally more rapid than vacancy diffusion because: (1) interstitial atoms, being smaller, are more mobile; and (2) the probability of an empty adjacent interstitial site is greater than for a vacancy adjacent to a host (or substitutional impurity) atom.
2 5.10 Show that C x = B exp x2 Dt 4 Dt is also a solution to Equation 5.4b. The parameter B is a constant, being independent of both x and t. Solution It can be shown that C x = B Dt exp x2 4 Dt is a solution to C t = D 2 C x 2 simply by taking appropriate derivatives of the C x expression. When this is carried out, C t = D 2 C x 2 = B x 2 2D 1/2 t 3/2 2Dt 1 x2 exp 4Dt
3 5.11 Determine the carburizing time necessary to achieve a carbon concentration of 0.45 wt% at a position 2 mm into an iron carbon alloy that initially contains 0.20 wt% C. The surface concentration is to be maintained at 1.30 wt% C, and the treatment is to be conducted at 1000 C. Use the diffusion data for γfe in Table 5.2. Solution In order to solve this problem it is first necessary to use Equation 5.5: C x C 0 C s C 0 = 1 erf x 2 Dt wherein, C x = 0.45, C 0 = 0.20, C s = 1.30, and x = 2 mm = m. Thus, C x C 0 C s C 0 = = = 1 erf x 2 Dt or x erf = = Dt By linear interpolation using data from Table 5.1 z erf(z) z z = From which z = = x 2 Dt Now, from Table 5.2, at 1000 C (1273 K)
4 D = ( m 2 148, 000 J/mol /s) exp (8.31 J/mol K)(1273 K) Thus, = m 2 /s = m (2) ( m 2 /s) (t) Solving for t yields t = s = 19.7 h
5 5.D3 The wear resistance of a steel shaft is to be improved by hardening its surface. This is to be accomplished by increasing the nitrogen content within an outer surface layer as a result of nitrogen diffusion into the steel. The nitrogen is to be supplied from an external nitrogenrich gas at an elevated and constant temperature. The initial nitrogen content of the steel is wt%, whereas the surface concentration is to be maintained at 0.50 wt%. For this treatment to be effective, a nitrogen content of 0.10 wt% must be established at a position 0.40 mm below the surface. Specify appropriate heat treatments in terms of temperature and time for temperatures between 475 C and 625 C. The preexponential and activation energy for the diffusion of nitrogen in iron are m 2 /s and 76,150 J/mol, respectively, over this temperature range. Solution This is a nonsteadystate diffusion situation; thus, it is necessary to employ Equation 5.5, utilizing the following values for the concentration parameters: C 0 = wt% N C s = 0.50 wt% N C x = 0.10 wt% N Therefore C x C 0 C s C 0 = x = = 1 erf 2 Dt And thus x = = erf 2 Dt Using linear interpolation and the data presented in Table 5.1 z erf (z) y
6 = y From which y = x 2 Dt = The problem stipulates that x = 0.40 mm = m. Therefore m 2 Dt = Which leads to Dt = m 2 Furthermore, the diffusion coefficient depends on temperature according to Equation 5.8; and, as stipulated in the problem statement, D 0 = m 2 /s and Q d = 76,150 J/mol. Hence Dt = D 0 exp Q d (t) = m 2 RT ( m 2 76,150 J/mol /s)exp (t) = m 2 (8.31 J/mol  K)(T) And solving for the time t t (in s) = exp T Thus, the required diffusion time may be computed for some specified temperature (in K). Below are tabulated t values for three different temperatures that lie within the range stipulated in the problem.
7 Temperature Time ( C) s h , ,
8 5.22 The diffusion coefficients for silver in copper are given at two temperatures: T ( C) D (m 2 /s) (a) Determine the values of D 0 and Q d. (b) What is the magnitude of D at 875 C? follows: Solution (a) Using Equation 5.9a, we set up two simultaneous equations with Q d and D 0 as unknowns as ln D 1 = lnd 0 Q d R 1 T 1 ln D 2 = lnd 0 Q d R 1 T 2 Solving for Q d in terms of temperatures T 1 and T 2 (923 K [650 C] and 1173 K [900 C]) and D 1 and D 2 ( and m 2 /s), we get Q d = R ln D 1 ln D 2 1 T 1 1 T 2 = (8.31 J/mol K) [ ln ( ) ln ( )] K K = 196,700 J/mol Now, solving for D 0 from Equation 5.8 (and using the 650 C value of D)
9 D 0 = D 1 exp Q d RT 1 = ( m 2 196, 700 J/mol /s)exp (8.31 J/mol  K)(923 K) = m 2 /s (b) Using these values of D 0 and Q d, D at 1148 K (875 C) is just D = ( m 2 196, 700 J/mol /s)exp (8.31 J/mol  K)(1148 K) = m 2 /s Note: this problem may also be solved using the Diffusion module in the VMSE software. Open the Diffusion module, click on the D0 and Qd from Experimental Data submodule, and then do the following: 1. In the lefthand window that appears, enter the two temperatures from the table in the book (converted from degrees Celsius to Kelvins) (viz. 923 (650ºC) and 1173 (900ºC), in the first two boxes under the column labeled T (K). Next, enter the corresponding diffusion coefficient values (viz. 5.5e16 and 1.3e13 ). 3. Next, at the bottom of this window, click the Plot data button. 4. A log D versus 1/T plot then appears, with a line for the temperature dependence for this diffusion system. At the top of this window are give values for D 0 and Q d ; for this specific problem these values are m 2 /s and 196 kj/mol, respectively
10 5. To solve the (b) part of the problem we utilize the diamondshaped cursor that is located at the top of the line on this plot. Clickanddrag this cursor down the line to the point at which the entry under the Temperature (T): label reads 1148 (i.e., 875ºC). The value of the diffusion coefficient at this temperature is given under the label Diff Coeff (D):. For our problem, this value is m 2 /s.
11 5.23 Below is shown a plot of the logarithm (to the base 10) of the diffusion coefficient versus reciprocal of the absolute temperature, for the diffusion of iron in chromium. Determine values for the activation energy and preexponential. Solution This problem asks us to determine the values of Q d and D 0 for the diffusion of Fe in Cr from the plot of log D versus 1/T. According to Equation 5.9b the slope of this plot is equal to Q d 2.3R (rather than Q d R since we are using log D rather than ln D) and the intercept at 1/T = 0 gives the value of log D 0. The slope is equal to slope = Δ (log D) Δ 1 T = log D 1 log D 2 1 T 1 1 T 2 Taking 1/T 1 and 1/T 2 as and K 1, respectively, then the corresponding values of D 1 and D 2 are and , as noted in the figure below.
12 The values of log D 1 and log D 2 are and 14.74, and therefore, Q d = 2.3 R (slope) Q d = 2.3 R log D 1 log D 2 1 T 1 1 T ( 14.74) = (2.3)(8.31 J/mol K) ( ) K 1 = 329,000 J/mol Rather than trying to make a graphical extrapolation to determine D 0, a more accurate value is obtained analytically using Equation 5.9b taking a specific value of both D and T (from 1/T) from the plot given in the problem; for example, D = m 2 /s at T = 1626 K (1/T = K 1 ). Therefore D 0 = D exp Q d RT = ( m 2 329, 000 J/mol /s)exp (8.31 J/mol  K)(1626 K) = m 2 /s
13 7. Core 9.01
14 8. Core 9.02
15 9. (A) Conc. of Al 10E18/cm 3 0 t
16 E (B) D = D0 exp( ) RT ln D = ln D0 + ( E / RT ) Solve this equation at both 1100 o C and 1000 o C, 5 E = J / mol Here we use E and provided diffusivity at 1300 o C to calculate D at 900 o C 16 D 900 = cm 2 / sec
17 9.1 Consider the sugar water phase diagram of Figure 9.1. (a) How much sugar will dissolve in 1500 g water at 90 C (194 F)? (b) If the saturated liquid solution in part (a) is cooled to 20 C (68 F), some of the sugar will precipitate out as a solid. What will be the composition of the saturated liquid solution (in wt% sugar) at 20 C? (c) How much of the solid sugar will come out of solution upon cooling to 20 C? Solution (a) We are asked to determine how much sugar will dissolve in 1000 g of water at 90 C. From the solubility limit curve in Figure 9.1, at 90 C the maximum concentration of sugar in the syrup is about 77 wt%. It is now possible to calculate the mass of sugar using Equation 4.3 as C sugar (wt%) = m sugar m sugar + m water wt% = m sugar m sugar g 100 Solving for m sugar yields m sugar = 5022 g (b) Again using this same plot, at 20 C the solubility limit (or the concentration of the saturated solution) is about 64 wt% sugar. (c) The mass of sugar in this saturated solution at 20 C (m' sugar ) may also be calculated using Equation 4.3 as follows: 64 wt% = m' sugar m' sugar g 100 which yields a value for m' sugar of 2667 g. Subtracting the latter from the former of these sugar concentrations yields the amount of sugar that precipitated out of the solution upon cooling m" sugar ; that is m" sugar = m sugar mõ sugar = 5022 g 2667 g = 2355 g
18 9.11 A coppernickel alloy of composition 70 wt% Ni30 wt% Cu is slowly heated from a temperature of 1300 C (2370 F). (a) At what temperature does the first liquid phase form? (b) What is the composition of this liquid phase? (c) At what temperature does complete melting of the alloy occur? (d) What is the composition of the last solid remaining prior to complete melting? Solution Shown below is the CuNi phase diagram (Figure 9.3a) and a vertical line constructed at a composition of 70 wt% Ni30 wt% Cu. (a) Upon heating from 1300 C, the first liquid phase forms at the temperature at which this vertical line intersects the α(α + L) phase boundaryi.e., about 1345 C. (b) The composition of this liquid phase corresponds to the intersection with the (α + L)L phase boundary, of a tie line constructed across the α + L phase region at 1345 Ci.e., 59 wt% Ni; (c) Complete melting of the alloy occurs at the intersection of this same vertical line at 70 wt% Ni with the (α + L)L phase boundaryi.e., about 1380 C;
19 (d) The composition of the last solid remaining prior to complete melting corresponds to the intersection with α(α + L) phase boundary, of the tie line constructed across the α + L phase region at 1380 Ci.e., about 79 wt% Ni.
The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R
3.5 Show that the atomic packing factor for BCC is 0.68. The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C Since there are two spheres associated
More information14:635:407:02 Homework III Solutions
14:635:407:0 Homework III Solutions 4.1 Calculate the fraction of atom sites that are vacant for lead at its melting temperature of 37 C (600 K). Assume an energy for vacancy formation of 0.55 ev/atom.
More informationCHAPTER 9 Part 1. = 5 wt% Sn95 wt% Pb C β. = 98 wt% Sn2 wt% Pb. = 77 wt% Ag23 wt% Cu. = 51 wt% Zn49 wt% Cu C γ. = 58 wt% Zn42 wt% Cu
CHAPTER 9 Part 1 9.5 This problem asks that we cite the phase or phases present for several alloys at specified temperatures. (a) For an alloy composed of 15 wt% Sn85 wt% Pb and at 100 C, from Figure
More informationChapter 5: Diffusion. 5.1 SteadyState Diffusion
: Diffusion Diffusion: the movement of particles in a solid from an area of high concentration to an area of low concentration, resulting in the uniform distribution of the substance Diffusion is process
More informationIntroduction To Materials Science FOR ENGINEERS, Ch. 5. Diffusion. MSE 201 Callister Chapter 5
Diffusion MSE 21 Callister Chapter 5 1 Goals: Diffusion  how do atoms move through solids? Fundamental concepts and language Diffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities Diffusion
More informationChapter Outline. Diffusion  how do atoms move through solids?
Chapter Outline iffusion  how do atoms move through solids? iffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities The mathematics of diffusion Steadystate diffusion (Fick s first law)
More information9.11 Upon heating a leadtin alloy of composition 30 wt% Sn70 wt% Pb from 150 C and utilizing Figure
913 9.8: 9.11 Upon heating a leadtin alloy of composition 30 wt% Sn70 wt% Pb from 150 C and utilizing Figure (a) The first liquid forms at the temperature at which a vertical line at this composition
More informationCHAPTER 4 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS
41 CHAPTER 4 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS Vacancies and SelfInterstitials 4.1 In order to compute the fraction of atom sites that are vacant in copper at 1357 K, we must employ Equation
More information= 62 wt% Ni38 wt% Cu.
92 9.2 (a) From Figure 9.8, the maximum solubility of Pb in Sn at 100 C corresponds to the position of the β (α + β) phase boundary at this temperature, or to about 2 wt% Pb. (b) From this same figure,
More informationTHE WAY TO SOMEWHERE. Subtopics. Diffusion Diffusion processes in industry
THE WAY TO SOMEWHERE Subtopics 1 Diffusion Diffusion processes in industry RATE PROCESSES IN SOLIDS At any temperature different from absolute zero all atoms, irrespective of their state of aggregation
More informationCh. 4: Imperfections in Solids Part 1. Dr. Feras Fraige
Ch. 4: Imperfections in Solids Part 1 Dr. Feras Fraige Outline Defects in Solids 0D, Point defects vacancies Interstitials impurities, weight and atomic composition 1D, Dislocations edge screw 2D, Grain
More informationMaterials Science and Engineering Department MSE , Sample Test #1, Spring 2010
Materials Science and Engineering Department MSE 200001, Sample Test #1, Spring 2010 ID number First letter of your last name: Name: No notes, books, or information stored in calculator memories may be
More informationCHAPTER 6: DIFFUSION IN SOLIDS. Interdiffusion. Simple Diffusion. Diffusion Steady and NonSteady State ISSUES TO ADDRESS...
CHAPTER 6: DIFFUSION IN SOLIDS Diffusion Steady and NonSteady State ISSUES TO ADDRESS... Gear from casehardened steel (C diffusion) Diffusion  Mass transport by atomic motion How does diffusion occur?
More informationSurface Treatments. Corrosion Protective coatings for harsh environments (catalytic converters, electrochemical cells )
Surface Treatments Applications Biomedical (biocompatible coatings on implants, drug coatings for sustained release ) Mechanical Tribological friction and wear (tool steels, implants ) Fatigue minimize
More informationUsing Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data
Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data Introduction In several upcoming labs, a primary goal will be to determine the mathematical relationship between two variable
More informationQuestion 6.5: A steel bar 100 mm (4.0 in.) long and having a square cross section 20 mm
14:440:407 Ch6 Question 6.3: A specimen of aluminum having a rectangular cross section 10 mm 12.7 mm (0.4 in. 0.5 in.) is pulled in tension with 35,500 N (8000 lb f ) force, producing only elastic deformation.
More informationAlloys & Their Phase Diagrams
Alloys & Their Phase Diagrams Objectives of the class Gibbs phase rule Introduction to phase diagram Practice phase diagram Lever rule Important Observation: One question in the midterm Consider the Earth
More informationDefects Introduction. Bonding + Structure + Defects. Properties
Defects Introduction Bonding + Structure + Defects Properties The processing determines the defects Composition Bonding type Structure of Crystalline Processing factors Defects Microstructure Types of
More informationThe mechanical properties of metal affected by heat treatment are:
Training Objective After watching this video and reviewing the printed material, the student/trainee will learn the basic concepts of the heat treating processes as they pertain to carbon and alloy steels.
More informationIntroduction to Materials Science, Chapter 9, Phase Diagrams. Phase Diagrams. University of Tennessee, Dept. of Materials Science and Engineering 1
Phase Diagrams University of Tennessee, Dept. of Materials Science and Engineering 1 Chapter Outline: Phase Diagrams Microstructure and Phase Transformations in Multicomponent Systems Definitions and basic
More informationCHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS
71 CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS Basic Concepts of Dislocations Characteristics of Dislocations 7.1 The dislocation density is just the total dislocation length
More informationPrinciples of Fracture Mechanics
81 CHAPTER 8 FAILURE PROBLEM SOLUTIONS Principles of Fracture Mechanics 8.1 This problem asks that we compute the magnitude of the maximum stress that exists at the tip of an internal crack. Equation
More informationChapter Outline: Phase Transformations in Metals
Chapter Outline: Phase Transformations in Metals Heat Treatment (time and temperature) Microstructure Mechanical Properties Kinetics of phase transformations Multiphase Transformations Phase transformations
More informationIronCarbon Phase Diagram (a review) see Callister Chapter 9
IronCarbon Phase Diagram (a review) see Callister Chapter 9 University of Tennessee, Dept. of Materials Science and Engineering 1 The Iron Iron Carbide (Fe Fe 3 C) Phase Diagram In their simplest form,
More informationThe ClausiusClapeyron Equation:
Chapter 10 Solid Solutions and Phase Equilibrium What is a phase? Phase Diagram Basics A phase diagram represents what phases are present at a given pressure, temperature and composition. Virtual maps
More informationVysoká škola báňská Technická univerzita Ostrava. Physical Metallurgy. Didactic Text. Jaroslav Sojka
Vysoká škola báňská Technická univerzita Ostrava Physical Metallurgy Didactic Text Jaroslav Sojka Ostrava 2013 Physical Metallurgy Review: Prof. Ing. Ludmila Hypecká, DrSc. Description: Physical Metallurgy
More informationIntroduction to Iron Metallurgy. Lee Morin Houston Home Metal Shop Club October 2010
Introduction to Iron Metallurgy Lee Morin Houston Home Metal Shop Club October 2010 Book I stole the pictures from We will start with a brief overview! Metals Are Crystals Fundamental geometry of a crystal
More information3. Apply phase rule to the two phase field of a binary isomorphous diagram. What conclusion can be drawn?
ecture 1822: Solidification of binary alloys: Solidification of binary alloys: limits of solubility, isomorphous system, lever rule, constitutional super cooling, effect of non equilibrium cooling, eutectic,
More informationChapter Outline Dislocations and Strengthening Mechanisms
Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip
More informationLecture 7: Oxidation of manganese and carbon. Key words: Solidification of steel, decarburization, BOF steelmaking
Lecture 7: Oxidation of manganese and carbon Contents: Behaviour of manganese Oxidation of manganese Reduction of manganese Oxidation of carbon Rimming reaction Illustration Key words: Solidification of
More information= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm
Chapter 13 Gases 1. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. Gases have volumes that depend on their conditions, and can be compressed or expanded by
More informationMSE 528  PRECIPITATION HARDENING IN 7075 ALUMINUM ALLOY
MSE 528  PRECIPITATION HARDENING IN 7075 ALUMINUM ALLOY Objective To study the time and temperature variations in the hardness and electrical conductivity of AlZnMgCu high strength alloy on isothermal
More informationChapter 8. Phase Diagrams
Phase Diagrams A phase in a material is a region that differ in its microstructure and or composition from another region Al Al 2 CuMg H 2 O(solid, ice) in H 2 O (liquid) 2 phases homogeneous in crystal
More informationLecture 19: Eutectoid Transformation in Steels: a typical case of Cellular
Lecture 19: Eutectoid Transformation in Steels: a typical case of Cellular Precipitation Today s topics Understanding of Cellular transformation (or precipitation): when applied to phase transformation
More informationChemical Kinetics. Reaction Rate: The change in the concentration of a reactant or a product with time (M/s). Reactant Products A B
Reaction Rates: Chemical Kinetics Reaction Rate: The change in the concentration of a reactant or a product with time (M/s). Reactant Products A B change in number of moles of B Average rate = change in
More informationSteel Making Prof. Deepak Mazumdar Prof. S. C. Koria Department of Materials Science and Engineering Indian Institute of Technology, Kanpur
Steel Making Prof. Deepak Mazumdar Prof. S. C. Koria Department of Materials Science and Engineering Indian Institute of Technology, Kanpur Module No. # 01 Lecture No. # 10 Modern Steelmaking I, Oxygen
More informationPhase. Gibbs Phase rule
Phase diagrams Phase A phase can be defined as a physically distinct and chemically homogeneous portion of a system that has a particular chemical composition and structure. Water in liquid or vapor state
More informationk is change in kinetic energy and E
Energy Balances on Closed Systems A system is closed if mass does not cross the system boundary during the period of time covered by energy balance. Energy balance for a closed system written between two
More informationReaction Rates and Chemical Kinetics. Factors Affecting Reaction Rate [O 2. CHAPTER 13 Page 1
CHAPTER 13 Page 1 Reaction Rates and Chemical Kinetics Several factors affect the rate at which a reaction occurs. Some reactions are instantaneous while others are extremely slow. Whether a commercial
More informationConcepts of Stress and Strain
CHAPTER 6 MECHANICAL PROPERTIES OF METALS PROBLEM SOLUTIONS Concepts of Stress and Strain 6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original
More informationDIFFUSION IN SOLIDS. Materials often heat treated to improve properties. Atomic diffusion occurs during heat treatment
DIFFUSION IN SOLIDS WHY STUDY DIFFUSION? Materials often heat treated to improve properties Atomic diffusion occurs during heat treatment Depending on situation higher or lower diffusion rates desired
More informationExperiment 1: Colligative Properties
Experiment 1: Colligative Properties Determination of the Molar Mass of a Compound by Freezing Point Depression. Objective: The objective of this experiment is to determine the molar mass of an unknown
More informationChapter Outline. Defects Introduction (I)
Crystals are like people, it is the defects in them which tend to make them interesting!  Colin Humphreys. Defects in Solids Chapter Outline 0D, Point defects vacancies interstitials impurities, weight
More informationFall 2004 Ali Shakouri
University of California at Santa Cruz Jack Baskin School of Engineering Electrical Engineering Department EE145L: Properties of Materials Laboratory Lab 5b: Temperature Dependence of Semiconductor Conductivity
More informationTHREE MAIN SOLIDIFICATION REACTIONS OF VANADIUM MODIFIED T1 TUNGSTEN HIGH SPEED TOOL STEEL. Hossam Halfa
THREE MAIN SOLIDIFICATION REACTIONS OF VANADIUM MODIFIED T1 TUNGSTEN HIGH SPEED TOOL STEEL Hossam Halfa Steel Technology Department, Central Metallurgical R&D Institute (CMRDI), Helwan, Egypt, hossamhalfa@cmrdi.sci.eg;
More informationLecture 14. Chapter 81
Lecture 14 Fatigue & Creep in Engineering Materials (Chapter 8) Chapter 81 Fatigue Fatigue = failure under applied cyclic stress. specimen compression on top bearing bearing motor counter flex coupling
More informationSQUADS #4 CPW. 9 th Grade Science
SQUADS #4 CPW 9 th Grade Science Learning Intentions  Today, I am going to address these College Readiness Standards in Science: 1. Interpretation of Data 1315 2. Interpretation of Data 2427 3. Scientific
More informationM n = (DP)m = (25,000)(104.14 g/mol) = 2.60! 10 6 g/mol
14.4 (a) Compute the repeat unit molecular weight of polystyrene. (b) Compute the numberaverage molecular weight for a polystyrene for which the degree of polymerization is 25,000. (a) The repeat unit
More informationCalorimetry: Heat of Vaporization
Calorimetry: Heat of Vaporization OBJECTIVES INTRODUCTION  Learn what is meant by the heat of vaporization of a liquid or solid.  Discuss the connection between heat of vaporization and intermolecular
More informationvap H = RT 1T 2 = 30.850 kj mol 1 100 kpa = 341 K
Thermodynamics: Examples for chapter 6. 1. The boiling point of hexane at 1 atm is 68.7 C. What is the boiling point at 1 bar? The vapor pressure of hexane at 49.6 C is 53.32 kpa. Assume that the vapor
More informationFreezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version
Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version Freezing point depression describes the process where the temperature at which a liquid freezes is lowered by adding another
More informationProblem # 2 Determine the kinds of intermolecular forces present in each element or compound:
Chapter 11 Homework solutions Problem # 2 Determine the kinds of intermolecular forces present in each element or compound: A. Kr B. NCl 3 C. SiH 4 D. HF SOLUTION: Kr is a single atom, hence it can have
More informationIntegration of a fin experiment into the undergraduate heat transfer laboratory
Integration of a fin experiment into the undergraduate heat transfer laboratory H. I. AbuMulaweh Mechanical Engineering Department, Purdue University at Fort Wayne, Fort Wayne, IN 46805, USA Email: mulaweh@engr.ipfw.edu
More informationAppendix E: Graphing Data
You will often make scatter diagrams and line graphs to illustrate the data that you collect. Scatter diagrams are often used to show the relationship between two variables. For example, in an absorbance
More informationReservoir Fluids PETE 310
Reservoir Fluids PETE 31 Lab 2: Determination of the Vapor Pressure of Propane Learning Objectives When you complete this laboratory, you should be able to: Use closedcell and sightglass methods for
More informationIDEAL AND NONIDEAL GASES
2/2016 ideal gas 1/8 IDEAL AND NONIDEAL GASES PURPOSE: To measure how the pressure of a lowdensity gas varies with temperature, to determine the absolute zero of temperature by making a linear fit to
More informationPhase Equilibria & Phase Diagrams
Phase Equilibria & Phase Diagrams Week7 Material Sciences and Engineering MatE271 1 Motivation Phase diagram (Ch 9) Temperature Time Kinematics (Ch 10) New structure, concentration (mixing level) (at what
More informationScatter Plot, Correlation, and Regression on the TI83/84
Scatter Plot, Correlation, and Regression on the TI83/84 Summary: When you have a set of (x,y) data points and want to find the best equation to describe them, you are performing a regression. This page
More informationLIGHTSTICK KINETICS. INTRODUCTION: General background on rate, activation energy, absolute temperature, and graphing.
LIGHTSTICK KINETICS From Advancing Science, Gettysburg College INTRODUCTION: General background on rate, activation energy, absolute temperature, and graphing. THE RATE LAW: The rate of a chemical reaction
More informationApplied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur
Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture  7 Ideal Gas Laws, Different Processes Let us continue
More informationPurity Determinations By Differential Scanning Calorimetry 1
Purity Determinations By Differential Scanning Calorimetry 1 Purpose: Determine the purity of a compound using freezing point depression measurements with a differential scanning calorimeter. Prelab: The
More informationExperiment 6 ~ Joule Heating of a Resistor
Experiment 6 ~ Joule Heating of a Resistor Introduction: The power P absorbed in an electrical resistor of resistance R, current I, and voltage V is given by P = I 2 R = V 2 /R = VI. Despite the fact that
More informationRelease notes: ThermoCalc software package 4.1
Release notes: ThermoCalc software package 4.1 19952014 Foundation of Computational Thermodynamics Stockholm, Sweden Introduction Contents Release notes This document provides information on new products,
More information7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790.
CHATER 3. The atmosphere is a homogeneous mixture (a solution) of gases.. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. have volumes that depend on their conditions,
More informationIB Chemistry. DP Chemistry Review
DP Chemistry Review Topic 1: Quantitative chemistry 1.1 The mole concept and Avogadro s constant Assessment statement Apply the mole concept to substances. Determine the number of particles and the amount
More informationHumidity, Evaporation, and
Humidity, Evaporation, and Boiling Bởi: OpenStaxCollege Dew drops like these, on a banana leaf photographed just after sunrise, form when the air temperature drops to or below the dew point. At the dew
More informationEVERYDAY ENGINEERING EXAMPLES FOR SIMPLE CONCEPTS
EVERYDAY ENGINEERING EXAMPLES FOR SIMPLE CONCEPTS Thermal Properties ENGR 3350  Materials Science Dr. Nedim Vardar Copyright 2015 Thermal Properties of Materials Engage: MSEIP Engineering Everyday Engineering
More informationThermodynamics is the study of heat. It s what comes into play when you drop an ice cube
Chapter 12 You re Getting Warm: Thermodynamics In This Chapter Converting between temperature scales Working with linear expansion Calculating volume expansion Using heat capacities Understanding latent
More informationCHAPTER 8 Chemical Equations and Reactions
CHAPTER 8 Chemical Equations and Reactions SECTION 1 Describing Chemical Reactions OBJECTIVES 1. List three observations that suggest that a chemical reaction has taken place. 2. List three requirements
More informationModule 34. Heat Treatment of steel IV. Lecture 34. Heat Treatment of steel IV
Module 34 Heat reatment of steel IV Lecture 34 Heat reatment of steel IV 1 Keywords : Austenitization of hypo & hyper eutectoid steel, austenization temperature, effect of heat treatment on structure &
More informationHydrocarbon Molecules Polymer Molecules The Chemistry of Polymer Molecules
141 CHAPTER 14 POLYMER STRUCTURES PROBLEM SOLUTIONS Hydrocarbon Molecules Polymer Molecules The Chemistry of Polymer Molecules 14.1 The repeat unit structures called for are sketched below. (a Polychlorotrifluoroethylene
More informationElectrochemistry Revised 04/29/15
INTRODUCTION TO ELECTROCHEMISTRY: CURRENT, VOLTAGE, BATTERIES, & THE NERNST EQUATION Experiment partially adapted from J. Chem. Educ., 2008, 85 (8), p 1116 Introduction Electrochemical cell In this experiment,
More informationHeat Treating of Nonferrous Alloys
Metallogr. Microstruct. Anal. (2013) 2:190 195 DOI 10.1007/s1363201300748 TUTORIAL Heat Treating of Nonferrous Alloys Howard E. Boyer Ó American Society for Metals 1984 The reader should understand
More informationExperiment 12E LIQUIDVAPOR EQUILIBRIUM OF WATER 1
Experiment 12E LIQUIDVAPOR EQUILIBRIUM OF WATER 1 FV 6/26/13 MATERIALS: PURPOSE: 1000 ml tallform beaker, 10 ml graduated cylinder, 10 to 110 o C thermometer, thermometer clamp, plastic pipet, long
More informationIndiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.
.1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations
More informationPTC Thermistors [From Philips Data Handbook PA ]
PTC Thermistors [From Philips Data Handbook PA02 1989] 1. GENERAL Positive Temperature Coefficient (PTC) thermistors exhibit a high positive temperature coefficient of resistance. They differ from Negative
More informationThe final numerical answer given is correct but the math shown does not give that answer.
Note added to Homework set 7: The solution to Problem 16 has an error in it. The specific heat of water is listed as c 1 J/g K but should be c 4.186 J/g K The final numerical answer given is correct but
More informationProblem Set 4 Solutions
Chemistry 360 Dr Jean M Standard Problem Set 4 Solutions 1 Two moles of an ideal gas are compressed isothermally and reversibly at 98 K from 1 atm to 00 atm Calculate q, w, ΔU, and ΔH For an isothermal
More informationMultiple Choice Questions NCERT
CHAPTER 3 Metals and Nonmetals Multiple Choice Questions 1. Which of the following property is generally not shown by metals? (a) Electrical conduction (b) Sonorous in nature (c) Dullness (d) Ductility
More informationBoltzmann Distribution Law
Boltzmann Distribution Law The motion of molecules is extremely chaotic Any individual molecule is colliding with others at an enormous rate Typically at a rate of a billion times per second We introduce
More informationCorrosion experiments in amine solutions
Corrosion experiments in amine solutions Andreas Grimstvedt Process technology SINTEF Materials and chemistry Wenle He Applied mechanics and corrosion SINTEF Materials and chemistry 1 Contents of presentation
More informationChapter Outline Dislocations and Strengthening Mechanisms
Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip
More informationVapor Pressure Diagrams and Boiling Diagrams
Vapor Pressure Diagrams and Boiling Diagrams We are now ready to begin talking about phase diagrams involving two components. Our first few phase diagrams will involve only the liquid and gas (or vapor)
More informationElectrochemical Kinetics ( Ref. :Bard and Faulkner, Oldham and Myland, Liebhafsky and Cairns) R f = k f * C A (2) R b = k b * C B (3)
Electrochemical Kinetics ( Ref. :Bard and Faulkner, Oldham and Myland, Liebhafsky and Cairns) 1. Background Consider the reaction given below: A B (1) If k f and k b are the rate constants of the forward
More informationHW 2. Q v. kt Step 1: Calculate N using one of two equivalent methods. Problem 4.2. a. To Find:
HW 2 Proble 4.2 a. To Find: Nuber of vacancies per cubic eter at a given teperature. b. Given: T 850 degrees C 1123 K Q v 1.08 ev/ato Density of Fe ( ρ ) 7.65 g/cc Fe toic weight of iron ( c. ssuptions:
More informationCHAPTER 14 THE CLAUSIUSCLAPEYRON EQUATION
CHAPTER 4 THE CAUIUCAPEYRON EQUATION Before starting this chapter, it would probably be a good idea to reread ections 9. and 9.3 of Chapter 9. The ClausiusClapeyron equation relates the latent heat
More informationWe will study the temperaturepressure diagram of nitrogen, in particular the triple point.
K4. Triple Point of Nitrogen I. OBJECTIVE OF THE EXPERIMENT We will study the temperaturepressure diagram of nitrogen, in particular the triple point. II. BAKGROUND THOERY States of matter Matter is made
More informationThermodynamic database of the phase diagrams in copper base alloy systems
Journal of Physics and Chemistry of Solids 66 (2005) 256 260 www.elsevier.com/locate/jpcs Thermodynamic database of the phase diagrams in copper base alloy systems C.P. Wang a, X.J. Liu b, M. Jiang b,
More informationChem 420/523 Chemical Thermodynamics Homework Assignment # 6
Chem 420/523 Chemical hermodynamics Homework Assignment # 6 1. * Solid monoclinic sulfur (S α ) spontaneously converts to solid rhombic sulfur (S β ) at 298.15 K and 0.101 MPa pressure. For the conversion
More informationChemistry 212 VAPOR PRESSURE OF WATER LEARNING OBJECTIVES
Chemistry 212 VAPOR PRESSURE OF WATER LEARNING OBJECTIVES The learning objectives of this experiment are to explore the relationship between the temperature and vapor pressure of water. determine the molar
More informationSteady Heat Conduction
Steady Heat Conduction In thermodynamics, we considered the amount of heat transfer as a system undergoes a process from one equilibrium state to another. hermodynamics gives no indication of how long
More informationWelcome to the World of Chemistry
Welcome to the World of Chemistry The Language of Chemistry CHEMICAL ELEMENTS  pure substances that cannot be decomposed by ordinary means to other substances. Aluminum Bromine Sodium The Language of
More informationVapor Pressure of Liquids
Vapor Pressure of Liquids Experiment 10 In this experiment, you will investigate the relationship between the vapor pressure of a liquid and its temperature. When a liquid is added to the Erlenmeyer flask
More informationStates of Matter and the Kinetic Molecular Theory  Gr10 [CAPS]
OpenStaxCNX module: m38210 1 States of Matter and the Kinetic Molecular Theory  Gr10 [CAPS] Free High School Science Texts Project This work is produced by OpenStaxCNX and licensed under the Creative
More informationRef. Ch. 11 in Superalloys II Ch. 8 in Khanna Ch. 14 in Tien & Caulfield
MTE 585 Oxidation of Materials Part 1 Ref. Ch. 11 in Superalloys II Ch. 8 in Khanna Ch. 14 in Tien & Caulfield Introduction To illustrate the case of high temperature oxidation, we will use Nibase superalloys.
More informationChapter 2 Matter and Energy
1 Chapter 2 Matter and Energy Matter Matter is the material that makes up all things is anything that has mass and occupies space is classified as either pure substances or mixtures Pure Substances A pure
More informationThe Effect of Heat Treatment Atmosphere on Hardening of Surface Region of H13 Tool Steel. Dominique AU
The Effect of Heat Treatment Atmosphere on Hardening of Surface Region of H13 Tool Steel Dominique AU Report submitted in partial fulfilment of the degree of Postgraduate diploma in Research Auckland University
More informationHeat Transfer Prof. Dr. Aloke Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati
Heat Transfer Prof. Dr. Aloke Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module No. # 02 One Dimensional Steady State Heat Transfer Lecture No. # 05 Extended
More informationMathematical Modeling and Engineering Problem Solving
Mathematical Modeling and Engineering Problem Solving Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University Reference: 1. Applied Numerical Methods with
More informationPlots, CurveFitting, and Data Modeling in Microsoft Excel
Plots, CurveFitting, and Data Modeling in Microsoft Excel This handout offers some tips on making nice plots of data collected in your lab experiments, as well as instruction on how to use the builtin
More information