PRIME NUMBERS AND THE RIEMANN HYPOTHESIS


 Everett Gray
 1 years ago
 Views:
Transcription
1 PRIME NUMBERS AND THE RIEMANN HYPOTHESIS CARL ERICKSON This minicourse has two main goals. The first is to carefully define the Riemann zeta function and exlain how it is connected with the rime numbers. The second is to elucidate the Riemann Hyothesis, a famous conjecture in number theory, through its imlications for the distribution of the rime numbers.. The Riemann Zeta Function Let C denote the comlex numbers. They form a two dimensional real vector sace sanned by and i where i is a fixed square root of, that is, C = {x + iy : x, y R}. Definition. The Riemann zeta function is the function of a comlex variable ζ(s) := + s 2 + s 3 + = n s, s C. s It is conventional to write s = σ + it where s = σ + it and σ, t R While this definition may seem straightforward, erhas you ve not thought of what comlex owers are before. We are robably comfortable with integral owers of a comlex number we do this in PROMYS at least in the case of Z[i] C but it is by no means obvious what a comlex ower of a real number should be. While more could certainly said, we ll aeal to standard rules of exonentials and the Euler identity e iθ = cos θ + i sin θ, for θ R. Then for n R we have that n s = n σ it = n σ n it = n σ e it log n = n σ( cos( t log n) + i sin( t log n) ). We note that by standard trigonometric identities, the quantity in the rightmost arentheses has absolute value. Thus the mantra is the the real art of the exonent controls the magnitude of an exonential, while the imaginary art of the exonent controls the angle of the ray drawn from the origin to the result. This is like the olar form of comlex numbers, i.e. an element of C may be written as n= re iθ, where r R 0, θ [0, 2π). This way of writing a comlex number is unique unless r = 0. Now that we understand what each term in the Riemann zeta function s definition means, the next thing that we must ask is whether or for which s C the sum defining ζ(s) converges. A useful definition for us is the following Date: July 23, 2008 (last corrected January 4, 203).
2 Definition 2. Let (a i ) C be a sequence of comlex numbers. We say that the sum converges absolutely or is absolutely convergent rovided that the sum a i converges in R, where denotes the comlex absolute value. i= i= Examle 3. The sequence (a i ) i defined by a i = ( ) i+ /i converges in C but is not absolutely convergent. Absolute convergence is useful because of the following Proosition 4. If a sum is absolutely convergent, then it is convergent. a i Proof. Exercise. Alying the idea of absolute convergence and the fact from calculus class that for σ R the sum n n σ converges for σ >, we deduce that ζ(s) converges for σ >. We might ask if ζ(s) converges when σ =, or erhas for some σ <. However, for s =, we find that the zeta function gives the harmonic series, which does not converge. Therefore the statement that ζ(s) converges for σ > is best ossible. 2. The Riemann Zeta Function and the Primes Why would one think that the rimes had anything to do with this function? Well, Euler was fond of writing such equalities as = ( ) ( ) ( ) + as a roof of the infinitude of the rimes. We can quickly make this more rigorous. As a consequence of unique rime factorization, we can write the zeta function (in its region of absolute convergence) as ζ(s) = + s 2 + s 3 + s 4 + s 5 + s 6 + s 7 + s = ( ) ( ) ( ) + s s s s s s = = k=0 ks ( s ), 2
3 where the last equality alies the geometric series formula i=0 ri = ( r) for r < and signifies a roduct over the rimes in N. As the equality on the second line follows from unique rime factorization, we can say that the equation ζ(s) = ( ) s is an analytic statement of unique rime factorization. It is known as the Euler roduct. This gives us a first examle of a connection between the zeta function and the rimes. Now lets take the limit of ζ(s) as s +, that is, as s aroaches from the right along the real line. Clearly this limit does not converge, as we know that the harmonic series diverges. Yet the limit of each factor in the Euler roduct is the real number ( ) =. Since the roduct of these real numbers over the rimes diverges, we may then conclude the following Theorem 5. There are infinitely many rimes. Thus using calculus concets and the unique rime factorization theorem, the zeta function has yielded another roof of the most ancient theorem about the rimes. This is another sign that the zeta function and the rimes are connected. The Euler roduct may also be alied to solve this roblem. Exercise 6. Call a ositive integer m nth ower free rovided that for all l Z +, l n m = l =. Now for x R + and integers n 2 define f n (x) as Prove that for integers n 2, f n (x) = #{m Z + : m x and m is nth ower free}. f n (x) lim x x = ζ(n). Ok, what else can we find out about the rimes by alying calculus concets to the Euler roduct? Take the (modified) Taylor series for the log function at, that is, the series log( x) = n= x n n x2 = x 2 x3, for x C, x <. 3 Alying this to the Euler roduct for the zeta function we find that log ζ(s) = log ( ) = log( s ) s = = m ms m= s + ( m=2 3 ). m ms
4 Now try you hand at bounding sums in the following Exercise 7. The sum on in the arentheses in the final equality converges for s. This has a very leasant consequence. Corollary 8. The sum of the recirocals of the rimes diverges. Proof. Consider the equation for log ζ(s) above as s +. We know that log ζ(s) + because lim s + ζ(s) = +. However, the quantity on the right hand side in arentheses remains bounded as s +. Therefore the sum s becomes arbitrarily large as s +, allowing us to conclude that the sum does not converge. Using more subtle roerties of the zeta function involving techniques like those that will be black boxed later in this talk, one can rove that log log x. x 3. The Proerties of the Zeta Function In the revious talk this evening, Josh discussed on the Chebyshev bounds on the rime counting function π(x) := x where varies over rime numbers no more than x, and the related function ψ(x) := n x log where ranges over rimes and n ranges over ositive integers such that n x. We wil rewrite the second function as ψ(x) = n x Λ(n), where Λ is the von Mangoldt function defined by { log if n = Λ(n) = m for some m 0 otherwise. Be sure to observe that the two formulations of ψ(x) are equivalent. Mathematicians in the nineteenth century worked toward the rime number theorem, which is a statement about the asymtotic behavior of π(x). We often use the symbol to describe asymtotics. It has the following meaning: let f(x) and g(x) be two comlex functions of a real variable x. We say that rovided that f(x) g(x) lim x + f(x) g(x) =. 4
5 With this notation in lace we can state the rime number theorem. Theorem 9 (Prime Number Theorem). Let π(x) be the rime counting function defined above. Then π(x) x log x. Other ways of stating the rime number theorem are that the robability of a randomly chosen ositive integer no more than x being rime aroaches / log x, or that the robability of a randomly chosen ositive integer near x being rime is / log x. Note that these robabilities are not trivially the same  these quantities are similar because of the log function s differential roerties. The rime number theorem was roven in 896 by Hadamard and Vallée Poussin indeendently. Each comleted the roof by constraining the comlex numbers s such that ζ(s) = 0. The next main ideas develo several main ideas having to do with these zeros, leaving comlex analysis as a black box. The zeta function is often called the Riemann zeta function because Riemann instigated serious study of it. He roved the following items, in bold. ζ(s) has an analytic continuation to the rest of C, which is comlex differentiable excet for the simle ole at s =. An analytic continuation is an imortant concet in comlex analysis, but one has already encountered this function in calculus class. Consider the function + x + x 2 + x 3 +, which converges only in the disk {z C : z < } and on some oints on the border of the disc. This is the Taylor exansion at 0 for the function x, which we know erfectly well can be defined for x outside the disk, even though its series reresentation cannot. Analytic continuation is much like this: it extends a function that is a riori defined on a constrained domain to a larger domain of definition in a sensible way. However, our intuition from real functions will fail us here, because there are many real differentiable functions like { x 2 if x 0 f(x) := x 2 if x < 0 which are once or twice differentiable, but not smooth (i.e. infinitely differentiable). However, comlex differentiable functions have the amazing roerty that they are infinitely differentiable whenever they are once differentiable. Any differentiable (thus infinitely differentiable) comlex function is termed holomorhic or analytic. This secial roerty of comlex differentiable functions is critical for showing that functions such as ζ(s) have unique analytic continuations. The continuation of ζ(s) is differentiable at every s C excet s = ; here it looks locally like, a situation which is called having s a simle ole at s =. We won t talk about what the analytic continuation of the zeta function looks like on much of C, because of the next item that Riemann roved limits zeros rather seriously. 5
6 The zeta function obeys a functional equation, namely where ζ( s) = 2(2π) s cos(πs/2)γ(s)ζ(s), Γ(s) := and the cos function is defined on C by 0 x s e x dx for σ > 0. cos(s) = eis + e is. 2 Note that the restriction on the convergence of the Γfunction does not sto us from relating any two values of the zeta function (however, the Γfunction also admits an analytic continuation!). This functional equation relates the zeta functions value at a comlex number s to its value at the oint given by reflecting s across the oint /2 C. Thus as we know the behavior of the zeta function for σ > relatively well, we also know its behavior for σ < 0. We will demonstrate this by characterizing all of the zeros of ζ(s) just as Riemann did. Consider the functional equation and let s vary over A = {s C : R(s) > }. Let us find those values of s where the right side of the functional equation has a zero. First of all, ζ(s) 0 for all s A. This is the case because the logarithm of ζ(s) converges for all s A, which, since x 0 in C imlies that the real art of log x aroaches, means that ζ(s) cannot be zero. All of the remaining factors are never zero for any s in C. Thus the right side of the functional equation is zero only when cos(πs/2) is zero, that is, when s is an odd integer at least 3. Therefore we have that ζ( s) is zero for all odd integers that are at least three, i.e. ζ(s) = 0 and R(s) < 0 = s = 2, 4, 6, 8,.... These zeros at the negative even integers are called the trivial zeros of ζ(s). Now we have limited the unknown zeros of ζ(s) to the region 0 R(s). This region is called the critical stri. We will see the arithmetic significance of this shortly, but having gone this far in characterizing the zeros, it is time to state the Riemann Hyothesis. Conjecture 0 (Riemann Hyothesis). The nontrivial zeros of ζ(s) have real art onehalf, i.e. ζ(s) = 0 and 0 R(s) = R(s) = 2. Let s make a few observations about the zeros of ζ(s) in the critical stri. Note that via our comutations of comlex exonentials at the outset, the comlex conjugate n s of n s is equal to n s. Therefore ζ(s) = ζ(s) for all s C. Therefore if s = σ + it is a zero of zeta in the critical stri, its comlex conjugate s = σ it is a zero as well. Recall also that zeros in the critical stri will reflect over the oint /2. Therefore if the Riemann hyothesis is false and ρ = β + iγ is a zero in the critical stri but off the critical line R(s) = /2, there are zeros to the right of the critical line, two of them being in the list of distinct zeros ρ = β + iγ; ρ = β iγ; ρ = ( β) iγ; ρ = ( β) + iγ. 6
7 Many many zeros of the Riemann zeta function have been calculated, and all of them are on the critical line. We should also remark that all zeros of the Riemann zeta function are simle zeros (i.e. they look like the zero of f(x) = x at zero, not the the zero of f(x) = x n where n > ), but this is not worth getting into. But now, what can we do to connect the rimes to the zeros of the zeta function? The key is comlex analysis. 4. The Zeros of the Zeta Function and Prime Distribution Comlex analytic tools are good at finding oles  after all, oles are the interrutions in the strong condition of comlex differentiability. Since we have been claiming that the zeros of the zeta function are significant for rime distribution, it makes sense that we will further examine the log of the zeta function. The log has oles where zeta has zeros or oles. More recisely, we will examine its logarithmic derivative, i.e. the derivative of its log, which also will have oles where zeta has oles or zeros. We calculate d ds (log ζ(s)) = d ds = = log( s ) ( s ) s log log ms. Recalling the definition of the von Mangoldt function Λ(n) from the beginning of section 3, we find that the last equality can be immediately translated into m d ds log ζ(s) = n= Λ(n) n s. Now comes in the critically imortant tool from comlex analysis, which we must leave as a black box. In English, the idea is this: given a reasonably well behaved (e.g. not exonentially growing) function f : N C, the value of F (x) = n x f(n) is intimately tied to the oles of via Perron s formula. n= f(n) n s In our case, we want to discuss ψ(x) = n x Λ(n). Recall that the rime number theorem states that ψ(x) x. In fact, Perron s formula will even interolate the oints of discontinuity of ψ(x), that is we will get a formula for { ψ(x) if ψ is continuous at x ψ 0 (x) := ψ(x + )+ψ(x ) if ψ is not continuous at x. 2 7
8 Perron s formula states that ψ 0 (x) = x ζ(ρ)=0 0 R(ρ) x ρ ρ log 2π 2 log( x 2 ), that is, as we add nontrivial zeros ρ to the sum on the right hand side, the right hand side will coverge ointwise to ψ 0 (x) for every x R 0. This equality is known as the exlicit formula for ψ. We remark that the first term of the right side (namely x) comes from the ole of ζ(s) at, the second term comes from the nontrivial zeros, the third term comes from the roerties of ζ(s) at 0, and the final term comes from the trivial zeros. Notice that each exonent of x is the coordinates of a ole this is art of Perron s formula. Finally we ve come u with an exression for ψ(x) deending on the zeros of x. The rime number theorem states that ψ(x) x, i.e. that the first term of the right side above dominates all of the others as x. Let s check this, term by term. The rightmost term, 2 log( x 2 ), will shrink to 0 as x gets large, so we need not worry about it. The next term is a constant, and so does not matter when x gets large either. This leaves the nontrivial zeros to contend with the x term on the left. We should remark that it is not obvious that the sum over the nontrivial zeros converges, but estimates for zero density in the critical stri first done by Riemann are sufficient to show that the sum converges. Recall from the outset that when we take a real number x to the comlex ower ρ, the real art of ρ controls the size of x ρ and its imaginary art controls the angle of the ray from 0 to x ρ. In fact, because zeros of the zeta function come in conjugate airs, we may air u the zeros in the sum over nontrivial zeros; one air ρ = β + iγ and ρ where ρ = ρ e iθρ gives us x ρ ρ + xρ ρ = xβ (e iγ log x ρ + e iγ log x ρ) β 2 + γ 2 = xβ ρ (ei(γ log x θρ) i(γ log x θρ) + e = 2 xβ ρ cos(γ log x θ ρ). As θ ρ is very close to ±π/2, this result looks a lot like a constant times x β sin(γ log x), and this is a fine function to grah or look at in order to get an idea of what each conjugate air of zeros contributes to the ψ(x) function. You may find a icture of what such a function looks like at a website to be discussed below. Note also that the fact that imaginary arts cancel when we sum over conjugate airs makes a lot of sense, since ψ(x) is a real function. With this in lace, we can say what Hadamard and Vallée Poussin roved about the zeros of the zeta function in order to have the rime number theorem as a corollary: they roved that there are no zeros of the zeta function on the line R(s) =. Let s think about why this is sufficient. Let s say that ρ = β+iγ is a zero in the critical stri that is not on the critical line, that is, a counterexamle to the Riemann hyothesis. Then there exists a zero that is to the right of the critical line, i.e. with β > /2, by the discussion of the symmetry of zeros above. 8
9 Without loss of generality, say that ρ is this zero. Then ρ and its conjugate ρ generate a term of the sum which reaches a magnitude as high as x β times a constant. If somehow the four zeros generated by ρ and the zerosymmetries were the only counterexamles to the Riemann hyothesis, then there would be crazy variations in rime density: if x were such that cos(γ log x θ ρ ) is near, then by examining the exlicit formula for ψ(x) we see that there would be fewer rimes near to this x. This is the case because the wave 2 xβ ρ cos(γ log x θ ρ) generated by ρ and its conjugate will be much bigger than the waves generated by any of the other nontrivial zeros. Likewise, when x is such that cos(γ log x θ ρ ) is close to , there will be many more rimes near x. We can see how the truth of the Riemann hyothesis makes x as good of an estimate for ψ(x) as it can be. When we consider the rime number theorem, we realize that our aberrant zero ρ will not create trouble as long as β < ; for we calculate ψ(x) lim x x = lim x 2x β cos(γ log x θ ρ )/ ρ x x rovided that β <. If there were to be a zero ρ with real art equal to, we can see via the exlicit formula that the rime number theorem would not be true. I want to conclude by giving you the idea that the Riemann hyothesis does not just make ψ(x) as close to x as ossible, but also is very beautiful. If it is true, it means that rimes are generated by a bunch of different frequencies of waves that grow at the same rate. If some waves grow faster than others, we get havoc. To observe this all in action, check out the following website: =, htt://www.secamlocal.ex.ac.uk/eole/staff/mrwatkin/zeta/encoding2.htm This website contains grahs of the comonents of the exlicit formula coming from each zero, so that you can see what a function like 2 xβ cos(γ log x θ ρ ρ) looks like. But most imortantly, it has an alet at the bottom that shows the ψfunction in yellow and shows the right side of the exlicit formula as additional nontrivial zeros are added to the sum. Check it out! 9
Doug Ravenel. October 15, 2008
Doug Ravenel University of Rochester October 15, 2008 s about Euclid s Some s about primes that every mathematician should know (Euclid, 300 BC) There are infinitely numbers. is very elementary, and we
More informationLecture 21 and 22: The Prime Number Theorem
Lecture and : The Prime Number Theorem (New lecture, not in Tet) The location of rime numbers is a central question in number theory. Around 88, Legendre offered eerimental evidence that the number π()
More information6.042/18.062J Mathematics for Computer Science December 12, 2006 Tom Leighton and Ronitt Rubinfeld. Random Walks
6.042/8.062J Mathematics for Comuter Science December 2, 2006 Tom Leighton and Ronitt Rubinfeld Lecture Notes Random Walks Gambler s Ruin Today we re going to talk about onedimensional random walks. In
More informationAs we have seen, there is a close connection between Legendre symbols of the form
Gauss Sums As we have seen, there is a close connection between Legendre symbols of the form 3 and cube roots of unity. Secifically, if is a rimitive cube root of unity, then 2 ± i 3 and hence 2 2 3 In
More informationStatistics of the Zeta zeros: Mesoscopic and macroscopic phenomena
Statistics of the Zeta zeros: Mesoscopic and macroscopic phenomena Department of Mathematics UCLA Fall 2012 he Riemann Zeta function Nontrivial zeros: those with real part in (0, 1). First few: 1 2 +
More informationLectures on the Dirichlet Class Number Formula for Imaginary Quadratic Fields. Tom Weston
Lectures on the Dirichlet Class Number Formula for Imaginary Quadratic Fields Tom Weston Contents Introduction 4 Chater 1. Comlex lattices and infinite sums of Legendre symbols 5 1. Comlex lattices 5
More information1 Gambler s Ruin Problem
Coyright c 2009 by Karl Sigman 1 Gambler s Ruin Problem Let N 2 be an integer and let 1 i N 1. Consider a gambler who starts with an initial fortune of $i and then on each successive gamble either wins
More informationSOME PROPERTIES OF EXTENSIONS OF SMALL DEGREE OVER Q. 1. Quadratic Extensions
SOME PROPERTIES OF EXTENSIONS OF SMALL DEGREE OVER Q TREVOR ARNOLD Abstract This aer demonstrates a few characteristics of finite extensions of small degree over the rational numbers Q It comrises attemts
More informationIntroduction to NPCompleteness Written and copyright c by Jie Wang 1
91.502 Foundations of Comuter Science 1 Introduction to Written and coyright c by Jie Wang 1 We use timebounded (deterministic and nondeterministic) Turing machines to study comutational comlexity of
More informationTRANSCENDENTAL NUMBERS
TRANSCENDENTAL NUMBERS JEREMY BOOHER. Introduction The Greeks tried unsuccessfully to square the circle with a comass and straightedge. In the 9th century, Lindemann showed that this is imossible by demonstrating
More informationLarge Sample Theory. Consider a sequence of random variables Z 1, Z 2,..., Z n. Convergence in probability: Z n
Large Samle Theory In statistics, we are interested in the roerties of articular random variables (or estimators ), which are functions of our data. In ymtotic analysis, we focus on describing the roerties
More informationA 60,000 DIGIT PRIME NUMBER OF THE FORM x 2 + x Introduction StarkHeegner Theorem. Let d > 0 be a squarefree integer then Q( d) has
A 60,000 DIGIT PRIME NUMBER OF THE FORM x + x + 4. Introduction.. Euler s olynomial. Euler observed that f(x) = x + x + 4 takes on rime values for 0 x 39. Even after this oint f(x) takes on a high frequency
More informationA Modified Measure of Covert Network Performance
A Modified Measure of Covert Network Performance LYNNE L DOTY Marist College Deartment of Mathematics Poughkeesie, NY UNITED STATES lynnedoty@maristedu Abstract: In a covert network the need for secrecy
More information9.2 Summation Notation
9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a
More informationPOISSON PROCESSES. Chapter 2. 2.1 Introduction. 2.1.1 Arrival processes
Chater 2 POISSON PROCESSES 2.1 Introduction A Poisson rocess is a simle and widely used stochastic rocess for modeling the times at which arrivals enter a system. It is in many ways the continuoustime
More informationUnited Arab Emirates University College of Sciences Department of Mathematical Sciences HOMEWORK 1 SOLUTION. Section 10.1 Vectors in the Plane
United Arab Emirates University College of Sciences Deartment of Mathematical Sciences HOMEWORK 1 SOLUTION Section 10.1 Vectors in the Plane Calculus II for Engineering MATH 110 SECTION 0 CRN 510 :00 :00
More informationwhere a, b, c, and d are constants with a 0, and x is measured in radians. (π radians =
Introduction to Modeling 3.61 3.6 Sine and Cosine Functions The general form of a sine or cosine function is given by: f (x) = asin (bx + c) + d and f(x) = acos(bx + c) + d where a, b, c, and d are constants
More informationRevised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m)
Chapter 23 Squares Modulo p Revised Version of Chapter 23 We learned long ago how to solve linear congruences ax c (mod m) (see Chapter 8). It s now time to take the plunge and move on to quadratic equations.
More informationPreliminary Version: December 1998
On the Number of Prime Numbers less than a Given Quantity. (Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse.) Bernhard Riemann [Monatsberichte der Berliner Akademie, November 859.] Translated
More informationMore Properties of Limits: Order of Operations
math 30 day 5: calculating its 6 More Proerties of Limits: Order of Oerations THEOREM 45 (Order of Oerations, Continued) Assume that!a f () L and that m and n are ositive integers Then 5 (Power)!a [ f
More informationStat 134 Fall 2011: Gambler s ruin
Stat 134 Fall 2011: Gambler s ruin Michael Lugo Setember 12, 2011 In class today I talked about the roblem of gambler s ruin but there wasn t enough time to do it roerly. I fear I may have confused some
More informationPoint Location. Preprocess a planar, polygonal subdivision for point location queries. p = (18, 11)
Point Location Prerocess a lanar, olygonal subdivision for oint location ueries. = (18, 11) Inut is a subdivision S of comlexity n, say, number of edges. uild a data structure on S so that for a uery oint
More informationFREQUENCIES OF SUCCESSIVE PAIRS OF PRIME RESIDUES
FREQUENCIES OF SUCCESSIVE PAIRS OF PRIME RESIDUES AVNER ASH, LAURA BELTIS, ROBERT GROSS, AND WARREN SINNOTT Abstract. We consider statistical roerties of the sequence of ordered airs obtained by taking
More informationAssignment 9; Due Friday, March 17
Assignment 9; Due Friday, March 17 24.4b: A icture of this set is shown below. Note that the set only contains oints on the lines; internal oints are missing. Below are choices for U and V. Notice that
More informationComplex Conjugation and Polynomial Factorization
Comlex Conjugation and Polynomial Factorization Dave L. Renfro Summer 2004 Central Michigan University I. The Remainder Theorem Let P (x) be a olynomial with comlex coe cients 1 and r be a comlex number.
More informationVariations on the Gambler s Ruin Problem
Variations on the Gambler s Ruin Problem Mat Willmott December 6, 2002 Abstract. This aer covers the history and solution to the Gambler s Ruin Problem, and then exlores the odds for each layer to win
More informationTaylor and Maclaurin Series
Taylor and Maclaurin Series In the preceding section we were able to find power series representations for a certain restricted class of functions. Here we investigate more general problems: Which functions
More informationNotes on Factoring. MA 206 Kurt Bryan
The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor
More informationAn important observation in supply chain management, known as the bullwhip effect,
Quantifying the Bullwhi Effect in a Simle Suly Chain: The Imact of Forecasting, Lead Times, and Information Frank Chen Zvi Drezner Jennifer K. Ryan David SimchiLevi Decision Sciences Deartment, National
More informationA Note on Integer Factorization Using Lattices
A Note on Integer Factorization Using Lattices Antonio Vera To cite this version: Antonio Vera A Note on Integer Factorization Using Lattices [Research Reort] 2010, 12 HAL Id: inria00467590
More informationUniversiteitUtrecht. Department. of Mathematics. Optimal a priori error bounds for the. RayleighRitz method
UniversiteitUtrecht * Deartment of Mathematics Otimal a riori error bounds for the RayleighRitz method by Gerard L.G. Sleijen, Jaser van den Eshof, and Paul Smit Prerint nr. 1160 Setember, 2000 OPTIMAL
More informationPrecalculus Prerequisites a.k.a. Chapter 0. August 16, 2013
Precalculus Prerequisites a.k.a. Chater 0 by Carl Stitz, Ph.D. Lakeland Community College Jeff Zeager, Ph.D. Lorain County Community College August 6, 0 Table of Contents 0 Prerequisites 0. Basic Set
More informationYou know from calculus that functions play a fundamental role in mathematics.
CHPTER 12 Functions You know from calculus that functions play a fundamental role in mathematics. You likely view a function as a kind of formula that describes a relationship between two (or more) quantities.
More information1 Review of complex numbers
1 Review of complex numbers 1.1 Complex numbers: algebra The set C of complex numbers is formed by adding a square root i of 1 to the set of real numbers: i = 1. Every complex number can be written uniquely
More informationarxiv:0711.4143v1 [hepth] 26 Nov 2007
Exonentially localized solutions of the KleinGordon equation arxiv:711.4143v1 [heth] 26 Nov 27 M. V. Perel and I. V. Fialkovsky Deartment of Theoretical Physics, State University of SaintPetersburg,
More informationAn important theme in this book is to give constructive definitions of mathematical objects. Thus, for instance, if you needed to evaluate.
Chapter 10 Series and Approximations An important theme in this book is to give constructive definitions of mathematical objects. Thus, for instance, if you needed to evaluate 1 0 e x2 dx, you could set
More informationSECTION 6: FIBER BUNDLES
SECTION 6: FIBER BUNDLES In this section we will introduce the interesting class o ibrations given by iber bundles. Fiber bundles lay an imortant role in many geometric contexts. For examle, the Grassmaniann
More informationDIRICHLET PRIME NUMBER THEOREM
DIRICHLET PRIME NUMBER THEOREM JING MIAO Abstract. In number theory, the rime number theory describes the asymtotic distribution of rime numbers. We all know that there are infinitely many rimes,but how
More information
Number Theory Naoki Sato
Number Theory Naoki Sato 0 Preface This set of notes on number theory was originally written in 1995 for students at the IMO level. It covers the basic background material
More informationCoin ToGa: A CoinTossing Game
Coin ToGa: A CoinTossing Game Osvaldo Marrero and Paul C Pasles Osvaldo Marrero OsvaldoMarrero@villanovaedu studied mathematics at the University of Miami, and biometry and statistics at Yale University
More informationTaylor Polynomials and Taylor Series Math 126
Taylor Polynomials and Taylor Series Math 26 In many problems in science and engineering we have a function f(x) which is too complicated to answer the questions we d like to ask. In this chapter, we will
More informationTwo classic theorems from number theory: The Prime Number Theorem and Dirichlet s Theorem
Two classic theorems from number theory: The Prime Number Theorem and Dirichlet s Theorem Senior Exercise in Mathematics Lee Kennard 5 November, 2006 Contents 0 Notes and Notation 3 Introduction 4 2 Primes
More informationThe Cubic Formula. The quadratic formula tells us the roots of a quadratic polynomial, a polynomial of the form ax 2 + bx + c. The roots (if b 2 b+
The Cubic Formula The quadratic formula tells us the roots of a quadratic olynomial, a olynomial of the form ax + bx + c. The roots (if b b+ 4ac 0) are b 4ac a and b b 4ac a. The cubic formula tells us
More informationStochastic Derivation of an Integral Equation for Probability Generating Functions
Journal of Informatics and Mathematical Sciences Volume 5 (2013), Number 3,. 157 163 RGN Publications htt://www.rgnublications.com Stochastic Derivation of an Integral Equation for Probability Generating
More informationPrentice Hall Algebra 2 2011 Correlated to: Colorado P12 Academic Standards for High School Mathematics, Adopted 12/2009
Content Area: Mathematics Grade Level Expectations: High School Standard: Number Sense, Properties, and Operations Understand the structure and properties of our number system. At their most basic level
More informationWHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly
More informationSouth Carolina College and CareerReady (SCCCR) PreCalculus
South Carolina College and CareerReady (SCCCR) PreCalculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know
More informationThis chapter is all about cardinality of sets. At first this looks like a
CHAPTER Cardinality of Sets This chapter is all about cardinality of sets At first this looks like a very simple concept To find the cardinality of a set, just count its elements If A = { a, b, c, d },
More informationSECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS
SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS Assume f ( x) is a nonconstant polynomial with real coefficients written in standard form. PART A: TECHNIQUES WE HAVE ALREADY SEEN Refer to: Notes 1.31
More informationMultiperiod Portfolio Optimization with General Transaction Costs
Multieriod Portfolio Otimization with General Transaction Costs Victor DeMiguel Deartment of Management Science and Oerations, London Business School, London NW1 4SA, UK, avmiguel@london.edu Xiaoling Mei
More informationThe Online Freezetag Problem
The Online Freezetag Problem Mikael Hammar, Bengt J. Nilsson, and Mia Persson Atus Technologies AB, IDEON, SE3 70 Lund, Sweden mikael.hammar@atus.com School of Technology and Society, Malmö University,
More information3. INNER PRODUCT SPACES
. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.
More informationTips for Solving Mathematical Problems
Tips for Solving Mathematical Problems Don Byrd Revised late April 2011 The tips below are based primarily on my experience teaching precalculus to highschool students, and to a lesser extent on my other
More informationPythagorean Triples. Chapter 2. a 2 + b 2 = c 2
Chapter Pythagorean Triples The Pythagorean Theorem, that beloved formula of all high school geometry students, says that the sum of the squares of the sides of a right triangle equals the square of the
More informationCHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.
CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,
More informationSequences and Series
Sequences and Series Consider the following sum: 2 + 4 + 8 + 6 + + 2 i + The dots at the end indicate that the sum goes on forever. Does this make sense? Can we assign a numerical value to an infinite
More informationThe Ideal Class Group
Chapter 5 The Ideal Class Group We will use Minkowski theory, which belongs to the general area of geometry of numbers, to gain insight into the ideal class group of a number field. We have already mentioned
More informationComputational Finance The Martingale Measure and Pricing of Derivatives
1 The Martingale Measure 1 Comutational Finance The Martingale Measure and Pricing of Derivatives 1 The Martingale Measure The Martingale measure or the Risk Neutral robabilities are a fundamental concet
More informationTHE CENTRAL LIMIT THEOREM TORONTO
THE CENTRAL LIMIT THEOREM DANIEL RÜDT UNIVERSITY OF TORONTO MARCH, 2010 Contents 1 Introduction 1 2 Mathematical Background 3 3 The Central Limit Theorem 4 4 Examples 4 4.1 Roulette......................................
More informationModule 5: Multiple Random Variables. Lecture 1: Joint Probability Distribution
Module 5: Multile Random Variables Lecture 1: Joint Probabilit Distribution 1. Introduction irst lecture o this module resents the joint distribution unctions o multile (both discrete and continuous) random
More informationCHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY
January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.
More informationNEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS
NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document
More informationTHE PRIME NUMBER THEOREM
THE PRIME NUMBER THEOREM NIKOLAOS PATTAKOS. introduction In number theory, this Theorem describes the asymptotic distribution of the prime numbers. The Prime Number Theorem gives a general description
More informationAppendix F: Mathematical Induction
Appendix F: Mathematical Induction Introduction In this appendix, you will study a form of mathematical proof called mathematical induction. To see the logical need for mathematical induction, take another
More informationMath 5311 Gateaux differentials and Frechet derivatives
Math 5311 Gateaux differentials and Frechet derivatives Kevin Long January 26, 2009 1 Differentiation in vector spaces Thus far, we ve developed the theory of minimization without reference to derivatives.
More informationUndergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics
Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights
More information5. Geometric Series and Three Applications
5. Geometric Series and Three Applications 5.. Geometric Series. One unsettling thing about working with infinite sums is that it sometimes happens that you know that the sum is finite, but you don t know
More information4. Complex integration: Cauchy integral theorem and Cauchy integral formulas. Definite integral of a complexvalued function of a real variable
4. Complex integration: Cauchy integral theorem and Cauchy integral formulas Definite integral of a complexvalued function of a real variable Consider a complex valued function f(t) of a real variable
More informationDifferentiation and Integration
This material is a supplement to Appendix G of Stewart. You should read the appendix, except the last section on complex exponentials, before this material. Differentiation and Integration Suppose we have
More informationA Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions
A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions Marcel B. Finan Arkansas Tech University c All Rights Reserved First Draft February 8, 2006 1 Contents 25
More informationEffect Sizes Based on Means
CHAPTER 4 Effect Sizes Based on Means Introduction Raw (unstardized) mean difference D Stardized mean difference, d g Resonse ratios INTRODUCTION When the studies reort means stard deviations, the referred
More informationFractions and Decimals
Fractions and Decimals Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles December 1, 2005 1 Introduction If you divide 1 by 81, you will find that 1/81 =.012345679012345679... The first
More informationContinued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
More informationWald s Identity. by Jeffery Hein. Dartmouth College, Math 100
Wald s Identity by Jeffery Hein Dartmouth College, Math 100 1. Introduction Given random variables X 1, X 2, X 3,... with common finite mean and a stopping rule τ which may depend upon the given sequence,
More information9. POLYNOMIALS. Example 1: The expression a(x) = x 3 4x 2 + 7x 11 is a polynomial in x. The coefficients of a(x) are the numbers 1, 4, 7, 11.
9. POLYNOMIALS 9.1. Definition of a Polynomial A polynomial is an expression of the form: a(x) = a n x n + a n1 x n1 +... + a 1 x + a 0. The symbol x is called an indeterminate and simply plays the role
More informationComplex Numbers and the Complex Exponential
Complex Numbers and the Complex Exponential Frank R. Kschischang The Edward S. Rogers Sr. Department of Electrical and Computer Engineering University of Toronto September 5, 2005 Numbers and Equations
More informationIdeal Class Group and Units
Chapter 4 Ideal Class Group and Units We are now interested in understanding two aspects of ring of integers of number fields: how principal they are (that is, what is the proportion of principal ideals
More information
Number Theory Naoki Sato
Number Theory Naoki Sato 0 Preface This set of notes on number theory was originally written in 1995 for students at the IMO level. It covers the basic background material that an
More informationPrimality  Factorization
Primality  Factorization Christophe Ritzenthaler November 9, 2009 1 Prime and factorization Definition 1.1. An integer p > 1 is called a prime number (nombre premier) if it has only 1 and p as divisors.
More informationMATH 132: CALCULUS II SYLLABUS
MATH 32: CALCULUS II SYLLABUS Prerequisites: Successful completion of Math 3 (or its equivalent elsewhere). Math 27 is normally not a sufficient prerequisite for Math 32. Required Text: Calculus: Early
More informationcorrectchoice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:
Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that
More informationLectures 56: Taylor Series
Math 1d Instructor: Padraic Bartlett Lectures 5: Taylor Series Weeks 5 Caltech 213 1 Taylor Polynomials and Series As we saw in week 4, power series are remarkably nice objects to work with. In particular,
More informationSome Notes on Taylor Polynomials and Taylor Series
Some Notes on Taylor Polynomials and Taylor Series Mark MacLean October 3, 27 UBC s courses MATH /8 and MATH introduce students to the ideas of Taylor polynomials and Taylor series in a fairly limited
More informationX How to Schedule a Cascade in an Arbitrary Graph
X How to Schedule a Cascade in an Arbitrary Grah Flavio Chierichetti, Cornell University Jon Kleinberg, Cornell University Alessandro Panconesi, Saienza University When individuals in a social network
More information6.8 Taylor and Maclaurin s Series
6.8. TAYLOR AND MACLAURIN S SERIES 357 6.8 Taylor and Maclaurin s Series 6.8.1 Introduction The previous section showed us how to find the series representation of some functions by using the series representation
More information(This result should be familiar, since if the probability to remain in a state is 1 p, then the average number of steps to leave the state is
How many coin flis on average does it take to get n consecutive heads? 1 The rocess of fliing n consecutive heads can be described by a Markov chain in which the states corresond to the number of consecutive
More informationState of Stress at Point
State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,
More informationTHE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS
THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear
More informationElementary Number Theory: Primes, Congruences, and Secrets
This is age i Printer: Oaque this Elementary Number Theory: Primes, Congruences, and Secrets William Stein November 16, 2011 To my wife Clarita Lefthand v vi Contents This is age vii Printer: Oaque this
More informationPythagorean Triples and Rational Points on the Unit Circle
Pythagorean Triles and Rational Points on the Unit Circle Solutions Below are samle solutions to the roblems osed. You may find that your solutions are different in form and you may have found atterns
More informationFaster deterministic integer factorisation
David Harvey (joint work with Edgar Costa, NYU) University of New South Wales 25th October 2011 The obvious mathematical breakthrough would be the development of an easy way to factor large prime numbers
More informationGREEN CHICKEN EXAM  NOVEMBER 2012
GREEN CHICKEN EXAM  NOVEMBER 2012 GREEN CHICKEN AND STEVEN J. MILLER Question 1: The Green Chicken is planning a surprise party for his grandfather and grandmother. The sum of the ages of the grandmother
More informationU.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory
More informationMOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu
Integer Polynomials June 9, 007 Yufei Zhao yufeiz@mit.edu We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing
More informationMathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 19967 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
More informationIEEM 101: Inventory control
IEEM 101: Inventory control Outline of this series of lectures: 1. Definition of inventory. Examles of where inventory can imrove things in a system 3. Deterministic Inventory Models 3.1. Continuous review:
More informationAlgorithms for Constructing ZeroDivisor Graphs of Commutative Rings Joan Krone
Algorithms for Constructing ZeroDivisor Grahs of Commutative Rings Joan Krone Abstract The idea of associating a grah with the zerodivisors of a commutative ring was introduced in [3], where the author
More information11 Ideals. 11.1 Revisiting Z
11 Ideals The presentation here is somewhat different than the text. In particular, the sections do not match up. We have seen issues with the failure of unique factorization already, e.g., Z[ 5] = O Q(
More informationThe positive integers other than 1 may be divided into two classes, prime numbers (such as 2, 3, 5, 7) which do not admit of resolution into smaller
The positive integers other than may be divided into two classes, prime numbers (such as, 3, 5, 7) which do not admit of resolution into smaller factors, and composite numbers (such as 4, 6, 8, 9) which
More informationarxiv:math/0412079v2 [math.nt] 2 Mar 2006
arxiv:math/0412079v2 [math.nt] 2 Mar 2006 Primes Generated by Recurrence Sequences Graham Everest, Shaun Stevens, Duncan Tamsett, and Tom Ward 1st February 2008 1 MERSENNE NUMBERS AND PRIMITIVE PRIME DIVISORS.
More information