Boundedness of the Hilbert Transform on Weighted Lorentz Spaces. Elona Agora

Size: px
Start display at page:

Download "Boundedness of the Hilbert Transform on Weighted Lorentz Spaces. Elona Agora"

Transcription

1 Boundedness of the Hilbert Transform on Weighted Lorentz Saces Elona Agora Programa de Doctorat de Matemàtiques Universitat de Barcelona Barcelona, abril 212

2

3 Memòria resentada er a asirar al grau de Doctora en Matemàtiques er la Universitat de Barcelona Barcelona, abril 212. Elona Agora María Jesús Carro Rossell i Francisco Javier Soria de Diego, rofessors del Deartament de Matemàtica Alicada i Anàlisi de la Universitat de Barcelona CERTIFIQUEN: Que la resent memòria ha estat realitzada, sota la seva direcció, er Elona Agora i que constitueix la tesi d aquesta er a asirar al grau de Doctora en Matemàtiques. María Jesús Carro Rossell Francisco Javier Soria de Diego

4

5 Stouc goneíc mou, sta adérfia mou 'Olga kai Dhm htrh, sthn josha, ston Jorge

6

7 Contents Acknowledgements Resum Notations iii v xiii 1 Introduction 1 2 Review on weighted Lorentz saces Weighted Lorentz saces Duality Several classes of weights The Muckenhout A class of weights The B and B, classes of weights The Ariño-Muckenhout B class of weights The B, class The B class The B (u) and B, (u) classes of weights The AB class Necessary conditions for the boundedness of H on Λ u(w) Restricted weak-tye boundedness on intervals Restricted weak-tye boundedness Necessary conditions and duality The case u A Comlete characterization of the boundedness of H on Λ u(w) Necessary conditions involving the A condition Necessity of the B condition Necessity of the weak-tye boundedness of M Sufficient conditions Comlete characterization i

8 Contents ii Geometric conditions Remarks on the Lorentz-Shimogaki and Boyd theorems Further results and alications on L,q (u) saces Non-diagonal roblem Background of the roblem in the non-diagonal case Basic necessary conditions in the non-diagonal case Necessity of the weak-tye boundedness of M Alications on L,q (u) saces Bibliograhy 13

9 Acknowledgements As you set out for Ithaca hoe that your journey is a long one, full of adventure, full of discovery. Laistrygonians and Cyclos, angry Poseidon, do not be afraid of them: you ll never find things like that on your way as long as you kee your thoughts raised high... Hoe that your journey is a long one. May there be many summer mornings when, with what leasure, what joy, you come into harbors seen for the first time... Konstantinos Petrou Kavafis With what leasure, what joy, I can see the harbor now. I can smell the land. And behind me, and inside me, many stories. Stories and eole. Peole that have made me feel in any moment that I am not alone... María Jesús Carro and Javier Soria are the first ersons, to whom I would like to exress my deeest gratitude. Both of them have been always close to me, suorting, advicing, encouraging, motivating, collaborating with me. Under their guidance I have grown. Through them I have learned to think, to overcome the fears... lots of them, and I have gained a further understanding of mathematics. Definitely, without them, without their atience, their ideas, I would not have been here. I am also grateful to the members of GARF (The Real and Functional Analysis Grou) for the oortunities to attend talks, conferences, meet other eole with similar interests from all over the world, and discover so many wonderful things, which has been a great motivation all these years. I also thank the eole of the Deartment of Alied Mathematics and Analysis of the Universitat de Barcelona, for making all these years so comfortable, and making me feel art of this deartment. I also extend my gratitude to the members of the analysis grous of the UB/UAB/CRM for what I have learned from them all these years. I owe my sincere gratitude to Rodolfo Torres and Estela Gavosto for giving me the oortunity to visit the Deartment of Mathematics of the University of Kansas. Secially I would like to thank Andrea and Kabe Moen for making this visit so exciting. iii

10 Acknowledgements iv I would like to thank the members of the Deartment of Mathematics of Karlstad University, and I warmly thank Sorina and Ilie Barza and their family for their great hositality. I also thank Viktor Kolyada and Martin Lind. I would like to mention that morning, when together with Bharti Pridhnani, Jorge Antezana, Salvador Rodríguez and Amadeo Irigoyen we started our FOCA S seminar (Seminario de Análisis Comlejo, Armónico y Funcional) with the idea to share what we know, but also what we do not know... We have discussed mathematics together, we have shared our enthusiasm, our dee assion for mathematics, our hainess, but also our frustrations... They have been a great suort during all these years as collegues and as well as friends. I extend my gratitude to my other friends and collegues, secially to Nadia Clavero, Marta Canadell, Jerry Buckley, Daniel Seco, Pedro Tradacete, Jordi Marzo, Gerard Ascensi, Asli Deniz, Jordi Lluís... who gave me a great suort all these years, each one on his own way. Without them, this journey wouldn t have been that interesting and exciting. I warmly thank Anca and Liviu Marcoci, and Carmen Ortiz for our nice relationshi during their visits in the Universitat de Barcelona. Particularly, I would like to thank Isabel Cerdà and Victor Rotger for making me feel like at home since the very beginning in Barcelona. I esecially thank Ana (Coma) and Laura (Huguet), with whom I have shared all my us and downs... and very downs. I warmly thank Bahoz, Pilar (Sancho), Julianna, Kristynaki, Sofaki, Annoula, Giwrgakis (and of course I would like to mention his arents in Rhodes), Katerinaki (Kwsta), Giwrgakis (Maglaras), Peri, Elena, Bea, Kumar, Itziar, Iker, Joan, Divina, Nadine, Didac, Leila, Jesús, Núria, Elia, Tedi, Mireia, Achilleas, Dhimitris, Pantelis, Prodromos... This journey has been marvelous with them. I thank all of them for their wishes, their advices, their hugs, their smiles, their jokes, for making me forget my roblems, for sending me always ost-cards or ictures from wherever they are, for their atience, for taking me to Ikastola, to CCCB or to the gelateria italiana, or for just being there. Fusiká ja hjela na euqarist hsw touc goneíc mou Pétro kai Qruσánjh gia thn agáh kai storg h touc, kai ou ánw aó ta diká touc óneira ébazan ánta ta diká mac. Euqaristẃ eíshc ta adérfia mou 'Olga kai Dhm htrh gia thn agáh kai thn áeirh uost hrixh touc óla autá ta qrónia kajẃc kai th giagiá mou gia th metadotik h thc qará. Qwríc autoúc den ja hmoun edẃ. Se autoúc kai afierẃnw th douleiá kai ton kóo mou. Eíshc euqaristẃ ton jeío Fẃth. I esecially thank Jorge, for being always here, and to whom, together with my arents, my sister, my brother, and my grandmother (josha) I dedicate all of my efforts. The revision of the text in catalan has been a courtesy of Ana Coma and Divina Huguet and the ictures are a courtesy of Jorge Antezana. It has been a honour for me to obtain the scholarshi of the Foundation Ferran-Sunyer i Balaguer for my visit to the University of Karlstad, Sweden. I also would like to mention that this work has been financially suorted by the Ministry of Education, Culture and Sorts of Sain, recisely by the scholarshi FPU, and then by the State Scholarshi Foundation I.K.Y., of Greece. H olokl hrwsh thc ergaσíac aut hc égine sto laísio thc ulooíhshc tou metatuqiakoú rográmmatoc ou sugqrhmatodot hjhke mésw thc Práxhc <<Prógramma qor hghshc uotrofiẃn I.K.U. me diadikaσía exatomikeuménhc axiológhshc akad. étouc >> aó órouc tou E.P. <<Ekaídeush kai dia bíou májhsh>> tou Eurwaïkoú koinwnikoú tameíou (EKT) kai tou ESPA, tou

11 Resum L objectiu rincial d aquesta tesi és unificar dues teories conegudes i aarentment no relacionades entre elles, que tracten l acotació de l oerador de Hilbert, sobre esais amb esos, definit er Hf(x) = 1 π lim ε + x y >ε f(y) x y dy, quan aquest límit existeix gairebé a tots els unts. Per una banda, tenim l acotació de l oerador H sobre els esais de Lebesgue amb esos i la teoria desenvoluada er Calderón i Zygmund. Per altra banda, hi ha la teoria de l acotació de l oerador H desenvoluada al voltant dels esais invariants er reordenació. El marc natural er unificar aquestes teories consisteix en els esais de Lorentz amb esos Λ u(w) i Λ, u (w), els quals van ser definits er Lorentz a [68] i [67] de la següent manera: on { ( } 1/ Λ u(w) = f M : f Λ u (w) = (fu(t)) w(t)dt) <, (1) { Λ, u (w) = f M : f Λ, u (w) = su f u(t) = inf{s > : u({x : f(x) > s}) t} i W (t) = t> } W 1/ (t)fu(t) <, (2) t w(s)ds. Més concretament, estudiarem l acotació de l oerador H sobre els esais de Lorentz amb esos: H : Λ u(w) Λ u(w), (3) i la seva versió de tius dèbil H : Λ u(w) Λ, u (w). (4) Abans de descriure els nostres resultats, resentem una breu revisió històrica de l oerador H. Aquest oerador va ser introduït er Hilbert a [48] i [49]. Però, no va ser fins el 1924 quan Hardy el va anomenar oerador de Hilbert en honor a les seves contribucions (veure [43], i [44]). v

12 Resum vi L oerador H sorgeix en molts contextos diferents, com l estudi de valors de frontera de les arts imaginàries de funcions analítiques i la convergència de sèries de Fourier. Entre els resultats clàssics, esmentem el teorema de Riesz: H : L L, és acotat, quan 1 < < (veure [85], i [86]). Tot i que l acotació en L 1 no és certa, Kolmogorov va rovar a [58] l estimació de tius dèbil següent: H : L 1 L 1,. (5) Per a més informació en aquests temes veure [4], [94], [36], i [8]. Els resultats més rellevants que van servir er motivar aquest estudi són: (I) Si w = 1, aleshores (3) i (4) corresonen a l acotació i la seva versió dèbil H : L (u) L (u), (6) H : L (u) L, (u), (7) resectivament. Aquestes desigualtats sorgeixen naturalment quan en el teorema de Riesz, la mesura subjacent es canvia er una mesura general u. Aleshores, el roblema és estudiar quines són les condicions sobre u que ermeten que l oerador H sigui acotat a L (u). Aquesta nova aroximació va donar naixement a la teoria de les desigualtats amb esos, la qual juga un aer imortant en l estudi de roblemes de valor de la frontera er l equació de Lalace en dominis Lischitz. Altres alicacions inclouen desigualtats vectorials, extraolació d oeradors, i alicacions a equacions no lineals, de derivades arcials i integrals (veure [36], [41], [56], i [57]). L estudi de (6) i (7) roorciona juntament amb l acotació de l oerador maximal de Hardy-Littlewood en els mateixos esais, la teoria clàssica de esos A. L oerador sublineal M, introduït er Hardy i Littlewood a [45], es defineix er Mf(x) = su x I 1 I I f(y) dy, on el suremum es considera en tots els intervals I de la recta real que contenen x R. Per a més referències veure [38], [36], [41], [4], i [94]. Diem que u A si, er a > 1, tenim: ( ) ( su u(x)dx u (x)dx) 1/( 1) <, (8) I I I I I on el suremum es considera en tots els intervals I de la recta real, i u A 1 si Mu(x) u(x) a.e x R. (9)

13 vii Resum Muckenhout va rovar a [71] que, si 1, la condició A caracteritza l acotació i si > 1 també caracteritza M : L (u) L, (u), M : L (u) L (u). Hunt, Muckenhout i Wheeden van rovar a [54] que, si 1, la condició A caracteritza (7) i si > 1 la mateixa condició caracteritza també (6). Per una rova alternativa d aquests resultats veure [26]. Per exonents < 1 no hi ha ca es u que comleixi (6) i (7). (II) El cas u = 1 correson a l acotació de l oerador H en els esais de Lorentz clàssics, i va ser solucionat er Sawyer a [9]: H : Λ (w) Λ (w). (1) Una caracterització simlificada dels esos els quals l acotació és certa, es resenta en termes de la condició B B introduïda er Neugebauer a [8]. Diem que w B si er a tot r >, i (11) caracteritza l acotació rovat a [5]. La condició w B és r r 1 t ( r ) r w(t) dt w(t)dt, (11) t M : Λ (w) Λ (w), t w(s)ds dt r w(s)ds, (12) er a tot r >. Si > 1 la condició B B caracteritza també la versió de tius dèbil H : Λ (w) Λ, (w), (13) mentre que el cas 1, es caracteritza er la condició B, B. Diem que w B, si, i només si M : Λ (w) Λ, (w) (14) es acotat. Precisament, tenim que: (α) Si > 1, B, = B. (β) Si 1, aleshores w B, si, i només si w és quasi-concava: er a tot < s r <, W (r) r W (s) s. (15)

14 Resum viii (III) Recentment, Carro, Raoso i Soria van estudiar a [2] l anàleg de la relació (3), erò er a l oerador M, en comtes de l oerador H M : Λ u(w) Λ u(w), i la solució és la classe de esos B (u) definida com: ( W u ( W u ( J j=1 I j ( J j=1 S j )) )) C max 1 j J ( ) ε Ij, (16) S j er a algun ε > i er cada família finita d intervals disjunts, i oberts (I j ) J j=1, i també cada família de conjunts mesurables (S j ) J j=1, amb S j I j, er a cada j J. Aquesta classe de esos recuera els resultats ben coneguts en els casos clàssics; és a dir, si w = 1 llavors (16) és la condició A i si u = 1, llavors és la classe de esos B (veure [2]). En el mateix treball es va considerar la versió de tius dèbil del roblema, M : Λ u(w) Λ, u (w). (17) Tanmateix, la caracterització geomètrica comleta de l estimació (17) no es va resoldre er a 1. En aquesta tesi, caracteritzem totalment les acotacions (3) i (4), quan > 1, donant una versió estesa i unificada de les teories clàssiques. També caracteritzem (17) er la condició B (u) quan > 1. Els resultats rincials d aquesta tesi roven que els enunciats següents són equivalents er a > 1 (veure el Teorema 6.19): Teorema. Sigui > 1. Els enunciats següents són equivalents: (i) H : Λ u(w) Λ u(w) és acotat. (ii) H : Λ u(w) Λ, u (w) és acotat. (iii) u A, w B (iv) u A, w B i M : Λ u(w) Λ u(w) és acotat. i M : Λ u(w) Λ, u (w) és acotat. (iv) Existeix ε >, tal que er a cada família finita d intervals disjunts, oberts (I j ) J j=1, i cada família de conjunts mesurables (S j ) J j=1, amb S j I j, er a cada j J, es verifica que: ( min log I ) j j S j ( W u ( W u ( J j=1 I j ( J j=1 S j )) )) max j ( ) ε Ij. S j

15 ix Resum En articular, recuerem els casos clàssics w = 1, i u = 1. A més, reescrivim els nostres resultats en termes d alguns índex de Boyd generalitzats. Lerner i Pérez van estendre a [66] el teorema de Lorentz-Shimogaki en esais funcionals quasi-banach, no necessàriament invariants er reordenació. Motivats els seus resultats, donem una extensió del teorema de Boyd, en el context dels esais de Lorentz amb esos (veure el Teorema 6.26). També hem solucionat el cas de tius dèbil, 1 amb alguna condició addicional en w (veure el Teorema 6.2). Els caítols són organitzats de la següent manera: Per tal de dur a terme aquest rojecte com a monografia auto-continguda, en el Caítol 2 estudiem totes les roietats bàsiques dels esais de Lorentz amb esos. Aquest caítol també conté un resultat de densitat nou: rovem que l esai de funcions C amb suort comacte, Cc, és dens en els esais de Lorentz amb esos Λ u(w) en el cas que u i w no són integrables (veure el Teorema 2.13). Això serà imortant er solucionar alguns roblemes tècnics de la definició de l oerador de Hilbert en Λ u(w). El Caítol 3 recull totes les classes de esos que aareixen en aquesta monografia. Primer estudiem les classes de esos A i A. A continuació, estudiem les classes de esos B i B, que caracteritzen l acotació de M en els esais de Lorentz clàssics. Com ja hem mencionat, la classe dels esos B no és suficient er obtenir l acotació de l oerador H sobre els esais Λ u(w), i es requereix també la condició B. Desrés, investiguem la condició B (u) i trobem algunes exressions equivalents noves estudiant el comortament asimtòtic a l infinit d una funció submultilicativa (veure el Corol lari 3.38). Finalment, definim i estudiem una classe nova de esos AB, que combina les classes A i B (veure Proosició 3.46 er a més detalls). En el Caítol 4 trobem condicions necessàries er l acotació de tius dèbil de l oerador H i obtenim algunes conseqüències útils. Si restringim l acotació H : Λ u(w) Λ, u (w) a funcions característiques d intervals, tenim: ( ) bν W u(s) ds ( bν su ( ) b> b log 1 + ν ), W u(s) ds ν b er a cada ν (, 1] (veure el Teorema 4.4). En articular, això imlica u L 1 (R) i w L 1 (R + ) (veure la Proosició 4.5). A més a més si restringim l acotació de tius dèbil a funcions característiques de conjunts mesurables (veure el Teorema 4.8), obtenim ( ) W (u(i)) I W (u(e)), E i er això W u satisfà la condició doblant i w és quasi-còncava. Finalment, l acotació de tius dèbil imlica, alicant arguments de dualitat, que es comleix: u 1 χ I (Λ u (w)) χ I Λ u (w) I,

16 Resum x er a tots els intervals I de la recta real (veure el Teorema 4.16). Estudiem aquesta condició i, en conseqüència, obtenim l acotació de tius dèbil de l oerador H en els esais Λ (w). En el Caítol 5 caracteritzem l acotació de tius dèbil en els esais de Lorentz clàssics er a >, sota la suosició que u A 1 : H : Λ u(w) Λ, u (w) w B, B, (veure el Teorema 5.2). A més a més rovem que si u A 1 i > 1 tenim que H : Λ u(w) Λ u(w) w B B, (veure Teorema 5.4), mentre en el cas 1 tenim el mateix resultat amb una condició addicional en els esos (veure el Teorema 5.5). Per això, si u A 1, l acotació del tius fort (res. del tius dèbil) H : Λ u(w) Λ u(w) (res. H : Λ u(w) Λ, u (w)) coincideix amb l acotació del mateix oerador er u = 1. El Caítol 6 conté la solució comleta del roblema quan > 1; és a dir, la caracterització del tius dèbil de l acotació de l oerador H en els esais de Lorentz amb esos (veure el Teorema 6.13) i també la seva versió de tius fort (Teorema 6.18). A més, les condicions geomètriques que caracteritzen ambdós, les acotacions dels tius dèbil i fort de l oerador H en Λ u(w) es donen er al Teorema 6.19 quan > 1, i al Teorema 6.2 er l acotació del tius dèbil en el cas < 1. Finalment, reformulem els nostres resultats en termes del teorema de Boyd (veure el Teorema 6.26). Alguns dels resultats tècnics més significatius que hem utilitzat er rovar els nostres teoremes rincials són els següents: (a) Hem caracteritzat la condició A, en termes de l oerador H de la manera següent (veure el Teorema 6.3): H(uχ I )(x) dx u(i), i així obtenim que (4) imlica la necessitat de la condició AB. (b) Provem que si > 1, llavors H : Λ u(w) Λ, u I (w) M : Λ u(w) Λ, (w), (veure el Teorema 6.8) que, en articular, roorciona una rova diferent del fet ben conegut, que correson al cas w = 1: sense fer servir exlícitament la condició A. H : L (u) L, (u) M : L (u) L, (u), (c) Solucionem comletament l acotació de (17), si > 1 i la solució és la classe B (u) (veure el Teorema 6.17). En articular, mostrem que si > 1, llavors M : L (u) L, (u) M : L (u) L (u), u

17 xi Resum sense utilitzar la desigualtat de Hölder inversa. Les tècniques que vam fer servir er obtenir la caracterització de l acotació H : Λ u(w) Λ u(w), i la seva versió de tius dèbil H : Λ u(w) Λ, u (w), quan > 1 ens ermeten aconseguir algunes condicions necessàries er l acotació de tius dèbil de l oerador H en el cas no diagonal: H : Λ u (w ) Λ 1, u 1 (w 1 ), que serà també necessari er la versió de tius fort H : Λ u (w ) Λ 1 u 1 (w 1 ). En el Caítol 7 estudiem aquestes condicions. En rimer lloc, resentem una breu revisió en els casos clàssics, on, er una banda, tenim el conegut roblema de dos esos er l oerador de Hilbert, H : L (u ) L, (u 1 ) i H : L (u ) L (u 1 ), que es va lantejar als anys 197, erò no s ha resolt comletament, i d altra banda, tenim el cas no-diagonal de l acotació de l oerador H en els esais de Lorentz clàssics. Finalment, resentem algunes alicacions resecte a la caracterització de l acotació H : L,q (u) L r,s (u), er alguns exonents, q, r, s >. En articular, comletem alguns dels resultats obtinguts a [25] er Chung, Hunt, i Kurtz. Els resultats d aquesta memoria están inclosos a [1, 2, 3].

18

19 Notations Throughout this monograh, the following standard notations are used: The letter M is used for the sace of measurable functions on R, endowed with the measure u = u(x)dx. Moreover, u and w will denote weight functions; that is, ositive, locally integrable functions defined on R and R + = [, ), resectively. If E is a measurable set of R, we denote u(e) = u(x)dx E and we write W (r) = r w(t)dt, for r. For < <, L denotes the usual Lebesgue sace and L dec the cone of ositive, decreasing functions belonging to L. The limit case L is the set of bounded measurable functions defined on R, while L (u) refers to the sace of functions belonging to L, whose suort has finite measure with resect to u. The letter denotes the conjugate of ; that is 1/ + 1/ = 1. In addition, Cc refers to the sace of smooth functions defined on R with comact suort. We denote by S the class of simle functions S = {f M : card(f(r)) < }. The class of simle functions with suort in a set of finite measure is: S (u) = {f S : u({f }) < }. Furthermore, we write S c for the sace of simle functions with comact suort. The distribution function of f M is λ u f (s) = u({x : f(x) > s}), the non-increasing rearrangement with resect to the measure u is t f u(t) = inf{s > : λ u f(s) t}, and fu (t) = 1 f t u(s)ds. The rearrangement of f with resect to the Lebesgue measure is denoted as f (t). Finally, letting A and B be two ositive quantities, we say that they are equivalent (A B) if there exists a ositive constant C, which may vary even in the same theorem and is indeendent of essential arameters defining A and B, such that C 1 A B CA. The case A CB is denoted by A B. For any other ossible definition or notation, we refer to the main reference books (e.g. [8], [36], [4], [41], [87], [94]). xiii

20

21 Chater 1 Introduction The main urose of this work is to unify two well-known and, a riori, unrelated theories dealing with weighted inequalities for the Hilbert transform, defined by Hf(x) = 1 π lim f(y) ε + x y dy, x y >ε whenever this limit exists almost everywhere. On the one hand, we have the Calderón- Zygmund theory of the boundedness of H on weighted Lebesgue saces. On the other hand, there is the theory develoed around the boundedness of H on classical Lorentz saces in the context of rearrangement invariant function saces. A natural unifying framework for these two settings consists on the weighted Lorentz saces Λ u(w) and Λ, u (w) defined by Lorentz in [68] and [67] as follows: { ( } 1/ Λ u(w) = f M : f Λ u (w) = (fu(t)) w(t)dt) <, (1.1) and { Λ, u (w) = f M : f Λ, u (w) = su t> } W 1/ (t)fu(t) <. (1.2) More recisely, we will study the boundedness of H on the weighted Lorentz saces: H : Λ u(w) Λ u(w), (1.3) and its weak-tye version H : Λ u(w) Λ, u (w). (1.4) Before describing our results, we resent a brief historical review on the Hilbert transform. This oerator was introduced by Hilbert in [48] and [49], and named Hilbert transform by Hardy in 1924, in honor of his contributions (see [43] and [44]). It arises in many different contexts such as the study of boundary values of the imaginary arts of analytic functions 1

22 Introduction 2 and the convergence of Fourier series. Among the classical results, we mention Riesz theorem which states that H : L L is bounded, whenever 1 < < (see [85] and [86]). Although the L 1 boundedness for H fails to be true, Kolmogorov roved in [58] the following weak-tye estimate: H : L 1 L 1,. (1.5) For further information on these toics see [4], [94], [36] and [8]. The following examles, involving weighted inequalities, have been historically relevant to motivate our study. (I) If w = 1, then (1.3) and (1.4) corresond to the boundedness and its weak-tye version H : L (u) L (u), (1.6) H : L (u) L, (u), (1.7) resectively. These inequalities arise naturally when in the Riesz theorem, the underlying measure is changed from Lebesgue measure to a general measure u. Then, the roblem is to study which are the conditions over u that allow the Hilbert transform to be bounded on L (u). This new aroach gave birth to the theory of weighted inequalities, which lays a large art in the study of boundary value roblems for Lalace s equation on Lischitz domains. Other alications include vector-valued inequalities, extraolation of oerators, and alications to certain classes of nonlinear artial differential and integral equations (see [36], [41], [56], and [57]). The study of (1.6) and (1.7) yield together with the boundedness of the Hardy-Littlewood maximal function M, on the same saces, the classical theory of the Muckenhout A weights. The sublinear oerator M, introduced by Hardy and Littlewood in [45], is defined by Mf(x) = su x I 1 f(y) dy, I I and the suremum is considered over all intervals I of the real line containing x R. For further references see [38], [36], [4], [41], and [94]. We say that u A if, for > 1, the following holds: su I ( 1 I I ) ( 1 u(x)dx I I u 1/( 1) (x)dx) 1 <, (1.8) and the suremum is considered over all intervals of the real line, and u A 1 if Mu(x) u(x) a.e x R. (1.9) Muckenhout showed in [71] that, if 1, the A condition characterizes the boundedness M : L (u) L, (u),

23 3 Introduction and if > 1 it also characterizes M : L (u) L (u). Hunt, Muckenhout, and Wheeden roved in [54] that, for 1, the A condition characterizes (1.7) and for > 1 it also characterizes (1.6). For an alternative roof of these results see [26]. For < 1 there are no weights u such that (1.6) or (1.7) hold. (II) The case u = 1 corresonds to the boundedness of the Hilbert transform on the classical Lorentz saces, solved by Sawyer in [9]. A simlified characterization of the weights for which the boundedness H : Λ (w) Λ (w) (1.1) holds, whenever >, is given in terms of the B B condition, introduced by Neugebauer in [8]. We say that w B if the following condition holds: for all r >, and (1.11) characterizes the boundedness r ( r ) r w(t) dt w(t)dt, (1.11) t M : Λ (w) Λ (w), roved in [5]. The condition w B is given by r 1 t t w(s)ds dt r w(s)ds, (1.12) for all r >. If > 1 the B B class characterizes also the weak-tye version H : Λ (w) Λ, (w), (1.13) whereas the case 1 is characterized by the B, B condition. We say that w B, if and only if M : Λ (w) Λ, (w) (1.14) is bounded. It holds that: (α) If > 1, B, = B. (β) If 1, then w B, if and only if w is quasi-concave: for every < s r <, W (r) r W (s) s. (1.15) (III) Recently, Carro, Raoso and Soria studied in [2] the analogous of relation (1.3), but for the Hardy-Littlewood maximal function, instead of H M : Λ u(w) Λ u(w),

24 Introduction 4 and the solution is the B (u) class of weights, defined as follows: ( ( J )) W u ( )) C max 1 j J W u j=1 I j ( J j=1 S j ( ) ε Ij, (1.16) S j for some ε > and for every finite family of airwise disjoint, oen intervals (I j ) J j=1, and also every family of measurable sets (S j ) J j=1, with S j I j, for every j. This class of weights recovers the well-known results in the classical cases; that is, if w = 1 then (1.16) is the A condition and if u = 1, then it is the B condition (see [2]). In the same work, the weak-tye version of the roblem was also considered M : Λ u(w) Λ, u (w). (1.17) However, the comlete geometric characterization of the estimate (1.17) was not obtained for 1. In this work, we totally solve the roblem of the boundedness (1.3) and its weak-tye version (1.4), whenever > 1 giving a unified version of the classical theories. We also characterize (1.17) by the B (u) condition, since it will be involved in the solution of (1.3) and (1.4). We will see that this solution is given in terms of conditions involving both underlying weights u and w in a rather intrinsic way. Summarizing, the main results of this thesis rove that the following statements are equivalent for > 1 (see Theorem 6.19): Theorem. If > 1, then the following statements are equivalent: (i) H : Λ u(w) Λ u(w) is bounded. (ii) H : Λ u(w) Λ, u (w) is bounded. (iii) u A, w B (iv) u A, w B and M : Λ u(w) Λ u(w) is bounded. and M : Λ u(w) Λ, u (w) is bounded. (iv) There exists ε >, such that for every finite family of airwise disjoint, oen intervals (I j ) J j=1, and every family of measurable sets (S j ) J j=1, with S j I j, for every j J, it holds that: ( ( ( min log I ) J )) W u j j=1 I ( ) j ε Ij ( ( j S j J )) max. j W u S j j=1 S j Furthermore, we reformulate our results in terms of some generalized uer and lower Boyd indices. Lerner and Pérez extended in [66] the Lorentz-Shimogaki theorem in quasi- Banach function saces, not necessarily rearrangement invariant. Motivated by their results, we define the lower Boyd index and give an extension of Boyd theorem, in the context of weighted Lorentz saces (see Theorem 6.26).

25 5 Introduction Moreover, we have solved the weak-tye boundedness of H on Λ u(w) for 1, with some extra assumtion on w (see Theorem 6.2). The chaters are organized as follows: In order to carry out this roject as a self-contained monograh, we study in Chater 2 all the basic roerties of the weighted Lorentz saces. This chater also contains a new density result: we rove that the C functions with comact suort, C c, is dense in weighted Lorentz saces Λ u(w), rovided u and w are not integrable (see Theorem 2.13). This will be imortant in order to solve technical roblems, since the Hilbert transform is well-defined on C c. In Chater 3 we summarize all the classes of weights that aear throughout this work. First we study the Muckenhout A class of weights and the A condition. Then, we study the B and B, conditions that characterize the boundedness of M on classical Lorentz saces, introducing the Hardy oerator. Since, as we have already mentioned, the B (res. B, ) condition is not sufficient for the strong-tye (res. weak-tye) boundedness of the Hilbert transform on Λ (w), we introduce and study the B condition. Next, we investigate the B (u) condition, and find some new equivalent exressions studying the asymtotic behavior of some submultillicative function at infinity (see Corollary 3.38). Finally, we define and study a new class of airs of weights AB, that combines the already known A and B classes (see Proosition 3.46 for more details). This new class of weights is involved in the study of the boundedness of the Hilbert transform on weighted Lorentz saces (see Chater 6). In Chater 4 we find necessary conditions for the weak-tye boundedness of the Hilbert transform on weighted Lorentz saces and obtain some useful consequences. If we restrict the weak-tye boundedness of the Hilbert transform, H : Λ u(w) Λ, u (w), to characteristic functions of intervals, we have that ( ) bν W u(s) ds ( bν su ( ) b> b log 1 + ν ), W u(s) ds ν b for every ν (, 1] (see Theorem 4.4). In articular, this imlies that u L 1 (R) and w L 1 (R + ) (see Proosition 4.5). We also show that, if we restrict the weak-tye boundedness of H to characteristic functions of measurable sets (see Theorem 4.8), we obtain ( ) W (u(i)) I W (u(e)), E and hence W u satisfies the doubling condition and w is quasi-concave. In articular w 2. Thus, in what follows after Corollary 4.9, we shall assume, without loss of generality, that u L 1 (R), w L 1 (R + ), and w 2.

PRIME NUMBERS AND THE RIEMANN HYPOTHESIS

PRIME NUMBERS AND THE RIEMANN HYPOTHESIS PRIME NUMBERS AND THE RIEMANN HYPOTHESIS CARL ERICKSON This minicourse has two main goals. The first is to carefully define the Riemann zeta function and exlain how it is connected with the rime numbers.

More information

SECTION 6: FIBER BUNDLES

SECTION 6: FIBER BUNDLES SECTION 6: FIBER BUNDLES In this section we will introduce the interesting class o ibrations given by iber bundles. Fiber bundles lay an imortant role in many geometric contexts. For examle, the Grassmaniann

More information

Properties of BMO functions whose reciprocals are also BMO

Properties of BMO functions whose reciprocals are also BMO Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a non-negative BMO-function w, whose reciprocal is also in BMO, belongs to p> A p,and

More information

1 Gambler s Ruin Problem

1 Gambler s Ruin Problem Coyright c 2009 by Karl Sigman 1 Gambler s Ruin Problem Let N 2 be an integer and let 1 i N 1. Consider a gambler who starts with an initial fortune of $i and then on each successive gamble either wins

More information

6.042/18.062J Mathematics for Computer Science December 12, 2006 Tom Leighton and Ronitt Rubinfeld. Random Walks

6.042/18.062J Mathematics for Computer Science December 12, 2006 Tom Leighton and Ronitt Rubinfeld. Random Walks 6.042/8.062J Mathematics for Comuter Science December 2, 2006 Tom Leighton and Ronitt Rubinfeld Lecture Notes Random Walks Gambler s Ruin Today we re going to talk about one-dimensional random walks. In

More information

Stochastic Derivation of an Integral Equation for Probability Generating Functions

Stochastic Derivation of an Integral Equation for Probability Generating Functions Journal of Informatics and Mathematical Sciences Volume 5 (2013), Number 3,. 157 163 RGN Publications htt://www.rgnublications.com Stochastic Derivation of an Integral Equation for Probability Generating

More information

PARAMETER CHOICE IN BANACH SPACE REGULARIZATION UNDER VARIATIONAL INEQUALITIES

PARAMETER CHOICE IN BANACH SPACE REGULARIZATION UNDER VARIATIONAL INEQUALITIES PARAMETER CHOICE IN BANACH SPACE REGULARIZATION UNDER VARIATIONAL INEQUALITIES BERND HOFMANN AND PETER MATHÉ Abstract. The authors study arameter choice strategies for Tikhonov regularization of nonlinear

More information

Universiteit-Utrecht. Department. of Mathematics. Optimal a priori error bounds for the. Rayleigh-Ritz method

Universiteit-Utrecht. Department. of Mathematics. Optimal a priori error bounds for the. Rayleigh-Ritz method Universiteit-Utrecht * Deartment of Mathematics Otimal a riori error bounds for the Rayleigh-Ritz method by Gerard L.G. Sleijen, Jaser van den Eshof, and Paul Smit Prerint nr. 1160 Setember, 2000 OPTIMAL

More information

ENERGY IDENTITY FOR THE MAPS FROM A SURFACE WITH TENSION FIELD BOUNDED IN L p

ENERGY IDENTITY FOR THE MAPS FROM A SURFACE WITH TENSION FIELD BOUNDED IN L p Available at: htt://ublications.ict.it IC/2009/083 United Nations Educational, Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL

More information

Fourier Analysis of Stochastic Processes

Fourier Analysis of Stochastic Processes Fourier Analysis of Stochastic Processes. Time series Given a discrete time rocess ( n ) nz, with n :! R or n :! C 8n Z, we de ne time series a realization of the rocess, that is to say a series (x n )

More information

A Modified Measure of Covert Network Performance

A Modified Measure of Covert Network Performance A Modified Measure of Covert Network Performance LYNNE L DOTY Marist College Deartment of Mathematics Poughkeesie, NY UNITED STATES lynnedoty@maristedu Abstract: In a covert network the need for secrecy

More information

Multiperiod Portfolio Optimization with General Transaction Costs

Multiperiod Portfolio Optimization with General Transaction Costs Multieriod Portfolio Otimization with General Transaction Costs Victor DeMiguel Deartment of Management Science and Oerations, London Business School, London NW1 4SA, UK, avmiguel@london.edu Xiaoling Mei

More information

Course 221: Analysis Academic year , First Semester

Course 221: Analysis Academic year , First Semester Course 221: Analysis Academic year 2007-08, First Semester David R. Wilkins Copyright c David R. Wilkins 1989 2007 Contents 1 Basic Theorems of Real Analysis 1 1.1 The Least Upper Bound Principle................

More information

2.1 Simple & Compound Propositions

2.1 Simple & Compound Propositions 2.1 Simle & Comound Proositions 1 2.1 Simle & Comound Proositions Proositional Logic can be used to analyse, simlify and establish the equivalence of statements. A knowledge of logic is essential to the

More information

9 More on differentiation

9 More on differentiation Tel Aviv University, 2013 Measure and category 75 9 More on differentiation 9a Finite Taylor expansion............... 75 9b Continuous and nowhere differentiable..... 78 9c Differentiable and nowhere monotone......

More information

A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS. In memory of Rou-Huai Wang

A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS. In memory of Rou-Huai Wang A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS XAVIER CABRÉ, MANEL SANCHÓN, AND JOEL SPRUCK In memory of Rou-Huai Wang 1. Introduction In this note we consider semistable

More information

An important observation in supply chain management, known as the bullwhip effect,

An important observation in supply chain management, known as the bullwhip effect, Quantifying the Bullwhi Effect in a Simle Suly Chain: The Imact of Forecasting, Lead Times, and Information Frank Chen Zvi Drezner Jennifer K. Ryan David Simchi-Levi Decision Sciences Deartment, National

More information

Besov Regularity of Stochastic Partial Differential Equations on Bounded Lipschitz Domains

Besov Regularity of Stochastic Partial Differential Equations on Bounded Lipschitz Domains Dissertation Besov Regularity of Stochastic Partial Differential Equations on Bounded Lischitz Domains Petru A. Cioica 23 Besov Regularity of Stochastic Partial Differential Equations on Bounded Lischitz

More information

A MIXED TYPE IDENTIFICATION PROBLEM RELATED TO A PHASE-FIELD MODEL WITH MEMORY

A MIXED TYPE IDENTIFICATION PROBLEM RELATED TO A PHASE-FIELD MODEL WITH MEMORY Guidetti, D. and Lorenzi, A. Osaka J. Math. 44 (27), 579 613 A MIXED TYPE IDENTIFICATION PROBLEM RELATED TO A PHASE-FIELD MODEL WITH MEMORY DAVIDE GUIDETTI and ALFREDO LORENZI (Received January 23, 26,

More information

BANACH AND HILBERT SPACE REVIEW

BANACH AND HILBERT SPACE REVIEW BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but

More information

The Heat Equation. Lectures INF2320 p. 1/88

The Heat Equation. Lectures INF2320 p. 1/88 The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)

More information

Math 5330 Spring Notes Prime Numbers

Math 5330 Spring Notes Prime Numbers Math 5330 Sring 206 Notes Prime Numbers The study of rime numbers is as old as mathematics itself. This set of notes has a bunch of facts about rimes, or related to rimes. Much of this stuff is old dating

More information

FREQUENCIES OF SUCCESSIVE PAIRS OF PRIME RESIDUES

FREQUENCIES OF SUCCESSIVE PAIRS OF PRIME RESIDUES FREQUENCIES OF SUCCESSIVE PAIRS OF PRIME RESIDUES AVNER ASH, LAURA BELTIS, ROBERT GROSS, AND WARREN SINNOTT Abstract. We consider statistical roerties of the sequence of ordered airs obtained by taking

More information

DISTRIBUTIONS AND FOURIER TRANSFORM

DISTRIBUTIONS AND FOURIER TRANSFORM DISTRIBUTIONS AND FOURIER TRANSFORM MIKKO SALO Introduction. The theory of distributions, or generalized functions, provides a unified framework for performing standard calculus operations on nonsmooth

More information

SOME PROPERTIES OF EXTENSIONS OF SMALL DEGREE OVER Q. 1. Quadratic Extensions

SOME PROPERTIES OF EXTENSIONS OF SMALL DEGREE OVER Q. 1. Quadratic Extensions SOME PROPERTIES OF EXTENSIONS OF SMALL DEGREE OVER Q TREVOR ARNOLD Abstract This aer demonstrates a few characteristics of finite extensions of small degree over the rational numbers Q It comrises attemts

More information

Complex Conjugation and Polynomial Factorization

Complex Conjugation and Polynomial Factorization Comlex Conjugation and Polynomial Factorization Dave L. Renfro Summer 2004 Central Michigan University I. The Remainder Theorem Let P (x) be a olynomial with comlex coe cients 1 and r be a comlex number.

More information

An Analysis of Reliable Classifiers through ROC Isometrics

An Analysis of Reliable Classifiers through ROC Isometrics An Analysis of Reliable Classifiers through ROC Isometrics Stijn Vanderlooy s.vanderlooy@cs.unimaas.nl Ida G. Srinkhuizen-Kuyer kuyer@cs.unimaas.nl Evgueni N. Smirnov smirnov@cs.unimaas.nl MICC-IKAT, Universiteit

More information

POISSON PROCESSES. Chapter 2. 2.1 Introduction. 2.1.1 Arrival processes

POISSON PROCESSES. Chapter 2. 2.1 Introduction. 2.1.1 Arrival processes Chater 2 POISSON PROCESSES 2.1 Introduction A Poisson rocess is a simle and widely used stochastic rocess for modeling the times at which arrivals enter a system. It is in many ways the continuous-time

More information

arxiv:0711.4143v1 [hep-th] 26 Nov 2007

arxiv:0711.4143v1 [hep-th] 26 Nov 2007 Exonentially localized solutions of the Klein-Gordon equation arxiv:711.4143v1 [he-th] 26 Nov 27 M. V. Perel and I. V. Fialkovsky Deartment of Theoretical Physics, State University of Saint-Petersburg,

More information

Problem Set. Problem Set #2. Math 5322, Fall December 3, 2001 ANSWERS

Problem Set. Problem Set #2. Math 5322, Fall December 3, 2001 ANSWERS Problem Set Problem Set #2 Math 5322, Fall 2001 December 3, 2001 ANSWERS i Problem 1. [Problem 18, page 32] Let A P(X) be an algebra, A σ the collection of countable unions of sets in A, and A σδ the collection

More information

An optimal transportation problem with import/export taxes on the boundary

An optimal transportation problem with import/export taxes on the boundary An optimal transportation problem with import/export taxes on the boundary Julián Toledo Workshop International sur les Mathématiques et l Environnement Essaouira, November 2012..................... Joint

More information

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 425, PRACTICE FINAL EXAM SOLUTIONS. MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

More information

Large Sample Theory. Consider a sequence of random variables Z 1, Z 2,..., Z n. Convergence in probability: Z n

Large Sample Theory. Consider a sequence of random variables Z 1, Z 2,..., Z n. Convergence in probability: Z n Large Samle Theory In statistics, we are interested in the roerties of articular random variables (or estimators ), which are functions of our data. In ymtotic analysis, we focus on describing the roerties

More information

Confidence Intervals for Capture-Recapture Data With Matching

Confidence Intervals for Capture-Recapture Data With Matching Confidence Intervals for Cature-Recature Data With Matching Executive summary Cature-recature data is often used to estimate oulations The classical alication for animal oulations is to take two samles

More information

Riesz-Fredhölm Theory

Riesz-Fredhölm Theory Riesz-Fredhölm Theory T. Muthukumar tmk@iitk.ac.in Contents 1 Introduction 1 2 Integral Operators 1 3 Compact Operators 7 4 Fredhölm Alternative 14 Appendices 18 A Ascoli-Arzelá Result 18 B Normed Spaces

More information

Lectures on the Dirichlet Class Number Formula for Imaginary Quadratic Fields. Tom Weston

Lectures on the Dirichlet Class Number Formula for Imaginary Quadratic Fields. Tom Weston Lectures on the Dirichlet Class Number Formula for Imaginary Quadratic Fields Tom Weston Contents Introduction 4 Chater 1. Comlex lattices and infinite sums of Legendre symbols 5 1. Comlex lattices 5

More information

A STABILITY RESULT ON MUCKENHOUPT S WEIGHTS

A STABILITY RESULT ON MUCKENHOUPT S WEIGHTS Publicacions Matemàtiques, Vol 42 (998), 53 63. A STABILITY RESULT ON MUCKENHOUPT S WEIGHTS Juha Kinnunen Abstract We prove that Muckenhoupt s A -weights satisfy a reverse Hölder inequality with an explicit

More information

TRANSCENDENTAL NUMBERS

TRANSCENDENTAL NUMBERS TRANSCENDENTAL NUMBERS JEREMY BOOHER. Introduction The Greeks tried unsuccessfully to square the circle with a comass and straightedge. In the 9th century, Lindemann showed that this is imossible by demonstrating

More information

DFG-Schwerpunktprogramm 1324

DFG-Schwerpunktprogramm 1324 DFG-Schwerunktrogramm 1324 Extraktion quantifizierbarer Information aus komlexen Systemen Satial Besov Regularity for Stochastic Partial Differential Equations on Lischitz Domains P. A. Cioica, S. Dahlke,

More information

MA651 Topology. Lecture 6. Separation Axioms.

MA651 Topology. Lecture 6. Separation Axioms. MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples

More information

NOTES ON MEASURE THEORY. M. Papadimitrakis Department of Mathematics University of Crete. Autumn of 2004

NOTES ON MEASURE THEORY. M. Papadimitrakis Department of Mathematics University of Crete. Autumn of 2004 NOTES ON MEASURE THEORY M. Papadimitrakis Department of Mathematics University of Crete Autumn of 2004 2 Contents 1 σ-algebras 7 1.1 σ-algebras............................... 7 1.2 Generated σ-algebras.........................

More information

Discrete Math I Practice Problems for Exam I

Discrete Math I Practice Problems for Exam I Discrete Math I Practice Problems for Exam I The ucoming exam on Thursday, January 12 will cover the material in Sections 1 through 6 of Chater 1. There may also be one question from Section 7. If there

More information

A Class of Three-Weight Cyclic Codes

A Class of Three-Weight Cyclic Codes A Class of Three-Weight Cyclic Codes Zhengchun Zhou Cunsheng Ding Abstract arxiv:30.0569v [cs.it] 4 Feb 03 Cyclic codes are a subclass of linear codes have alications in consumer electronics, data storage

More information

Chapt.12: Orthogonal Functions and Fourier series

Chapt.12: Orthogonal Functions and Fourier series Chat.12: Orthogonal Functions and Fourier series J.-P. Gabardo gabardo@mcmaster.ca Deartment of Mathematics & Statistics McMaster University Hamilton, ON, Canada Lecture: January 10, 2011. 1/3 12.1:Orthogonal

More information

Sequences and Convergence in Metric Spaces

Sequences and Convergence in Metric Spaces Sequences and Convergence in Metric Spaces Definition: A sequence in a set X (a sequence of elements of X) is a function s : N X. We usually denote s(n) by s n, called the n-th term of s, and write {s

More information

Notes on weak convergence (MAT Spring 2006)

Notes on weak convergence (MAT Spring 2006) Notes on weak convergence (MAT4380 - Spring 2006) Kenneth H. Karlsen (CMA) February 2, 2006 1 Weak convergence In what follows, let denote an open, bounded, smooth subset of R N with N 2. We assume 1 p

More information

x if x 0, x if x < 0.

x if x 0, x if x < 0. Chapter 3 Sequences In this chapter, we discuss sequences. We say what it means for a sequence to converge, and define the limit of a convergent sequence. We begin with some preliminary results about the

More information

arxiv:1505.00699v1 [math.ap] 4 May 2015

arxiv:1505.00699v1 [math.ap] 4 May 2015 arxiv:1505.00699v1 [math.ap] 4 May 2015 MATRIX A EIGHTS, DEGENERATE SOOLEV SPACES, AND MAPPINGS OF FINITE DISTORTION DAVID CRUZ-URIE, SFO, KAE MOEN, AND SCOTT RODNEY Abstract. e study degenerate Sobolev

More information

lecture 25: Gaussian quadrature: nodes, weights; examples; extensions

lecture 25: Gaussian quadrature: nodes, weights; examples; extensions 38 lecture 25: Gaussian quadrature: nodes, weights; examles; extensions 3.5 Comuting Gaussian quadrature nodes and weights When first aroaching Gaussian quadrature, the comlicated characterization of the

More information

Double Sequences and Double Series

Double Sequences and Double Series Double Sequences and Double Series Eissa D. Habil Islamic University of Gaza P.O. Box 108, Gaza, Palestine E-mail: habil@iugaza.edu Abstract This research considers two traditional important questions,

More information

Chapter 3. Special Techniques for Calculating Potentials. r ( r ' )dt ' ( ) 2

Chapter 3. Special Techniques for Calculating Potentials. r ( r ' )dt ' ( ) 2 Chater 3. Secial Techniues for Calculating Potentials Given a stationary charge distribution r( r ) we can, in rincile, calculate the electric field: E ( r ) Ú Dˆ r Dr r ( r ' )dt ' 2 where Dr r '-r. This

More information

On the existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems

On the existence of multiple principal eigenvalues for some indefinite linear eigenvalue problems RACSAM Rev. R. Acad. Cien. Serie A. Mat. VOL. 97 (3), 2003, pp. 461 466 Matemática Aplicada / Applied Mathematics Comunicación Preliminar / Preliminary Communication On the existence of multiple principal

More information

and s n (x) f(x) for all x and s.t. s n is measurable if f is. REAL ANALYSIS Measures. A (positive) measure on a measurable space

and s n (x) f(x) for all x and s.t. s n is measurable if f is. REAL ANALYSIS Measures. A (positive) measure on a measurable space RAL ANALYSIS A survey of MA 641-643, UAB 1999-2000 M. Griesemer Throughout these notes m denotes Lebesgue measure. 1. Abstract Integration σ-algebras. A σ-algebra in X is a non-empty collection of subsets

More information

The Cubic Equation. Urs Oswald. 11th January 2009

The Cubic Equation. Urs Oswald. 11th January 2009 The Cubic Equation Urs Oswald th January 009 As is well known, equations of degree u to 4 can be solved in radicals. The solutions can be obtained, aart from the usual arithmetic oerations, by the extraction

More information

The Online Freeze-tag Problem

The Online Freeze-tag Problem The Online Freeze-tag Problem Mikael Hammar, Bengt J. Nilsson, and Mia Persson Atus Technologies AB, IDEON, SE-3 70 Lund, Sweden mikael.hammar@atus.com School of Technology and Society, Malmö University,

More information

REAL ANALYSIS LECTURE NOTES: 1.4 OUTER MEASURE

REAL ANALYSIS LECTURE NOTES: 1.4 OUTER MEASURE REAL ANALYSIS LECTURE NOTES: 1.4 OUTER MEASURE CHRISTOPHER HEIL 1.4.1 Introduction We will expand on Section 1.4 of Folland s text, which covers abstract outer measures also called exterior measures).

More information

6. Metric spaces. In this section we review the basic facts about metric spaces. d : X X [0, )

6. Metric spaces. In this section we review the basic facts about metric spaces. d : X X [0, ) 6. Metric spaces In this section we review the basic facts about metric spaces. Definitions. A metric on a non-empty set X is a map with the following properties: d : X X [0, ) (i) If x, y X are points

More information

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,

More information

United Arab Emirates University College of Sciences Department of Mathematical Sciences HOMEWORK 1 SOLUTION. Section 10.1 Vectors in the Plane

United Arab Emirates University College of Sciences Department of Mathematical Sciences HOMEWORK 1 SOLUTION. Section 10.1 Vectors in the Plane United Arab Emirates University College of Sciences Deartment of Mathematical Sciences HOMEWORK 1 SOLUTION Section 10.1 Vectors in the Plane Calculus II for Engineering MATH 110 SECTION 0 CRN 510 :00 :00

More information

A Simple Model of Pricing, Markups and Market. Power Under Demand Fluctuations

A Simple Model of Pricing, Markups and Market. Power Under Demand Fluctuations A Simle Model of Pricing, Markus and Market Power Under Demand Fluctuations Stanley S. Reynolds Deartment of Economics; University of Arizona; Tucson, AZ 85721 Bart J. Wilson Economic Science Laboratory;

More information

Automatic Search for Correlated Alarms

Automatic Search for Correlated Alarms Automatic Search for Correlated Alarms Klaus-Dieter Tuchs, Peter Tondl, Markus Radimirsch, Klaus Jobmann Institut für Allgemeine Nachrichtentechnik, Universität Hannover Aelstraße 9a, 0167 Hanover, Germany

More information

to appear in Birkäuser Advanced courses in Mathematics C.R.M. Barcelona A COURSE ON SINGULAR INTEGRALS AND WEIGHTS

to appear in Birkäuser Advanced courses in Mathematics C.R.M. Barcelona A COURSE ON SINGULAR INTEGRALS AND WEIGHTS to appear in Birkäuser Advanced courses in Mathematics C.R.M. Barcelona A COURSE ON SINGULAR INTEGRALS AND WEIGHTS CARLOS PÉREZ Abstract. This article is an expanded version of the material covered in

More information

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 J. Zhang Institute of Applied Mathematics, Chongqing University of Posts and Telecommunications, Chongqing

More information

X How to Schedule a Cascade in an Arbitrary Graph

X How to Schedule a Cascade in an Arbitrary Graph X How to Schedule a Cascade in an Arbitrary Grah Flavio Chierichetti, Cornell University Jon Kleinberg, Cornell University Alessandro Panconesi, Saienza University When individuals in a social network

More information

Effect Sizes Based on Means

Effect Sizes Based on Means CHAPTER 4 Effect Sizes Based on Means Introduction Raw (unstardized) mean difference D Stardized mean difference, d g Resonse ratios INTRODUCTION When the studies reort means stard deviations, the referred

More information

An example of a computable

An example of a computable An example of a computable absolutely normal number Verónica Becher Santiago Figueira Abstract The first example of an absolutely normal number was given by Sierpinski in 96, twenty years before the concept

More information

On Multicast Capacity and Delay in Cognitive Radio Mobile Ad-hoc Networks

On Multicast Capacity and Delay in Cognitive Radio Mobile Ad-hoc Networks On Multicast Caacity and Delay in Cognitive Radio Mobile Ad-hoc Networks Jinbei Zhang, Yixuan Li, Zhuotao Liu, Fan Wu, Feng Yang, Xinbing Wang Det of Electronic Engineering Det of Comuter Science and Engineering

More information

A Note on Integer Factorization Using Lattices

A Note on Integer Factorization Using Lattices A Note on Integer Factorization Using Lattices Antonio Vera To cite this version: Antonio Vera A Note on Integer Factorization Using Lattices [Research Reort] 2010, 12 HAL Id: inria-00467590

More information

The Henstock-Kurzweil-Stieltjes type integral for real functions on a fractal subset of the real line

The Henstock-Kurzweil-Stieltjes type integral for real functions on a fractal subset of the real line The Henstock-Kurzweil-Stieltjes type integral for real functions on a fractal subset of the real line D. Bongiorno, G. Corrao Dipartimento di Ingegneria lettrica, lettronica e delle Telecomunicazioni,

More information

Systems with Persistent Memory: the Observation Inequality Problems and Solutions

Systems with Persistent Memory: the Observation Inequality Problems and Solutions Chapter 6 Systems with Persistent Memory: the Observation Inequality Problems and Solutions Facts that are recalled in the problems wt) = ut) + 1 c A 1 s ] R c t s)) hws) + Ks r)wr)dr ds. 6.1) w = w +

More information

E (log p)2 + Elogplogq = 2xlogx + 0(x), (1)

E (log p)2 + Elogplogq = 2xlogx + 0(x), (1) 374 MA THEMA TICS: P. ERD6iS PROC. N. A. S. 2K 21/8(kk)-1/6 r) where ( is a rime) and w = 6 if = 3, w =2 if> 3;. a runs through the P -21 quadratic residues of that lie between 0 and, while A runs through

More information

SQUARE GRID POINTS COVERAGED BY CONNECTED SOURCES WITH COVERAGE RADIUS OF ONE ON A TWO-DIMENSIONAL GRID

SQUARE GRID POINTS COVERAGED BY CONNECTED SOURCES WITH COVERAGE RADIUS OF ONE ON A TWO-DIMENSIONAL GRID International Journal of Comuter Science & Information Technology (IJCSIT) Vol 6, No 4, August 014 SQUARE GRID POINTS COVERAGED BY CONNECTED SOURCES WITH COVERAGE RADIUS OF ONE ON A TWO-DIMENSIONAL GRID

More information

Assignment 9; Due Friday, March 17

Assignment 9; Due Friday, March 17 Assignment 9; Due Friday, March 17 24.4b: A icture of this set is shown below. Note that the set only contains oints on the lines; internal oints are missing. Below are choices for U and V. Notice that

More information

Extremal equilibria for reaction diffusion equations in bounded domains and applications.

Extremal equilibria for reaction diffusion equations in bounded domains and applications. Extremal equilibria for reaction diffusion equations in bounded domains and applications. Aníbal Rodríguez-Bernal Alejandro Vidal-López Departamento de Matemática Aplicada Universidad Complutense de Madrid,

More information

THE PRIME NUMBER THEOREM

THE PRIME NUMBER THEOREM THE PRIME NUMBER THEOREM NIKOLAOS PATTAKOS. introduction In number theory, this Theorem describes the asymptotic distribution of the prime numbers. The Prime Number Theorem gives a general description

More information

Infinite product spaces

Infinite product spaces Chapter 7 Infinite product spaces So far we have talked a lot about infinite sequences of independent random variables but we have never shown how to construct such sequences within the framework of probability/measure

More information

Cylinder Maps and the Schwarzian

Cylinder Maps and the Schwarzian Cylinder Maps and the Schwarzian John Milnor Stony Brook University (www.math.sunysb.edu) Bremen June 16, 2008 Cylinder Maps 1 work with Araceli Bonifant Let C denote the cylinder (R/Z) I. (.5, 1) fixed

More information

Chapter 5. Banach Spaces

Chapter 5. Banach Spaces 9 Chapter 5 Banach Spaces Many linear equations may be formulated in terms of a suitable linear operator acting on a Banach space. In this chapter, we study Banach spaces and linear operators acting on

More information

Piracy and Network Externality An Analysis for the Monopolized Software Industry

Piracy and Network Externality An Analysis for the Monopolized Software Industry Piracy and Network Externality An Analysis for the Monoolized Software Industry Ming Chung Chang Deartment of Economics and Graduate Institute of Industrial Economics mcchang@mgt.ncu.edu.tw Chiu Fen Lin

More information

Computational Finance The Martingale Measure and Pricing of Derivatives

Computational Finance The Martingale Measure and Pricing of Derivatives 1 The Martingale Measure 1 Comutational Finance The Martingale Measure and Pricing of Derivatives 1 The Martingale Measure The Martingale measure or the Risk Neutral robabilities are a fundamental concet

More information

Mathematics for Economics (Part I) Note 5: Convex Sets and Concave Functions

Mathematics for Economics (Part I) Note 5: Convex Sets and Concave Functions Natalia Lazzati Mathematics for Economics (Part I) Note 5: Convex Sets and Concave Functions Note 5 is based on Madden (1986, Ch. 1, 2, 4 and 7) and Simon and Blume (1994, Ch. 13 and 21). Concave functions

More information

Price Elasticity of Demand MATH 104 and MATH 184 Mark Mac Lean (with assistance from Patrick Chan) 2011W

Price Elasticity of Demand MATH 104 and MATH 184 Mark Mac Lean (with assistance from Patrick Chan) 2011W Price Elasticity of Demand MATH 104 and MATH 184 Mark Mac Lean (with assistance from Patrick Chan) 2011W The rice elasticity of demand (which is often shortened to demand elasticity) is defined to be the

More information

Journal of Computational and Applied Mathematics

Journal of Computational and Applied Mathematics Journal of Comutational and Alied Mathematics 230 2009 69 82 Contents lists available at ScienceDirect Journal of Comutational and Alied Mathematics journal homeage: www.elsevier.com/locate/cam Proerties

More information

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO NIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Examination in: Trial exam Partial differential equations and Sobolev spaces I. Day of examination: November 18. 2009. Examination hours:

More information

ENFORCING SAFETY PROPERTIES IN WEB APPLICATIONS USING PETRI NETS

ENFORCING SAFETY PROPERTIES IN WEB APPLICATIONS USING PETRI NETS ENFORCING SAFETY PROPERTIES IN WEB APPLICATIONS USING PETRI NETS Liviu Grigore Comuter Science Deartment University of Illinois at Chicago Chicago, IL, 60607 lgrigore@cs.uic.edu Ugo Buy Comuter Science

More information

CHAPTER 5. Product Measures

CHAPTER 5. Product Measures 54 CHAPTER 5 Product Measures Given two measure spaces, we may construct a natural measure on their Cartesian product; the prototype is the construction of Lebesgue measure on R 2 as the product of Lebesgue

More information

A 60,000 DIGIT PRIME NUMBER OF THE FORM x 2 + x Introduction Stark-Heegner Theorem. Let d > 0 be a square-free integer then Q( d) has

A 60,000 DIGIT PRIME NUMBER OF THE FORM x 2 + x Introduction Stark-Heegner Theorem. Let d > 0 be a square-free integer then Q( d) has A 60,000 DIGIT PRIME NUMBER OF THE FORM x + x + 4. Introduction.. Euler s olynomial. Euler observed that f(x) = x + x + 4 takes on rime values for 0 x 39. Even after this oint f(x) takes on a high frequency

More information

Metric Spaces. Chapter 7. 7.1. Metrics

Metric Spaces. Chapter 7. 7.1. Metrics Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some

More information

A new continuous dependence result for impulsive retarded functional differential equations

A new continuous dependence result for impulsive retarded functional differential equations CADERNOS DE MATEMÁTICA 11, 37 47 May (2010) ARTIGO NÚMERO SMA#324 A new continuous dependence result for impulsive retarded functional differential equations M. Federson * Instituto de Ciências Matemáticas

More information

More Properties of Limits: Order of Operations

More Properties of Limits: Order of Operations math 30 day 5: calculating its 6 More Proerties of Limits: Order of Oerations THEOREM 45 (Order of Oerations, Continued) Assume that!a f () L and that m and n are ositive integers Then 5 (Power)!a [ f

More information

) + ˆf (n) sin( 2πnt. = 2 u x 2, t > 0, 0 < x < 1. u(0, t) = u(1, t) = 0, t 0. (x, 0) = 0 0 < x < 1.

) + ˆf (n) sin( 2πnt. = 2 u x 2, t > 0, 0 < x < 1. u(0, t) = u(1, t) = 0, t 0. (x, 0) = 0 0 < x < 1. Introduction to Fourier analysis This semester, we re going to study various aspects of Fourier analysis. In particular, we ll spend some time reviewing and strengthening the results from Math 425 on Fourier

More information

3 σ-algebras. Solutions to Problems

3 σ-algebras. Solutions to Problems 3 σ-algebras. Solutions to Problems 3.1 3.12 Problem 3.1 (i It is clearly enough to show that A, B A = A B A, because the case of N sets follows from this by induction, the induction step being A 1...

More information

The Magnus-Derek Game

The Magnus-Derek Game The Magnus-Derek Game Z. Nedev S. Muthukrishnan Abstract We introduce a new combinatorial game between two layers: Magnus and Derek. Initially, a token is laced at osition 0 on a round table with n ositions.

More information

where a, b, c, and d are constants with a 0, and x is measured in radians. (π radians =

where a, b, c, and d are constants with a 0, and x is measured in radians. (π radians = Introduction to Modeling 3.6-1 3.6 Sine and Cosine Functions The general form of a sine or cosine function is given by: f (x) = asin (bx + c) + d and f(x) = acos(bx + c) + d where a, b, c, and d are constants

More information

As we have seen, there is a close connection between Legendre symbols of the form

As we have seen, there is a close connection between Legendre symbols of the form Gauss Sums As we have seen, there is a close connection between Legendre symbols of the form 3 and cube roots of unity. Secifically, if is a rimitive cube root of unity, then 2 ± i 3 and hence 2 2 3 In

More information

Point Location. Preprocess a planar, polygonal subdivision for point location queries. p = (18, 11)

Point Location. Preprocess a planar, polygonal subdivision for point location queries. p = (18, 11) Point Location Prerocess a lanar, olygonal subdivision for oint location ueries. = (18, 11) Inut is a subdivision S of comlexity n, say, number of edges. uild a data structure on S so that for a uery oint

More information

The Economics of the Cloud: Price Competition and Congestion

The Economics of the Cloud: Price Competition and Congestion Submitted to Oerations Research manuscrit (Please, rovide the manuscrit number!) Authors are encouraged to submit new aers to INFORMS journals by means of a style file temlate, which includes the journal

More information

Nonparametric adaptive age replacement with a one-cycle criterion

Nonparametric adaptive age replacement with a one-cycle criterion Nonparametric adaptive age replacement with a one-cycle criterion P. Coolen-Schrijner, F.P.A. Coolen Department of Mathematical Sciences University of Durham, Durham, DH1 3LE, UK e-mail: Pauline.Schrijner@durham.ac.uk

More information

Mathematics for Econometrics, Fourth Edition

Mathematics for Econometrics, Fourth Edition Mathematics for Econometrics, Fourth Edition Phoebus J. Dhrymes 1 July 2012 1 c Phoebus J. Dhrymes, 2012. Preliminary material; not to be cited or disseminated without the author s permission. 2 Contents

More information

Weak topologies. David Lecomte. May 23, 2006

Weak topologies. David Lecomte. May 23, 2006 Weak topologies David Lecomte May 3, 006 1 Preliminaries from general topology In this section, we are given a set X, a collection of topological spaces (Y i ) i I and a collection of maps (f i ) i I such

More information