Save this PDF as:

Size: px
Start display at page:

Transcription

6 Helical Pulldown Micropiles cannot be installed in every soil condition. To date, grouted shaft helical piles have been successfully installed in overburden soil with SPT blow counts greater than 10 blows/ft. In those cases, the grouted shaft is being used to develop greater load capacity and a stiffer response, not necessarily to prevent buckling. More research is required, but a practical limit for grouted shafts is overburden soil with SPT blow counts equal to or less than 20 blows/ft. Increasingly dense soil makes installation more difficult for the displacement element, which has to force soil laterally outward away from the central steel shaft. CHANCE HELICAL ANCHOR/PILE FRICTIONAL CAPACITY The general equation is: Qf = [ Dfs Lf] (Equation 5-26) where: D = Diameter of timber, steel or concrete pile column fs = Sum of friction and adhesion between soil and pile Lf = incremental pile length over which D and fs are taken as constant There are several empirical methods to calculate friction, including the following: Gouvenot Method: Gouvenot reported a range of values for skin friction of concrete/grout columns based on a number of field load tests. The soil conditions are divided into three categories based on friction angle ( ) and cohesion (c). The equations used to calculate f s are: Type I: Sands and gravels with 35 o < < 45 o and c = 0: f s = o tan (Equation 5-27) where: o = Mean normal stress for the grout column Type II: Mixed soils; fine loose silty sands with 20 o < < 30 o and sandy clays with 205 psf < C < 1024 psf (9.8 kpa < C < 49 kpa) f s = o sin o tan + C cos (Equation 5-28) Type III: Clays with 1024 psf < c < 4096 psf (49 kpa < c < 196 kpa) f s = C (Equation 5-29) where: 1025 psf < c > 2048 pfs (49 kpa < c < 98 kpa) and: f s = 2048 psf (98 kpa) (Equation 5-30) where: 2048 psf < c < 4096 psf (98 kpa < c < 196 kpa) This analysis assumes a uniform shaft diameter for each soil layer and, if required, the friction capacity of the pile near the surface can be omitted. Department of the Navy Design Manual 7 Method: For cohesive soils ( Method): Q f = [ DC a Lf] (Equation 5-31) where: C a = Adhesion factor All Rights Reserved 5-23 Oct/2006

7 For cohesionless soils ( Method): Qf = [ D(qKtan ) Lf] (Equation 5-32) where: q = Effective vertical stress on element Lf K = Coefficient of lateral earth pressure ranging from K o to about 1.75 depending on volume displacement, initial soil density, etc. Values close to K o are generally recommended because of long-term soil creep effects. As a default, use K o = 1. = Effective friction angle between soil and plate material Alternate Method Qf = [ D(S) Lf] (Equation 5-33) where: S = Average friction resistance on pile surface area = P o tan P o = Average overburden pressure Recommended Adhesion Values * Table 5-3 PILE TYPE SOIL CONSISTENCY COHESION, C (psf) ADHESION, C a (psf) Timber or Concrete Steel Very Soft Soft Medium Stiff Stiff Very Stiff Very Soft Soft Medium Stiff Stiff Very Stiff * From Department of the Navy Design Manual 7, Soil Mechanics, Foundations and Earth Structures (1974). All Rights Reserved 5-24 Oct/2006

8 Straight Concrete Piles Table 5-4 Angle of Internal Friction (degrees) P o (psf) S = Average Friction Resistance on Pile Surface (psf) Straight Steel or Timber Piles Table 5-5 Angle of Internal Friction (degrees) P o (psf) S = Average Friction Resistance on Pile Surface (psf) Note: Values shown are 75% of the values given for straight concrete piles in Table 5-5 due to lower coefficients of friction. NOTE Tables 5-3, 5-4 and 5-5 are derived from graphs in the Department of the Navy Design Manual 7, Soil Mechanics, Foundations and Earth Structures (1974). Later editions of this manual limit the depth at which the average overburden pressure is assumed to increase. The following is an excerpt from the manual regarding this limiting depth: Experimental and field evidence indicate that bearing pressure and skin friction increase with vertical effective stress (P o ) up to a limiting depth of embedment, depending on the relative density of the granular soil and position of the water table. Beyond this limiting depth (10B± to 40B±) there is very little increase in end bearing, and increase in side friction is directly proportional to the surface area of the pile. Therefore, if D is greater than 20B, limit Po at the pile tip to that value corresponding to D = 20B where D = depth of the pile over which side friction is considered and B = diameter of the pile. Design Example 8-5 in Section 8 illustrates the use of the Navy Design Manual 7 method to calculate the friction capacity of a Helical Pulldown Micropile. All Rights Reserved 5-25 Oct/2006

9 References: 1. Specification ASTM D 1586, Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils, American Society for Testing and Materials. 2. Bjerrum, L., Norwegian Experiences with Steel Piles to Rock, Geotechnique, Vol 7, Bowles, J.E., Foundation Analysis and Design, First Edition, McGraw-Hill, Bowles, J.E., Foundation Analysis and Design, Fourth Edition, McGraw-Hill, Brinch Hansen, J., The Ultimate Resistance of Rigid Piles Against Transversal Forces, Geoteknish Institute Bulletin No. 12, Copenhagen, Broms, Bengt. B., Lateral Resistance of Piles in Cohesive Soils, Proceedings of the American Society of Civil Engineers, Journal of the Soil Mechanics and Foundations Division, Vol. 90, SM2, Broms, Bengt B., Lateral Resistance of Piles in Cohesionless Soils, Proceedings of the American Society of Civil Engineers, Journal of the Soil Mechanics and Foundations Division, vol. 90 SM3, Cadden, Allen and Jesus Gomez, Buckling of Micropiles, ADSC-IAF Micropile Committee, Dallas, TX, Clemence, Samuel P. and others, Uplift Behavior of Anchor Foundations in Soil, American Society of Civil Engineers, Das, Braja M., Theoretical Foundation Engineering, Elsevier Science Publishing Company Inc., New York, NY, Davis, E.H., The Application of the Theory of Plasticity to Foundation Problems-Limit Analysis, Post Graduate Course, University of Sydney, Australia, Davisson, M.T., Estimating Buckling Loads for Piles, Proceedings of the Second Pan-American Conference on Soil Mechanics and Foundation Engineering, Brazil, Vol 1, Davisson, M.T., Laterally Loaded Capacity of Piles, Highway Research Record, No. 333: , Design Manual DM7, NAVFAC, Foundations and Earth Structures, Government Printing Office, Design Manual DM7, NAVFAC, Soil Mechanics, Government Printing Office, Gouvenot, D., Essais en France et a l'etranger sur le Frottement Lateral en Fondation: Amelioration par Injection, Travaux, 464, Nov, Paris, France, HeliCALC Micropile Design Assessment Program, Theoretical and User's Manual, Hubbell Power Systems/A.B. Chance Co., Hetenya, M., Beams on Elastic Foundations, The University of Michigan Press, Ann Arbor, MI, Hoyt, Robert M., Gary L. Seider, Lymon C. Reese and Shin-Tower Wang, Buckling of Helical Anchors Used for Underpinning, Proceedings, ASCE National Convention, San Diego, CA, Meyerhof, George Geoffrey, Bearing Capacity and Settlement of Pile Foundations, Journal of the Geotechnical Engineering Division, Proceedings of the American Society of Civil Engineers, Volume 102, No GT3, Poulos, H.G., Analysis of Piles in Soils Undergoing Lateral Movements, JSMFD, ASCE, Vol. 99, SM5, All Rights Reserved 5-26 Oct/2006

10 22. Reese, L.C., The Analysis of Piles Under Lateral Loading, Proceedings, Symposium on the Interaction of Structure and Foundation, Midland Soil Mechanics and Foundation Engineering Society, University of Birmingham, England, Reese, L.C. and S.J. Wright, Drilled Shaft Design and Construction Guidelines Manual, US Department of Transportation, Federal Highway Administration, Reese, L.C., W.M. Wang, J.A. Arrellaga, and J. Hendrix, Computer Program LPILE PLUS Technical Manual, Version 3.0, Ensoft, Inc., Austin, TX, Terzaghi, K. and R.B. Peck, Soil Mechanics in Engineering Practice, John Wiley and Sons, Inc., All Rights Reserved 5-27 Oct/2006

Step 6 Buckling/Slenderness Considerations

Step 6 Buckling/Slenderness Considerations Introduction Buckling of slender foundation elements is a common concern among designers and structural engineers. The literature shows that several researchers

Figure A-1. Figure A-2. continued on next page... HPM-1. Grout Reservoir. Neat Cement Grout (Very Flowable) Extension Displacement Plate

Addendum HELICAL PULLDOWN Micropile (HPM) Introduction The HPM is a system for constructing a grout column around the shaft of a standard Helical Screw Foundation (see Figure A1). To begin the process,

Comprehensive Design Example 2: Foundations for Bulk Storage Facility

Comprehensive Design Example 2: Foundations for Bulk Storage Facility Problem The project consists of building several dry product storage silos near an existing rail siding in an open field presently

Laterally Loaded Piles 1 Soil Response Modelled by p-y Curves In order to properly analyze a laterally loaded pile foundation in soil/rock, a nonlinear relationship needs to be applied that provides soil

HELICAL SCREW ANCHORS AND FOUNDATIONS IN SOIL. History, Applications, Design

HELICAL SCREW ANCHORS AND FOUNDATIONS IN SOIL Historical Perspective 1 st Recorded use of a Screw Pile was by Alexander Mitchell in 1836 for Moorings and was then applied by Mitchell to Maplin Sands Lighthouse

Page C-1 Hubbell Power Systems, Inc. All Rights Reserved Copyright 2014 A Basic Guideline for Designers Appendix C CONTENTS I. INTRODUCTON... C-3 II. DESIGN REQUIREMENTS... C-4 A. Shaft Type of Helical

MICROPILES SUBJECT TO LATERAL LOADING Dr. Jesús Gómez, P.E. Micropile Design and Construction Seminar Las Vegas, NV April 3-4, 2008 Outline When are micropiles subject to lateral load? How do we analyze

FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples

FOUNDATION DESIGN Proportioning elements for: Transfer of seismic forces Strength and stiffness Shallow and deep foundations Elastic and plastic analysis Foundation Design 14-1 Load Path and Transfer to

13.1 SCOPE...13-1 13.2 DEFINITIONS...13-1 13.3 NOTATION...13-1 13.4 DETERMINATION OF SOIL PROPERTIES...13-2

SECTION 13: FOUNDATION DESIGN TABLE OF CONTENTS 13 13.1 SCOPE...13-1 13.2 DEFINITIONS...13-1 13.3 NOTATION...13-1 13.4 DETERMINATION OF SOIL PROPERTIES...13-2 13.5 FOUNDATION BEARING CAPACITY...13-2 13.5.1

Step 11 Static Load Testing Test loading is the most definitive method of determining load capacity of a pile. Testing a pile to failure provides valuable information to the design engineer and is recommended

International Society for Helical Foundations (ISHF)

QUICK DESIGN GUIDE For Screw-Piles and Helical Anchors in Soils Ver. 1.0 Prepared by Dr. Alan J. Lutenegger, P.E., F. ASCE for International Society for Helical Foundations (ISHF) Copyright 2015 (ISHF)

Helical Pile Application and Design

PDHonline Course C513 (1 PDH) Helical Pile Application and Design Instructor: Andrew P. Adams, PE 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org

Finite Element Analysis of Elastic Settlement of Spreadfootings Founded in Soil

Finite Element Analysis of Elastic Settlement of Spreadfootings Founded in Soil Jae H. Chung, Ph.D. Bid Bridge Software Institute t University of Florida, Gainesville, FL, USA Content 1. Background 2.

Fundamentals of Helical Anchors/Piles

Fundamentals of Helical Anchors/Piles By Thomas B. Watson, III, P. E. Table of Contents I. History of Helical Anchors/Piles II. What are Helical Anchors/Piles? III. An Overview of Corrosion IV. Spacing

Shallow Foundation Analysis on Heterogeneous Soil Formation in the Niger Delta of Nigeria

Shallow Foundation Analysis on Heterogeneous Soil Formation in the Niger Delta of Nigeria Akpila, S.B Department of Civil Engineering Rivers State University of Science & Technology, PortHarcourt. Eluozo,

Seismic Design of Shallow Foundations

Shallow Foundations Page 1 Seismic Design of Shallow Foundations Reading Assignment Lecture Notes Other Materials Ch. 9 FHWA manual Foundations_vibrations.pdf Homework Assignment 10 1. The factored forces

This document downloaded from vulcanhammer.net since 1997, your source for engineering information for the deep foundation and marine construction industries, and the historical site for Vulcan Iron Works

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION

International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 45-66, Article ID: IJCIET_07_02_004 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

How to Design Helical Piles per the 2009 International Building Code

ABSTRACT How to Design Helical Piles per the 2009 International Building Code by Darin Willis, P.E. 1 Helical piles and anchors have been used in construction applications for more than 150 years. The

Performance of Helical Anchors in Sand

Performance of Helical Anchors in Sand Hamed Niroumand 1, Khairul Anuar Kassim 1, Amin Ghafooripour 2, Ramli Nazir 1, H.S. Chuan 3 1 Department of geotechnical engineering, Faculty of civil engineering,

Shaft Friction of Bored Piles in Hard Clay

Pak. J. Engg. & Appl. Sci. Vol. 3 Jul 2008 (p.54 60) Shaft Friction of Bored Piles in Hard Clay A. Akbar 1, S. Khilji 1, S.B. Khan 1, M.S.Qureshi 1 and M. Sattar 2 1 Civil Engineering Department, University

10 Space Truss and Space Frame Analysis

10 Space Truss and Space Frame Analysis 10.1 Introduction One dimensional models can be very accurate and very cost effective in the proper applications. For example, a hollow tube may require many thousands

ALLOWABLE LOADS ON A SINGLE PILE

C H A P T E R 5 ALLOWABLE LOADS ON A SINGLE PILE Section I. BASICS 5-1. Considerations. For safe, economical pile foundations in military construction, it is necessary to determine the allowable load capacity

POWER SCREWS (ACME THREAD) DESIGN There are at least three types of power screw threads: the square thread, the Acme thread, and the buttress thread. Of these, the square and buttress threads are the most

Module 6 : Design of Retaining Structures. Lecture 28 : Anchored sheet pile walls [ Section 28.1 : Introduction ]

Lecture 28 : Anchored sheet pile walls [ Section 28.1 : Introduction ] Objectives In this section you will learn the following Introduction Lecture 28 : Anchored sheet pile walls [ Section 28.1 : Introduction

Screw-Piles, Helical Anchors and Soil Mechanics Where are We? Kansas City ASCE Geotechnical Seminar January 10, 2014

Screw-Piles, Helical Anchors and Soil Mechanics Where are We? Kansas City ASCE Geotechnical Seminar January 10, 2014 Presented by Dr. Alan J. Lutenegger, P.E. Professor of Civil Engineering University

New construction Repairing failed or old foundations Retrofit foundations Permanent battered piers Machinery/equipment foundations

from New construction foundations don t have to be a headache. The CHANCE Helical Pier Foundation System gives you the performance of concrete without the drawbacks and liabilities of driven piles and

DESIGN, INSTALLATION AND TESTING OF HELICAL PILES & ANCHORS. Presented by: Donald A. Deardorff, P.E. CHANCE Civil Construction Centralia, MO USA

DESIGN, INSTALLATION AND TESTING OF HELICAL PILES & ANCHORS Presented by: Donald A. Deardorff, P.E. CHANCE Civil Construction Centralia, MO USA Historical Perspective 1 st Recorded Screw Pile was by Alexander

CE-632 Foundation Analysis and Design

CE-63 Foundation Analysis and Design Shallow Foundations 1 SUMMARY of Terminology Gross Loading Intensity Total pressure at the level of foundation including the weight of superstructure, foundation, and

PILE FOUNDATIONS FM 5-134

C H A P T E R 6 PILE FOUNDATIONS Section I. GROUP BEHAVIOR 6-1. Group action. Piles are most effective when combined in groups or clusters. Combining piles in a group complicates analysis since the characteristics

System. Stability. Security. Integrity. 150 Helical Anchor

Model 150 HELICAL ANCHOR System PN #MBHAT Stability. Security. Integrity. 150 Helical Anchor System About Foundation Supportworks is a network of the most experienced and knowledgeable foundation repair

PDCA Driven-Pile Terms and Definitions

PDCA Driven-Pile Terms and Definitions This document is available for free download at piledrivers.org. Preferred terms are descriptively defined. Potentially synonymous (but not preferred) terms are identified

Installation and Performance Characteristics of High Capacity Helical Piles in Cohesive Soils

Installation and Performance Characteristics of High Capacity Helical Piles in Cohesive Soils Mohaed Sakr, PhD., P.Eng, Core Manager, Geotechnical Services, WorleyParsons Canada, Infrastructure & Environment,

EML 5526 FEA Project 1 Alexander, Dylan. Project 1 Finite Element Analysis and Design of a Plane Truss

Problem Statement: Project 1 Finite Element Analysis and Design of a Plane Truss The plane truss in Figure 1 is analyzed using finite element analysis (FEA) for three load cases: A) Axial load: 10,000

LATERAL LOAD TESTS ON DRILLED PIERS IN SAN DIEGO AREA RESIDUAL AND FORMATIONAL SOILS

LATERAL LOAD TESTS ON DRILLED PIERS IN SAN DIEGO AREA RESIDUAL AND FORMATIONAL SOILS Kul Bhushan, President, Group Delta Consultants, Inc., Aliso Viejo, California, USA Curt Scheyhing, Project Engineer,

Communication Tower Foundation Selection Criteria

Communication Tower Foundation Selection Criteria Introduction This foundation selection criteria document has been prepared by the Engineering Specialties Group as a resource for public and private entities,

Page B-1 Hubbell Power Systems, Inc. All Rights Reserved Copyright 2014 Appendix B CONTENTS STATIC (TIEBACKS)... B-3 STATIC AXIAL (COMPRESSION/TENSION)... B-6 STATIC (LATERAL)... B-9 CAPACITY VERIFICATION

Stability. Security. Integrity.

Stability. Security. Integrity. PN #MBHPT Foundation Supportworks provides quality helical pile systems for both new construction and retrofit applications. 288 Helical Pile System About Foundation Supportworks

Deep Foundation Axial Load Capacity Static Load Tests Analytic Methods Dynamic methods

Deep Foundation Axial Load Capacity Static Load Tests Analytic Methods Dynamic methods Pile Foundation vs. Shallow Foundation Soil property unknown after driving Excessive pore water pressure during driving

Module 7 (Lecture 24 to 28) RETAINING WALLS

Module 7 (Lecture 24 to 28) RETAINING WALLS Topics 24.1 INTRODUCTION 24.2 GRAVITY AND CANTILEVER WALLS 24.3 PROPORTIONING RETAINING WALLS 24.4 APPLICATION OF LATERAL EARTH PRESSURE THEORIES TO DESIGN 24.5

BEARING CAPACITY AND SETTLEMENT RESPONSE OF RAFT FOUNDATION ON SAND USING STANDARD PENETRATION TEST METHOD

SENRA Academic Publishers, British Columbia Vol., No. 1, pp. 27-2774, February 20 Online ISSN: 0-353; Print ISSN: 17-7 BEARING CAPACITY AND SETTLEMENT RESPONSE OF RAFT FOUNDATION ON SAND USING STANDARD

Stress Analysis Verification Manual

Settle3D 3D settlement for foundations Stress Analysis Verification Manual 007-01 Rocscience Inc. Table of Contents Settle3D Stress Verification Problems 1 Vertical Stresses underneath Rectangular Footings

Buckling of Micropiles

ADSC-IAF Micropile Committee Buckling of Micropiles A review of historic research and recent experiences By: Allen Cadden, P.E., and Jesús Gómez, Ph.D. Schnabel Engineering Associates West Chester, PA

GEOTECHNICAL ENGINEERING FORMULAS. A handy reference for use in geotechnical analysis and design

GEOTECHNICAL ENGINEERING FORMULAS A handy reference for use in geotechnical analysis and design TABLE OF CONTENTS Page 1. SOIL CLASSIFICATION...3 1.1 USCS: Unified Soil Classification System...3 1.1.1

Design of helical pier foundations in frozen ground

Design of helical pier foundations in frozen ground Permafrost, Phillips, Springman & Arenson (eds) 2003 Swets & Zeitlinger, Lisse, ISBN 90 5809 582 7 H.K. Zubeck & H. Liu University of Alaska Anchorage,

Earth Pressure and Retaining Wall Basics for Non-Geotechnical Engineers

PDHonline Course C155 (2 PDH) Earth Pressure and Retaining Wall Basics for Non-Geotechnical Engineers Instructor: Richard P. Weber, P.E. 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA

PILE FOUNDATION. Pile

PILE FOUNDATION. One or more of the followings: (a)transfer load to stratum of adequate capacity (b)resist lateral loads. (c) Transfer loads through a scour zone to bearing stratum 1 (d)anchor structures

DRIVEN PIPE PILES IN DENSE SAND

DRIVEN PIPE PILES IN DENSE SAND BYRON BYRNE GEOMECHANICS GROUP THE UNIVERSITY OF WESTERN AUSTRALIA ABSTRACT: Piles are often driven open ended into dense sand with the aim of increasing the ease of penetration

HELICAL SCREW PILES (HSP) CAPACITY FOR AXIAL CYCLIC LOADINGS IN COHESIVE SOILS

4 th International Conference on Earthquake Geotechnical Engineering June 25-28, 27 Paper No. 1567 HELICAL SCREW PILES (HSP) CAPACITY FOR AXIAL CYCLIC LOADINGS IN COHESIVE SOILS M. Hesham EL NAGGAR 1,

Numerical Analysis of Texas Cone Penetration Test

International Journal of Applied Science and Technology Vol. 2 No. 3; March 2012 Numerical Analysis of Texas Cone Penetration Test Nutan Palla Project Engineer, Tolunay-Wong Engineers, Inc. 10710 S Sam

LEGACY REPORT ER-5110. www.icc-es.org. ICC Evaluation Service, Inc. Reissued November 1, 2003. Legacy report on the 1997 Uniform Building Code

LEGACY REPORT Reissued November 1, 2003 ICC Evaluation Service, Inc. www.icc-es.org Business/Regional Office # 5360 Workman Mill Road, Whittier, California 90601 # (562) 699-0543 Regional Office # 900

REINFORCED CONCRETE. Reinforced Concrete Design. A Fundamental Approach - Fifth Edition. Walls are generally used to provide lateral support for:

HANDOUT REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition RETAINING WALLS Fifth Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering

DYNAMIC PILE MONITORING FOR OFFSHORE PILE ACCEPTANCE

DYNAMIC PILE MONITORING FOR OFFSHORE PILE ACCEPTANCE Scott Webster and Robin Givet, GRL Engineers, Inc., Charlotte, NC, USA Dynamic pile Monitoring Services (DMS) have been used for testing of offshore

Compression Test, METHOD OF STATEMENT FOR STATIC LOADING TEST Tension Test and Lateral Test According to the American Standards ASTM D1143 07, ASTM D3689 07, ASTM D3966 07 and Euro Codes EC7 Table of Contents

Appendix A Sub surface displacements around excavations Data presented in Xdisp sample file

Appendix A Sub surface displacements around excavations Data presented in Xdisp sample file Notation B1 = lowest level of basement slab c = cohesion E = drained Young s Modulus Eu = undrained Young s Modulus

Reinforced Soil Retaining Walls-Design and Construction

Lecture 31 Reinforced Soil Retaining Walls-Design and Construction Prof. G L Sivakumar Babu Department of Civil Engineering Indian Institute of Science Bangalore 560012 Evolution of RS-RW Classical gravity

When to Use Immediate Settlement in Settle 3D

When to Use Immediate Settlement in Settle 3D Most engineers agree that settlement is made up of three components: immediate, primary consolidation and secondary consolidation (or creep). Most engineers

REINFORCED CONCRETE. Reinforced Concrete Design. A Fundamental Approach - Fifth Edition

CHAPTER REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition CONCRETE Fifth Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering

SECTION HELICAL SCREW FOUNDATIONS

SECTION 31 40 10 PART 1 - GENERAL 1.01 SUMMARY A. Provide helical screw foundation system, complete. Work consist of providing required engineering, supervision, labor, tools, materials, equipment, means

III. Compression Members. Design of Steel Structures. Introduction. Compression Members (cont.)

ENCE 455 Design of Steel Structures III. Compression Members C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University it of Maryland Compression Members Following subjects are covered:

Helical Design Theory and Applications. By Darin Willis, P.E.

Helical Design Theory and Applications By Darin Willis, P.E. Solution Systems Ram Jack utilizes two unique underpinning & anchoring systems Hydraulically driven piles (pressed) Helical piles (torqued)

Geotechnical Measurements and Explorations Prof. Nihar Ranjan Patra Department of Civil Engineering Indian Institute of Technology, Kanpur

Geotechnical Measurements and Explorations Prof. Nihar Ranjan Patra Department of Civil Engineering Indian Institute of Technology, Kanpur Lecture No. # 13 (Refer Slide Time: 00:18) So last class, it was

Lymon C. Reese & Associates LCR&A Consulting Services Tests of Piles Under Axial Load

Lymon C. Reese & Associates LCR&A Consulting Services Tests of Piles Under Axial Load Nature of Services The company has a long history of performance of tests of piles and pile groups under a variety

Centre, Bandar Tasik Selatan, Kuala Lumpur, Malaysia.

Methodology for Design of Piled Raft for Five-Storeys Buildings on Very Soft Clay Tan, Y.C. 1, Cheah, S.W. 1 and Taha, M.R. 2 Abstract Conventional piled foundation is usually designed for buildings to

Design of pile foundations following Eurocode 7-Section 7

Brussels, 18-20 February 2008 Dissemination of information workshop 1 Workshop Eurocodes: background and applications Brussels, 18-20 Februray 2008 Design of pile foundations following Eurocode 7-Section

CIV E Geotechnical Engineering I Direct Shear Test

Purpose Determine the shear strength of dry cohesionless sand with the direct shear box apparatus. Required reading Das 2006 Sections 11.1 to 11.7 (pages 374 to 389). Theory The general shear strength

DETERMINING MODULUS OF SUB-GRADE REACTION (K VALUE)

Test Procedure for DETERMINING MODULUS OF SUB-GRADE REACTION (K VALUE) TxDOT Designation: Tex-125-E Effective Date: August 1999 1. SCOPE 1.1 This method evaluates the stiffness of subgrade soils in either

Introduction to Spread Footings and Mat Foundations

Introduction to Spread Footings and Mat Foundations Course No: G02-008 Credit: 2 PDH J. Paul Guyer, P.E., R.A., Fellow ASCE, Fellow AEI Continuing Education and Development, Inc. 9 Greyridge Farm Court

Hardened Concrete. Lecture No. 14

Hardened Concrete Lecture No. 14 Strength of Concrete Strength of concrete is commonly considered its most valuable property, although in many practical cases, other characteristics, such as durability

Dynamic Load Testing of Helical Piles

Dynamic Load Testing of Helical Piles ANNUAL KANSAS CITY SPECIALTY SEMINAR 2014 JANUARY 10, 2014 Jorge Beim JWB Consulting LLC Pile Dynamics, Inc. Main Topics Brief description of the Dynamic Load Test

GEOTECHNICAL ENGINEERING II

GEOTECHNICAL ENGINEERING II MODULE I CHAPTER 2 Site investigation and soil exploration SYLLABUS - Module I 2. Site investigation and soil exploration: objectives - planning - reconnaissance - depth and

INTRODUCTION TO SOIL MODULI. Jean-Louis BRIAUD 1

INTRODUCTION TO SOIL MODULI By Jean-Louis BRIAUD 1 The modulus of a soil is one of the most difficult soil parameters to estimate because it depends on so many factors. Therefore when one says for example:

Underpinning Systems 14.1 FOUNDATION REPAIR. Helical Piles

Helical Piles Howard A. Perko Copyright 0 2009 by John Wiley & Sons, Inc. All rights reserved. C h a p t e r 14 Underpinning Systems There has been tremendous growth in the use of helical piles for underpinning

The Experimental Study on Uplift Bearing Capacity of Helical Piles in Silt Deposits

The Experimental Study on Uplift Bearing Capacity of Helical Piles in Silt Deposits Likhitha.H 1, B.R Ramesh 2 PG student, Department of Geotechnical Engineering, East West Institute of Technology, Bangalore,

11. THE STABILITY OF SLOPES

11-1 11. THE STABILITY OF SLOPES 11.1 INTRODUCTION The quantitative determination of the stability of slopes is necessary in a number of engineering activities, such as: (a) (b) (c) (d) the design of earth

Module 5 (Lectures 17 to 19) MAT FOUNDATIONS

Module 5 (Lectures 17 to 19) MAT FOUNDATIONS Topics 17.1 INTRODUCTION Rectangular Combined Footing: Trapezoidal Combined Footings: Cantilever Footing: Mat foundation: 17.2 COMMON TYPES OF MAT FOUNDATIONS

USE OF MICROPILES IN TEXAS BRIDGES. by John G. Delphia, P.E. TxDOT Bridge Division Geotechnical Branch

USE OF MICROPILES IN TEXAS BRIDGES by John G. Delphia, P.E. TxDOT Bridge Division Geotechnical Branch DEFINITION OF A MICROPILE A micropile is a small diameter (typically less than 12 in.), drilled and

NEGATIVE SKIN FRICTION AND SETTLEMENT OF PILES. Dr. Bengt H. Fellenius, P. Eng. University of Ottawa, Canada

Fellenius, B. H., 1984. Negative skin friction and settlement of piles. Second International Seminar, Pile Foundations, Nanyang Technological Institute, Singapore, November 28-30, 12 p. NEGATIVE SKIN FRICTION

Helical Pier Foundation System U.S. Patents 5,011,336; 5,120,163; 5,213,448

Helical Pier Foundation System U.S. Patents 5,011,336; 5,120,163; 5,213,448 Technical Manual Contents Helical Pier Foundation System History Research and Development Advantages Theory of Foundation Anchor

In-situ Load Testing to Evaluate New Repair Techniques

In-situ Load Testing to Evaluate New Repair Techniques W.J. Gold 1 and A. Nanni 2 1 Assistant Research Engineer, Univ. of Missouri Rolla, Dept. of Civil Engineering 2 V&M Jones Professor, Univ. of Missouri

Nicholson Construction Company 12 McClane Street Cuddy, PA 15031 Telephone: 412-221-4500 Facsimile: 412-221-3127 Pent Up Load and Its Effect on Load Test Evaluation by T.D. Richards Jr., P.E. Nicholson

MODEL SPECIFICATION FOR HELICAL PILE FOUNDATIONS COMPRESSION APPLICATIONS

MODEL SPECIFICATION FOR HELICAL PILE FOUNDATIONS COMPRESSION APPLICATIONS Page 1 of 9 1. SCOPE A. The work consists of designing, furnishing, installing, loading and testing helical piles and any ancillary

MODEL SPECIFICATION FOR HELICAL PILE FOUNDATIONS COMPRESSION APPLICATIONS

MODEL SPECIFICATION FOR HELICAL PILE FOUNDATIONS COMPRESSION APPLICATIONS 1. SCOPE A. The work consists of designing, furnishing, installing, loading and testing helical piles used to support compressive

Design Analysis and Review of Stresses at a Point

Design Analysis and Review of Stresses at a Point Need for Design Analysis: To verify the design for safety of the structure and the users. To understand the results obtained in FEA, it is necessary to

DESIGN OF BEAM-COLUMNS - I

13 DESIGN OF BEA-COLUNS - I INTRODUCTION Columns in practice rarely experience concentric axial compression alone. Since columns are usually parts of a frame, they experience both bending moment and axial

Transmission Foundations. helical piles and guy anchors for transmission structures. www.hubbellpowersystems.com

Transmission Foundations helical piles and guy anchors for transmission structures www.hubbellpowersystems.com Grid locked on your transmission job? Instant Foundation helical piles go places concrete

Design of reinforced concrete columns. Type of columns. Failure of reinforced concrete columns. Short column. Long column

Design of reinforced concrete columns Type of columns Failure of reinforced concrete columns Short column Column fails in concrete crushed and bursting. Outward pressure break horizontal ties and bend

DESIGN SPECIFICATIONS FOR HIGHWAY BRIDGES PART V SEISMIC DESIGN

DESIGN SPECIFICATIONS FOR HIGHWAY BRIDGES PART V SEISMIC DESIGN MARCH 2002 CONTENTS Chapter 1 General... 1 1.1 Scope... 1 1.2 Definition of Terms... 1 Chapter 2 Basic Principles for Seismic Design... 4

Statics of Structural Supports

Statics of Structural Supports TYPES OF FORCES External Forces actions of other bodies on the structure under consideration. Internal Forces forces and couples exerted on a member or portion of the structure

Statics of Structural Supports

Statics of Structural Supports TYPES OF FORCES External Forces actions of other bodies on the structure under consideration. Internal Forces forces and couples exerted on a member or portion of the structure

Draft Table of Contents Building Code Requirements for Structural Concrete and Commentary ACI 318-14 BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE (ACI 318 14) Chapter 1 General 1.1 Scope of ACI 318

Optimum proportions for the design of suspension bridge

Journal of Civil Engineering (IEB), 34 (1) (26) 1-14 Optimum proportions for the design of suspension bridge Tanvir Manzur and Alamgir Habib Department of Civil Engineering Bangladesh University of Engineering

White Paper: Establishing and Investigating Foundation Zones of Influence

White Paper: Establishing and Investigating Foundation Zones of Influence Prepared by: Bracken Engineering, Inc. 2701 W. Busch Blvd, Ste 200 Tampa, Florida 33618 December 1, 2012 (Revised: December 2014)

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1.1 Background of the research Beam is a main element in structural system. It is horizontal member that carries load through bending (flexure) action. Therefore, beam will deflect

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

37 Module 6: Lecture -2: Buried Structures Content in this module: Load on Pipes, Marston s load theory for rigid and flexible pipes, Trench and Projection conditions, minimum cover, Pipe floatation and

INDIRECT METHODS SOUNDING OR PENETRATION TESTS. Dr. K. M. Kouzer, Associate Professor in Civil Engineering, GEC Kozhikode

INDIRECT METHODS SOUNDING OR PENETRATION TESTS STANDARD PENETRATION TEST (SPT) Reference can be made to IS 2131 1981 for details on SPT. It is a field edtest to estimate e the penetration e resistance

Structural Axial, Shear and Bending Moments

Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants