# A Beer s Law Experiment

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 A Beer s Law Experiment Introduction There are many ways to determine concentrations of a substance in solution. So far, the only experiences you may have are acid-base titrations or possibly determining the ph of a solution to find the concentration of hydrogen ion. There are other properties of a solution that change with concentration such as density, conductivity and color. Beer s law relates color intensity and concentration. Using color can be much faster than doing a titration, especially when you have many samples containing different concentrations of the same substance, but the tradeoff is the time required to make a calibration curve. When colored solutions are irradiated with white light, they will selectively absorb light of some wavelengths, but not of others. This is because of the relationship between the electrons in a molecule (or atom) and its energy. Electrons in molecules and atoms are restricted in energy; occupying only certain fixed (for any given atom or molecule) energy levels. The electrons in molecules can jump up in energy levels if exactly the right amount of energy is supplied. This amount of energy can be provided by electromagnetic radiation. Visible light is one form of electromagnetic radiation. When this happens, the particular energy of light, which corresponds to a particular wavelength or color, is absorbed and disappears. The remaining light, lacking this color, shows the remaining mixture of colors as non-white light. A color wheel, shown below, illustrates the approximate complementary relationship between the wavelengths of light absorbed and the wavelengths transmitted. For example, in a blue substance, there would be a strong absorbance of the complementary (opposite it in the color wheel) color of light, orange. When light is not absorbed, it is said that the light is transmitted through the solution. The more light a solution absorbs, the less light is transmitted through the solution. The wavelength or 6

2 group of wavelengths when a solution absorbs light can be determined by exposing the solution to monochromatic light of different wavelengths and recording the responses. light original < > transmitted source intensity pathlength intensity If light of a particular wavelength in not absorbed, the intensity of the beam directed at the solution (I o ) would match the intensity of the beam transmitted by the solution (I t ). If some of the light is absorbed, the intensity of the beam transmitted through the solution will be less than that of the original intensity. The ratio of I t and I o can be used to indicate the percentage of incoming light absorbed by the solution. This is called the percent transmittance. I I t %T = x 100 o (1) A more useful quantity is the absorbance (A) defined as A = log(%t/100) (2) The higher the absorbance of light by a solution, the lower the percent transmittance. The wavelength at which absorbance is highest is the wavelength to which the solution is most sensitive to concentration changes. This wavelength is called the maximum wavelength or λ max. In the first part of this experiment, you will determine λ max of one of the artificial food dyes by plotting absorbance versus wavelength. For an example of how this plot would look, refer to Figure I. By looking at Figure I, it can be determined that λ max for a purple dye is approximately at 570 nm. Once you determine λ max, you can demonstrate how three variables influence the absorbance of a solution. They are the concentration (c) of the solution, the pathlength (b) of the light through the solution (also called the cell length) and the molar absorptivity (ε); the sensitivity of the absorbing species to the energy of λ max. The pathlength, unless stated otherwise, is fixed at 1.00 cm. The molar absorptivity depends on the substance, the solvent and λ. The units for molar absorptivity are L/mole cm for concentration in mole/l. Beer s law states the following: A = εbc (3) With this equation (a calibration curve based on it), you can determine an unknown concentration or estimate what the absorbance of a certain solution will be as long as three of the four values in the equation are known. 7

3 In the second part of this experiment, you will determine the molar absorptivity of the dye chosen in the first part in aqueous solution. You will vary the concentration of your solution and make a calibration plot of absorbance versus concentration. Absorbance is linearly related to concentration. To determine the molar absorptivity, take the slope of the line from the plot and divide by the pathlength. For an example of a calibration plot, refer to Figure II on page 12. It should be noted that there are conditions where deviations from Beer s law occur. This happens when concentrations are too high or because of lack of sensitivity of instrumentation. In the third part of the experiment, you will determine the mass percent of your chosen dye in a consumable product sample. Currently only seven non-natural compounds are certifiable for use in food in the United States. The structures and formulae are given below: Dye Common name Chemical Formula Color Red #3 Erythrosine a 2 C 20 H 6 I 4 O 5 Cherry red a - O I O I O I I COO - a Red #40 Allura Red AC a 2 C 18 H 14 2 O 8 S 2 Orange-red OCH 3 OH a - CH 3 - a Blue #1 Brilliant Blue FCF a 2 C 37 H 34 2 O 9 S 3 Bright blue - - a - a Blue #2 Indigotine a 2 C 16 H 8 2 O 8 S 2 Royal blue O a - O 3 S H - H a O Yellow #5 Tartrazine a 3 C 16 H 9 4 O 9 S 2 Lemon yellow - a OH a - O 3 S COO - a 8

4 Yellow #6 Sunset Yellow a 2 C 16 H 10 2 O 7 S 2 Orange OH a - - a Green #3 Fast Green FCF a 2 C 37 H 34 2 O 10 S 3 Sea green - - a HO - a You will accurately weigh a sample containing a dye, extract the dye to make a solution and measure its absorbance. Using the calibration curve you obtained in the second part, you can determine the concentration of the dye from the graph. Figure I: Absorbance versus wavelength plot to determine λ max. Absorbance of Purple Dye versus Wavelength Absorbance Wavelength (nm) 9

5 Figure II: Example of a calibration curve. Line should go through the point 0,0. At 0.00 M concentration, the absorbance is calibrated to be zero. This will almost always be one of your points. The slope of the line is ε and R 2 gives the fit (should be 1). Calibration Curve of Purple Dye at 572 nm Absorbance y = 9.80 x 10 3 x R 2 = E E E E E E-04 Concentration (M) Procedure Part I 1. Obtain a sample of red #40, blue #1, blue #2, yellow #5 or yellow #6 stock solution. Record the name, concentration and color of the solution you selected. 2. Fill a cuvette about half-full of the stock solution and another cuvette with a similar amount of distilled water (the blank). 3. Starting at a wavelength of 400 nm and working your way up to 700 nm, measure the absorbance of the stock solution at 25 nm intervals. The wavelength is selected using the dial on the top of the instrument; to the right of the sample compartment. Set the Spectronic 20 to 0.0 %T (with nothing in the sample compartment) by adjusting the LEFT dial on the front of the instrument. 10

7 6. Add 25.0 ml (from dispenser) of acetone to the cooled slurry. 7. Stir the slurry/acetone mixture on a cooled stirrer-hotplate until the solids settle easily and give a clear (not colorless) solution. This should be done for at least 5 minutes. 8. Letting the mixture settle, decant and filter the solution in the beaker directly into a 100- ml volumetric flask using fast, flutted 11.0 cm filter paper and a funnel. Keep as much of the solids in the beaker as possible to prevent the filter from clogging. Use a ring to support the funnel. Make sure the tip of the funnel is well in the neck of the volumetric flask so you do not lose any solution. 9. After nearly all the solution has drained into the flask, rinse the solids in the beaker once with about 10.0 ml of 1:1 acetone/water, let the mixture settle, then filter as before. 10. Fill the flask to the mark with 1:1 acetone/water. 11. Measure the absorbance of the solution at the λ max used in part II. Use 1:1 acetone/water as the blank. Questions 1. Make a plot of absorbance versus wavelength using the data below. Determine the λ max (within 1 nanometer using a second graph of a close-up of the peak) of this compound. Include the dye color in the title. λ (nm) A λ (nm) A Fill in the missing values in the "A" column (using equation 2) and make a plot of A versus concentration of dye using the following data. Fit a trendline to the Beer s law plot (forced through 0, 0). What is the name of and the numerical value of the slope of the trendline? What is the R 2 value? Be sure to give the correct units and number of significant figures. 12

8 Data Treatment and Discussion [Dye] (M) %T A E ? 1.47E E ? 3.68E E ? Include the following information, with an appropriate discussion. Show sample calculations. 1. Plot A versus λ. Include all the data that you recorded for your dye. Make sure the plot is done properly: a descriptive title, axes labeled with units, data points clearly indicated, smooth line through points (you are not intending to demonstrate a mathematical relationship). Find λ max to 3 significant figures using a close-up plot. 2. Show all the calculations for the determination of the concentrations of the dilute solutions used to make the calibration curve. The concentrations are determined from: mole M new = L mole M old x ( pipet volume) L/ L/ ( volumetric flask volume) L 3. Plot A versus concentration. Construct this calibration curve with the four dilutions, the blank (an absorbance of 0.0 at 0.0 M concentration) and the original solution for a total of 6 points. Only when the theoretical relationship between the data points is not a known function do you connect the points (as in 2. a. and b. above). In this case, just fit a trendline to the clearly indicated data points. Make sure you select the proper function to fit. Remove the gray background and any gridlines and adjust the font size for all your labels. Use the whole page. Include the equation of the line and the R 2 value on the plot. Force the trendline to go through 0,0. 4. Calculate the concentration of the solution in Part III using Beer s Law (ε is the slope of the calibration curve). Draw, by hand, the point on the plot that corresponds to this value. 5. Knowing the concentration and volume of the solution, the molar mass of the dye, and the mass of the Froot Loops sample, calculate the mass percent of the dye in the sample. 13

9 Conclusion λ max of the dye, the molar absorptivity of the dye (don t forget the units), concentration of the dye (be sure to include which dye) in the Froot Loop extract (indicate the color of the Froot Loop used), and the mass percent of dye in your sample are to be given in the first line of the conclusion. Then address the following: Does your solution obey Beer's Law? How do you know? If not, determine approximately which concentration range of the plot is not linear? What is an advantage of colorimetric over titration determinations of concentrations? What is a disadvantage? 14

### EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions.

EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions. Outcomes After completing this experiment, the student should be able to: 1. Prepare

### Energy (J) -8E-19 -1.2E-18 -1.6E-18 -2E-18

Spectrophotometry Reading assignment:. http://en.wikipedia.org/wiki/beer-lambert_law Goals We will study the spectral properties of a transition metal-containing compound. We will also study the relationship

### CHM 161 Spectrophotometry: Analysis of Iron(II) in an Aqueous Solution

CHM 161 Spectrophotometry: Analysis of Iron(II) in an Aqueous Solution Introduction Many compounds exhibit colors in aqueous solution due to the absorption of certain wavelengths of light. The intensity

### Colorimetric Determination of Iron in Vitamin Tablets

Cautions: 6 M hydrochloric acid is corrosive. Purpose: To colorimetrically determine the mass of iron present in commercial vitamin tablets using a prepared calibration curve. Introduction: Iron is considered

### Phenolphthalein-NaOH Kinetics

Phenolphthalein-NaOH Kinetics Phenolphthalein is one of the most common acid-base indicators used to determine the end point in acid-base titrations. It is also the active ingredient in some laxatives.

### Concentrations and Dilutions of Food Dyes

Concentrations and Dilutions of Food Dyes Learning Goals: 1. Develop an understanding of the use of volumetric glassware. 2. Prepare a series of dye solutions of known concentrations. 3. Explore the relationship

### Absorbance Spectrophotometry: Analysis of FD&C Red Food Dye #40

Absorbance Spectrophotometry: Analysis of FD&C Red Food Dye #40 Note: there is a second document that goes with this one! 2046 - Absorbance Spectrophotometry - Calibration Curve Procedure. The second document

### Chemistry 118 Laboratory University of Massachusetts Boston Beer s Law

Name: LEARNING GOALS: Chemistry 118 Laboratory University of Massachusetts Boston Beer s Law 1. Become familiar with the concept of concentration and molarity. 2. Become familiar with making dilutions

### COLORS WE CONSUME A spectroscopic analysis of FD&C food colors in soda pop

COLORS WE CONSUME A spectroscopic analysis of FD&C food colors in soda pop LAB VIS 12 Used with permission by Gary Krenzer, Mercer High School, Dr. Charles Kriley and Dr. Harold Condor, Grove City College.

### SPECTROPHOTOMETRY. Blue. Orange

Appendix I FV /26/5 SPECTROPHOTOMETRY Spectrophotometry is an analytical technique used to measure the amount of light of a particular wavelength absorbed by a sample in solution. This measurement is then

### EXPERIMENT 5. Molecular Absorption Spectroscopy: Determination of Iron With 1,10-Phenanthroline

EXPERIMENT 5 Molecular Absorption Spectroscopy: Determination of Iron With 1,10-Phenanthroline UNKNOWN Submit a clean, labeled 100-mL volumetric flask to the instructor so that your unknown iron solution

### Analysis of Riboflavin in a Vitamin Pill by Fluorescence Spectroscopy**

Analysis of Riboflavin in a Vitamin Pill by Fluorescence Spectroscopy** Objectives In this lab, you will use fluorescence spectroscopy to determine the mass and percentage of riboflavin in a vitamin pill.

### Upon completion of this lab, the student will be able to:

1 Learning Outcomes EXPERIMENT B4: CHEMICAL EQUILIBRIUM Upon completion of this lab, the student will be able to: 1) Analyze the absorbance spectrum of a sample. 2) Calculate the equilibrium constant for

### Reaction Stoichiometry and the Formation of a Metal Ion Complex

Reaction Stoichiometry and the Formation of a Metal Ion Complex Objectives The objectives of this laboratory are as follows: To use the method of continuous variation to determine the reaction stoichiometry

### Using the Spectrophotometer

Using the Spectrophotometer Introduction In this exercise, you will learn the basic principals of spectrophotometry and and serial dilution and their practical application. You will need these skills to

### Coordination Compounds with Copper (II) Prelab (Week 2)

Coordination Compounds with Copper (II) Prelab (Week 2) Name Total /10 SHOW ALL WORK NO WORK = NO CREDIT 1. What is the purpose of this experiment? 2. Write the generic chemical formula for the coordination

### Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law

Purpose To become familiar with using a spectrophotometer and gain an understanding of Beer s law and it s relationship to solution concentration. Introduction Scientists use many methods to determine

### Lab #11: Determination of a Chemical Equilibrium Constant

Lab #11: Determination of a Chemical Equilibrium Constant Objectives: 1. Determine the equilibrium constant of the formation of the thiocyanatoiron (III) ions. 2. Understand the application of using a

### Experiment 2 Kinetics II Concentration-Time Relationships and Activation Energy

2-1 Experiment 2 Kinetics II Concentration-Time Relationships and Activation Energy Introduction: The kinetics of a decomposition reaction involving hydroxide ion and crystal violet, an organic dye used

### 2 Spectrophotometry and the Analysis of Riboflavin

2 Spectrophotometry and the Analysis of Riboflavin Objectives: A) To become familiar with operating the Platereader; B) to learn how to use the Platereader in determining the absorption spectrum of a compound

### Chemistry 111 Lab: Intro to Spectrophotometry Page E-1

Chemistry 111 Lab: Intro to Spectrophotometry Page E-1 SPECTROPHOTOMETRY Absorption Measurements & their Application to Quantitative Analysis study of the interaction of light (or other electromagnetic

### VISIBLE SPECTROSCOPY

VISIBLE SPECTROSCOPY Visible spectroscopy is the study of the interaction of radiation from the visible part (λ = 380-720 nm) of the electromagnetic spectrum with a chemical species. Quantifying the interaction

### CHEM 161: Beer s Law and Analysis of a Sports Drink

CHEM 161: Beer s Law and Analysis of a Sports Drink Introduction Although sunlight appears white, it contains a spectrum of colors. A rainbow actually shows this range of colors in visible light: violet,

### Measuring Manganese Concentration Using Spectrophotometry

Measuring Manganese Concentration Using Spectrophotometry Objectives To use spectroscopy to determine the amount of Manganese is an unknown sample. Scenario Your have just joined a "Green Team" at SMC

### Determining An Equilibrium Constant Using Spectrophotometry and Beer s Law

Objectives: Determining An Equilibrium Constant Using Spectrophotometry and Beer s Law 1.) To determine the equilibrium constant for the reaction of iron (III) and thiocyanate to form the thiocyanatoiron(iii)

### 1 Spectrophotometric Analysis of Commercial Aspirin

1 Spectrophotometric Analysis of Commercial Aspirin Name: _ Date: Lab Day/Time: Lab Partner: Objectives Learn about the absorption of light by molecules Learn the basic components of a spectrophotometer

### ph: Measurement and Uses

ph: Measurement and Uses One of the most important properties of aqueous solutions is the concentration of hydrogen ion. The concentration of H + (or H 3 O + ) affects the solubility of inorganic and organic

### Determining the Quantity of Iron in a Vitamin Tablet. Evaluation copy

Determining the Quantity of Iron in a Vitamin Tablet Computer 34 As biochemical research becomes more sophisticated, we are learning more about the role of metallic elements in the human body. For example,

### EXPERIMENT 7B FORMATION OF A COMPLEX ION

EXPERIMENT 7B FORMATION OF A COMPLEX ION INTRODUCTION: The purpose of this experiment is to measure the formation constant of the tetraamminecopper(ii) ion by colorimetry. Anhydrous copper sulfate (CuSO

### Experiment 13H THE REACTION OF RED FOOD COLOR WITH BLEACH 1

Experiment 13H FV 1/25/2011(2-run) THE REACTION OF RED FOOD COLOR WITH BLEACH 1 PROBLEM: Determine the rate law for the chemical reaction between FD&C Red Dye #3 and sodium hypochlorite. LEARNING OBJECTIVES:

### Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Jon H. Hardesty, PhD and Bassam Attili, PhD Collin College Department of Chemistry Introduction: In the last lab

### Spectrophotometric Analysis

Spectrophotometric Analysis Overview: Spectrophotometry can be used in as an analytic tool in two significant ways. The light absorbed by a particular species will produce a pattern called a spectrum.

### Lab 2. Spectroscopic Determination of Allura Red: How Much Dye is in my Gatorade?

Lab 2. Spectroscopic Determination of Allura Red: How Much Dye is in my Gatorade? Prelab Assignment Before coming to lab: Complete the following sections of your report for this lab exercise before attending

### Experiment 3 Measurement of an Equilibrium Constant

3-1 Experiment 3 Measurement of an Equilibrium Constant Introduction: Most chemical reactions (e.g., the generic A + B 2C) are reversible, meaning they have a forward reaction (A + B forming 2C) and a

### ATOMIC ABSORTION SPECTROSCOPY: rev. 4/2011 ANALYSIS OF COPPER IN FOOD AND VITAMINS

1 ATOMIC ABSORTION SPECTROSCOPY: rev. 4/2011 ANALYSIS OF COPPER IN FOOD AND VITAMINS Buck Scientific Atomic Absorption Spectrophotometer, Model 200 Atomic absorption spectroscopy (AAS) has for many years

### Experiment 6: Determination of the Equilibrium Constant for Iron Thiocyanate Complex

Experiment 6: Determination of the Equilibrium Constant for Iron Thiocyanate Complex The data for this lab will be taken as a class to get one data set for the entire class. I. Introduction A. The Spectrophotometer

### Analysis of Riboflavin in a Vitamin Pill by Fluorescence Spectroscopy

Analysis of Riboflavin in a Vitamin Pill by Fluorescence Spectroscopy Objectives In this lab, you will use fluorescence spectroscopy to determine the mass of riboflavin in a vitamin pill. Riboflavin fluorescence

### Beer-Lambert Law: Measuring Percent Transmittance of Solutions at Different Concentrations (Teacher s Guide)

Beer-Lambert Law: Measuring Percent Transmittance of Solutions at Different Concentrations (Teacher s Guide) OVERVIEW Students will study the relationship between transmittance, absorbance, and concentration

### To see how this data can be used, follow the titration of hydrofluoric acid against sodium hydroxide below. HF (aq) + NaOH (aq) H2O (l) + NaF (aq)

Weak Acid Titration v120413 You are encouraged to carefully read the following sections in Tro (2 nd ed.) to prepare for this experiment: Sec 4.8, pp 158-159 (Acid/Base Titrations), Sec 16.4, pp 729-43

### Experiment 1 (Lab period 1) Spectrophotometry: Absorption spectra and the use of light absorption to measure concentration

Experiment 1 (Lab period 1) Spectrophotometry: Absorption spectra and the use of light absorption to measure concentration Spectrophotometry is a procedure that is frequently utilized in biological laboratories.

### INTRODUCTION TO SPECTROMETRY

Experiment 11 INTRODUCTION TO SPECTROMETRY Portions adapted by Ross S. Nord and Colleagues, Chemistry Department, Eastern Michigan University from ANAL 043, written by Donald F. Clemens and Warren A. McAllister,

### A COMPLEX IRON SALT & BEER S LAW

A OMPLEX IRO SALT & BEER S LAW LABORATORY OTEBOOK Objectives, hemical & Equipment Tables, and Procedures & Observations should all be entered into your EL. All spectra files should be attached in the Procedures

### Using a Spectrophotometer

Introduction: Spectrophotometry Using a Spectrophotometer Many kinds of molecules interact with or absorb specific types of radiant energy in a predictable fashion. For example, when while light illuminates

### Experiment 2 Determination of the Composition of Iron-Phenanthroline Complex by Job s Method Objective Theory

Experiment 2 Determination of the Composition of Iron-Phenanthroline Complex by Job s Method Objective To establish the formula of a colored complex by the spectrophotometric method Theory The formation

### Determining the Percent Composition of a Copper Chloride Hydrate

Determining the Percent Composition of a Copper Chloride Hydrate Overview: The mass percents of Cu, Cl and H 2 O in a compound are determined by separating and massing the three components. The resulting

### THREE CHEMICAL REACTIONS

THREE CHEMICAL REACTIONS 1 NOTE: You are required to view the podcast entitled Decanting and Suction Filtration before coming to lab this week. Go to http://podcast.montgomerycollege.edu/podcast.php?rcdid=172

### Aspirin Synthesis H 3 PO 4

Aspirin Synthesis Experiment 5 Aspirin is the common name for the compound acetylsalicylic acid, widely used as a fever reducer and as a pain killer. Salicylic acid, whose name comes from Salix, the willow

### Chemistry 12. Determining the Amount of Vitamin C (Ascorbic Acid) in a Sample

Chemistry 12 Determining the Amount of Vitamin C (Ascorbic Acid) in a Sample Abstract Redox reactions are involved in a wide variety of techniques for quantitative analysis of chemical substances. The

### NNIN Nanotechnology Education

NNIN Nanotechnology Education Student Guide Part 1: Silver Nanoparticle Synthesis and Spectroscopy Introduction: In this lab you will synthesize silver nanoparticles one of the most commonly used nanoparticles

### SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER

Chemistry 111 Lab: Synthesis of a Copper Complex Page H-1 SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER In this experiment you will synthesize a compound by adding NH 3 to a concentrated

### The Determination of the Percent of Salicylic Acid in Aspirin

Salicylic acid The Determination of the Percent of Salicylic Acid in Aspirin Aspirin or acetylsalicylic acid, may be prepared by the reaction of salicylic acid and either acetic acid or acetic anhydride

### Title: Training Lab 1 Chemistry 11100, Fall Use of a balance a balance is used to measure the mass of solids in the chemistry lab.

Title: Training Lab 1 Chemistry 11100, Fall 2012 Introduction The purpose of this lab is to introduce you to a series of techniques that you will use in chemistry lab. For this lab, you will be using the

### Spectrophotometric Determination of the pka of Bromothymol Blue

Spectrophotometric Determination of the pka of Bromothymol Blue INRODUCION cidbase indicators are compounds that are simply weak acids (or bases) that exhibit different colors depending on whether they

### Lab 5: Quantitative Analysis- Phosphates in Water By: A Generous Student. LBS 171L Section 9 TA: Dana October 27, 2005

How uch Phosphate is the Body Being Exposed to During a Lifetime by Showering? Lab 5: Quantitative Analysis- Phosphates in Water By: A Generous Student LBS 171L Section 9 TA: Dana October 7, 005 [Note:

### Expt B: Determining the Equilibrium Constant of Bromothymol Blue. Keywords: Equilibrium Constant, ph, indicator, spectroscopy

Objectives: Keywords: Equilibrium Constant, ph, indicator, spectroscopy Prepare all solutions needed for measurement of the equilibrium constant for bromothymol Make the required spectroscopic measurements

### ANALYSIS OF WATER FOR CHLORIDE AND SULFATE IONS

Test Procedure for ANALYSIS OF WATER FOR CHLORIDE AND SULFATE IONS TxDOT Designation: Tex-619-J Effective Date: August 2005 1. SCOPE 1.1 Use this method to analyze water for chloride and sulfate ions to

### Safety Goggles must be worn. The materials are nontoxic, but are not to be eaten. Do not leave these materials in a carpet or on furniture.

Preparation of a Viscous Solution Quantitative wet lab; students work in pairs and individually. Objectives The student will become proficient in calculations involving units of concentration, and in the

### Standardization of NaOH

EXPERIMENT 18 Prepared by Edward L. Brown, Lee University The student will become familiar with the techniques of titration and the use of a primary standard, Potassium Hydrogen Phthalate (KHP). Buret

### Spectrophotometric and Potentiometric Determination of ph

Spectrophotometric and Potentiometric Determination of ph Introduction Determination of ph is one of the most frequently performed measurements in chemistry. The potentiometric method with a glass electrode

### COMMON LABORATORY APPARATUS

COMMON LABORATORY APPARATUS Beakers are useful as a reaction container or to hold liquid or solid samples. They are also used to catch liquids from titrations and filtrates from filtering operations. Bunsen

### EXPERIMENT B7: GREEN CRYSTAL. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to:

1 EXPERIMENT B7: GREEN CRYSTAL Learning Outcomes Upon completion of this lab, the student will be able to: 1) Synthesize an inorganic salt and purify it using the method of recrystallization. 2) Test the

### Acid Base Titrations

Acid Base Titrations Introduction A common question chemists have to answer is how much of something is present in a sample or a product. If the product contains an acid or base, this question is usually

### Ultraviolet-Visible (UV-Vis) Spectroscopy Background Information

1 Ultraviolet-Visible (UV-Vis) Spectroscopy Background Information Instructions for the Operation of the Cary 300 Bio UV-Visible Spectrophotometer See the Thermo OMNIC Help reference on page 49. Ultraviolet-Visible

### Determination of a Chemical Formula

1 Determination of a Chemical Formula Introduction Molar Ratios Elements combine in fixed ratios to form compounds. For example, consider the compound TiCl 4 (titanium chloride). Each molecule of TiCl

### Analysis of Commerical Antacids Containing Calcium Carbonate Prelab (Week 1)

Analysis of Commerical Antacids Containing Calcium Carbonate Prelab (Week 1) Name Total /10 SHOW ALL WORK NO WORK = NO CREDIT 1. What is the purpose of this experiment? 2. Show the calculation for determining

### Determination of K a and Identification of an Unknown Weak Acid

1 Determination of K a and Identification of an Unknown Weak Acid Introduction Purpose: To determine the molar mass and acid dissociation constant K a for an unknown weak acid and thereby identify the

### Synthesis of a Coordination Compound Containing Iron and Analysis of this Compound Using Redox Methods Prelab

Synthesis of a Coordination Compound Containing Iron and Analysis of this Compound Using Redox Methods Prelab Name Total /10 NOTE: AT THIS POINT YOU WILL ANSWER ALL PRELAB QUESTIONS IN YOUR CARBON COPY

### Experiment Seven Determination Of The Composition Of A Multi-Component Mixture By Spectrophotometric Analysis

CHEM 3281 Experiment Seven Determination Of The Composition Of A Multi-Component Mixture By Spectrophotometric Analysis Objectives: 1.Solid sample handling 2.The composition of a three-component mixture

### SCH 4C Summative - QUANTITATIVE TITRATION - Part 1

SCH 4C Summative - QUANTITATIVE TITRATION - Part 1 PURPOSE: Design a procedure to make a 0.300mol/L solution of NaOH from solid NaOH pellets. MATERIALS: Solid NaOH Electronic Balance Distilled water Safety

### Determination of the Mass Percentage of Copper in a Penny. Introduction

Determination of the Mass Percentage of Copper in a Penny Introduction This experiment will cost you one penny (\$0.01). The penny must be minted after 1983. Any penny will do; for best results the penny

### KINETIC DETERMINATION OF SELENIUM BY VISIBLE SPECTROSCOPY (VERSION 1.8)

Selenium Determination, Page 1 KINETIC DETERMINATION OF SELENIUM BY VISIBLE SPECTROSCOPY I. BACKGROUND. (VERSION 1.8) The majority of reactions used in analytical chemistry possess the following characteristics:

### Be sure to staple your graph to the handout!

CHEM 151 EMISSION AND ABSORPTION SPECTROSCOPY Winter 2009 Fill-in Prelab attached (p 13) Stamp Here Name Partner Lecturer Be sure to staple your graph to the handout! Introduction Date You have now observed

### Beer's Law: Colorimetry of Copper(II) Solutions

Exercise 11 Page 1 Illinois Central College CHEMISTRY 130 Name: Beer's Law: Colorimetry of Copper(II) Solutions Objectives In this experiment, we will use Beer's Law to determine the unknown concentrations

### To determine the equivalence points of two titrations from plots of ph versus ml of titrant added.

Titration Curves PURPOSE To determine the equivalence points of two titrations from plots of ph versus ml of titrant added. GOALS 1 To gain experience performing acid-base titrations with a ph meter. 2

### Calcium Analysis by EDTA Titration

Calcium Analysis by EDTA Titration ne of the factors that establish the quality of a water supply is its degree of hardness. The hardness of water is defined in terms of its content of calcium and magnesium

### Info Note UV-VIS Nomenclature and Units

Info Note 804: Ultraviolet-visible spectroscopy or ultraviolet-visible spectrophotometry (UV/VIS) involves the spectroscopy of photons in the UV-visible region. It uses light in the visible and adjacent

### Measuring Protein Concentration through Absorption Spectrophotometry

Measuring Protein Concentration through Absorption Spectrophotometry In this lab exercise you will learn how to homogenize a tissue to extract the protein, and then how to use a protein assay reagent to

### Determining the Identity of an Unknown Weak Acid

Purpose The purpose of this experiment is to observe and measure a weak acid neutralization and determine the identity of an unknown acid by titration. Introduction The purpose of this exercise is to identify

### Experiment 7: Titration of an Antacid

1 Experiment 7: Titration of an Antacid Objective: In this experiment, you will standardize a solution of base using the analytical technique known as titration. Using this standardized solution, you will

### UV/Vis Spectroscopy. Varka Evi-Maria Ph.D. Chemist AUTH Thessaloniki 2012

UV/Vis Spectroscopy Varka Evi-Maria Ph.D. Chemist AUTH Thessaloniki 2012 Introduction of Spectroscopy The structure of new synthesised molecules or isolated compounds from natural sources in the lab must

### The Reaction of Calcium Chloride with Carbonate Salts

The Reaction of Calcium Chloride with Carbonate Salts PRE-LAB ASSIGNMENT: Reading: Chapter 3 & Chapter 4, sections 1-3 in Brown, LeMay, Bursten, & Murphy. 1. What product(s) might be expected to form when

### DENSITY OF AQUEOUS SODIUM CHLORIDE SOLUTIONS

Experiment 3 DENSITY OF AQUEOUS SODIUM CHLORIDE SOLUTIONS Prepared by Ross S. Nord and Stephen E. Schullery, Eastern Michigan University PURPOSE Determine the concentration of an unknown sodium chloride

### Experiment #5: Qualitative Absorption Spectroscopy

Experiment #5: Qualitative Absorption Spectroscopy One of the most important areas in the field of analytical chemistry is that of spectroscopy. In general terms, spectroscopy deals with the interactions

### ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND

#3. Acid - Base Titrations 27 EXPERIMENT 3. ACID-BASE TITRATIONS: DETERMINATION OF CARBONATE BY TITRATION WITH HYDROCHLORIC ACID BACKGROUND Carbonate Equilibria In this experiment a solution of hydrochloric

### Spectrometry: Absorbance of Visible Light by a Food Colour Dye. by Professor David Cash. September, 2008

CHEMICAL, ENVIRONMENTAL, AND BIOTECHNOLOGY DEPARTMENT Spectrometry: Absorbance of Visible Light by a Food Colour Dye by Professor David Cash September, 2008 Mohawk College is the author and owner of these

### Chemistry 111 Laboratory Experiment 7: Determination of Reaction Stoichiometry and Chemical Equilibrium

Chemistry 111 Laboratory Experiment 7: Determination of Reaction Stoichiometry and Chemical Equilibrium Introduction The word equilibrium suggests balance or stability. The fact that a chemical reaction

### Evaluation copy. Titration of a Diprotic Acid: Identifying an Unknown. Computer

Titration of a Diprotic Acid: Identifying an Unknown Computer 25 A diprotic acid is an acid that yields two H + ions per acid molecule. Examples of diprotic acids are sulfuric acid, H 2 SO 4, and carbonic

### INTRODUCTION TO SPECTROPHOTOMETRY Analysis of Dye Mixtures

Chemistry 135 For this experiment: INTRODUCTION TO SPECTROPHOTOMETRY Analysis of Dye Mixtures Complete the Prelab and obtain a stamp before you begin the experiment. Clark College Write your notebook prelab

### The Determination of an Equilibrium Constant

The Determination of an Equilibrium Constant Computer 10 Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium

### Determining the Free Chlorine Content of Swimming Pool Water. HOCl H + + OCl. Evaluation copy

Determining the Free Chlorine Content of Swimming Pool Water Computer 33 Physicians in the nineteenth century used chlorine water as a disinfectant. Upon the discovery that certain diseases were transmitted

### Expt. 4: ANALYSIS FOR SODIUM CARBONATE

Expt. 4: ANALYSIS FOR SODIUM CARBONATE Introduction In this experiment, a solution of hydrochloric acid is prepared, standardized against pure sodium carbonate, and used to determine the percentage of

### Techniques and Practice 3: Volumetric flask, pipette, preparation of a standard solution, serial dilution and Graphing

Techniques and Practice 3: Volumetric flask, pipette, preparation of a standard solution, serial dilution and Graphing Objectives At the end of this lab, the student should be able to: 1. Recognize basic

### Acid-Base Titrations Using ph Measurements

Acid-Base Titrations Using ph Measurements Introduction According to the Brønsted Lowry definition, an acid is a substance that donates a hydrogen ion and a base is a substance which will accept a hydrogen

### Acid-Base Titration. Evaluation copy. Figure 1

Acid-Base Titration Computer 24 A titration is a process used to determine the volume of a solution needed to react with a given amount of another substance. In this experiment, you will titrate hydrochloric

### Colorimetric Determination of Iron in Vitamin Tablets

Colorimetric Determination of Iron in Vitamin Tablets Big Picture Conceptual Approach Vitamin Tablet How much Fe? ph = 3.5 Vitamin Tablet How much Fe? Too difficult to eyeball so will have the colorimeter

### What is the Percent Copper in a Compound?

Lab 9 Name What is the Percent Copper in a Compound? Pre-Lab Assignment Complete this pre-lab on this sheet. This written pre-lab is worth 15% (3 points) of your lab report grade and must be initialed

Return to Lab Menu Acids and Bases in Your House OBJECTIVES Isolate a natural acid-base indicator. Determine the acid-base properties of common household solutions. INTRODUCTION Acids and bases are among

### Kinetic Study of the Enzyme Lactase

Experiment 17 Kinetic Study of the Enzyme Lactase GOAL: In this experiment we will study the kinetics of the enzyme lactase and calculate its Michaelis constant. INTRODUCTION: Lactose, the disaccharide