ANALYSIS FOR BEHAVIOR AND ULTIMATE STRENGTH OF CONCRETE CORBELS WITH HYBRID REINFORCEMENT

Size: px
Start display at page:

Download "ANALYSIS FOR BEHAVIOR AND ULTIMATE STRENGTH OF CONCRETE CORBELS WITH HYBRID REINFORCEMENT"

Transcription

1 International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 10, Oct 2015, pp Article ID: IJCIET_06_10_003 Available online at ISSN Print: and ISSN Online: IAEME Publication ANALYSIS FOR BEHAVIOR AND ULTIMATE STRENGTH OF CONCRETE CORBELS WITH HYBRID REINFORCEMENT Prof. Dr. Ammar Yaser Ali and Ahmed Mohammed Mahdi Civil Engineering Dept. Collage of Engineering University of Babylon, Iraq ABSTRACT This research is devoted to investigate the behavior and ultimate strength of concrete corbels with hybrid reinforcement (steel and CFRP) bars subject to vertical distributed applied load only. Experimental investigation were carried on eighteen specimens and divided in two groups according to location of hybrid reinforcement. The experimental program variables include ratio of hybridization, location of hybrid reinforcement, and shear span-toeffective depth (a/d) ratio. All specimens had the same dimensions and tested as upside down double-symmetrical concrete corbels. The experimental program results obtained from the adopted hybridization reinforcement technique showed that a significant improvement in the behavior and carrying capacity of the tested corbels with an increase about (5.6% - 44%), and (2.3% - 20%) in the ultimate load with (a/d) (0.75, and 0.33) respectively, for specimens with main tension hybrid reinforcement with ratio (20, 40, 60, 80, and 100) %. For specimens hybrid in horizontal (closed stirrup) reinforcement, when increase the hybridization ratio of secondary reinforcement from (0 to 50) % and from (0 to 100) %, the ultimate shear strength will increase by about (16%, 10%) and (6.4%, 15.5%) with shear span-to-effective depth ratio (0.75, and 0.33) respectively. The increase in strength and stiffness was realized at the expense of a loss in ductility due to the brittle behavior of CFRP bars. The presence of CFRP bars increased the deflection and crack width at service state, and increased the concrete strain with increasing the hybridization ratio, this was expected due to lower the modulus of elasticity and bond strength of CFRP bars compared with steel bars. Keywords: Corbel, Behavior and ultimate strength, Hybrid reinforcement and Steel with CFRP bars editor@iaeme.com

2 Prof. Dr. Ammar Yaser Ali and Ahmed Mohammed Mahdi Cite this Article: Prof. Dr. Ammar Yaser Ali and Ahmed Mohammed Mahdi. Analysis for Behavior And ultimate Strength of Concrete Corbels with Hybrid Reinforcement. International Journal of Civil Engineering and Technology, 6(10), 2015, pp INTRODUCTION Corbels are short cantilevers with a shear span to depth ratio lower than unity which tend to act as deep beams or simple trusses rather than flexural members [1], they are generally built monolithically with the columns or walls. They are also used particularly in precast structures where their principal function is the transfer of vertical and horizontal forces to supporting principal members. Corbels are principally designed to resist the ultimate shear force Vu applied to them by the beam and they behave like short cantilevered deep beam so the common behavior is governed by shear rather than flexural. The applied loads are transferred predominately through shear, because of the usually low shear span to effective depth ratio. The mechanical behavior of concrete corbels at failure may be either a flexural failure or beam-shear failure after yielding of the reinforcement. The ultimate strength of a corbel can be calculated by taking it to be lesser of (a) shear strength of the corbel interface, which can be calculated using the shear friction theorem; and (b) vertical load that cause to the development of the flexural ultimate strength of the corbelcolumn interface [2]. FRP internal reinforcement is widely used in commercial applications as an alternative to conventional steel reinforcement primarily to enhance the corrosion resistance of reinforced concrete structures. Three important physical characteristics of fiber reinforced polymer materials must be considered: high-tensile strength; lowmodulus of elasticity; and linear-elastic brittle behavior to failure [3]. CFRP bars using in the present study with steel bars as hybrid reinforcement in primary or secondary reinforcement. 2. EXPERIMENTAL PROGRAM A total of eighteen corbels were tested under vertical distributed applied load. The experimental study consisted of two test groups. Group (A) included main hybrid reinforcement with percentage (20%, 40%, 60%, 80%, and 100%), while Group (B) included horizontal (closed stirrup) hybrid reinforcement with percentage (50%, and 100%). The two (a/d) ratios evaluated were (0.75), and (0.33) used in each one of the test groups (A and B). As shown in Figure (1), the column supporting the two corbels cantilevering on opposite side was 200mm by 180mm in cross section and 575mm long. Corbels had cantilever projection length of 300mm, 180mm width, and total depth of 275mm at face of column and 150mm at the free end, and the effective depth 240mm with shear span 180 mm, or 80 mm. Columns were reinforced with four deformed bars having a 16mm diameter and stirrups having a 6mm diameter placed at pitch of 125mm. The primary reinforcement (main bars) having diameter 6mm of steel and/or CFRP bars with varying ratios of hybridization, placed at the top of the corbel with an effective cover of 35mm. Main bars were welded with cross bar of 8mm diameter, near the end of each corbels, to provide additional anchorage. The horizontal closed stirrup having diameter 6mm of steel and/or CFRP bars with varying ratios of hybridization. These closed stirrups were anchored by framing bars of diameter 6mm editor@iaeme.com

3 Analysis for Behavior And ultimate Strength of Concrete Corbels with Hybrid Reinforcement Figure 1 Details of reinforcing and geometry of tested corbels The hybridization processes are replaced part of the steel bars by CFRP bars with an equal area to improve properties of reinforcement system and benefit from nonmetallic material in the present study field. Hybridization process used an equal area of reinforcement and symmetry distribution to easy comparison, and explored the effect of considered variable. Two pilot, two control corbels (homogenous) and fourteen hybrid reinforcement corbels are tested with deferent (a/d) ratio (0.75, and 0.33). Twelve of them hybrid in main tension reinforcement and the other in horizontal (closed stirrup) reinforcement. Figure (2) shows hybridization processes in these groups editor@iaeme.com

4 Prof. Dr. Ammar Yaser Ali and Ahmed Mohammed Mahdi a) Hybridization in Main Reinforcement. b) Hybridization in Horizontal Reinforcement. Figure 2 Hybridization processes 3. MATERIALS In the experimental program, (Ø6mm) deformed, mild steel bars and (Ø6mm) of CFRP bars are employed as tension reinforcement and closed stirrup. Because of the need to weld and bend in the reinforcement details of corbels according to the requirements of ACI-code , and the inability to do that with the CFRP bars, we 28 editor@iaeme.com

5 Analysis for Behavior And ultimate Strength of Concrete Corbels with Hybrid Reinforcement searched for a way that led us to do that, galvanized steel clamp was the acceptable way for this purpose. Ordinary portland cement (Type I) from Iraq plant named TASLUJA. Crushed gravel from Al-Nibaey region with maximum size of (14 mm). Natural sand from AL-NAJAF city in Iraq with maximum size of (4.75 mm) and fineness modulus of (2.46) [4]. Normal strength concrete was used to cast all specimens. Normal strength concrete mix was designed in accordance with ACI-211 mix design with nominal compressive strength of about (30MPa). In order to select the mix proportion for the concrete used in preparing the reinforced concrete corbels, three trial mixes were carried out in order to obtain cylinder strength of (30MPa) after age 28-days.The final mix used was 1:1.8:2.3 by weight. The water cement ratio was equal to 0.53 and cement content was 407 kg/m3. 4. TEST MEASUREMENT AND INSTRUMENTATION The hydraulic universal testing machine has a capacity of (2000 kn) was used to test the corbel specimen, as shown in Plate (1). The deflections were measured by means of (0.01 mm) accuracy dial gauge. Strain of concrete measured used demic point and dial gauge with accuracy of (0.001 mm). 5. TEST PROCEDURE All corbels were painted with white color to observe the crack development and marked, demic discs were fixed on marking location. At first, the specimens loaded by 5 kn to seat the support and the loading system, then unloading to zero. The load increment was 15 kn along the test. The deflection corresponding to the applied load was measured at every load step at center of column. Also, recording the first crack load, the ultimate load, and the concrete strain were measured, for each corbel. Finally the maximum crack width was measured at the end the test by crack meter. Plate 1 Testing Machine 29 editor@iaeme.com

6 Prof. Dr. Ammar Yaser Ali and Ahmed Mohammed Mahdi 6. EXPERIMENTAL RESULTS The overall behavior and strength of sixteen corbels reinforced with steel bars and/or CFRP bars will be investigated and discussed. During the experimental work, load versus deflection, first cracking load and ultimate loads, cracking patterns, maximum crack width, concrete strains and modes of failure were recorded for each tested corbel specimen. Table (3) shows first crack, ultimate load, ultimate deflection, and mode of failure. Table 1 Cracking load, ultimate load and failure modes of the tested corbels 6.1. Deflections and Cracks Pattern for Specimens with Main Hybrid Reinforcement Load-deflection curves of the tested corbels and cracks pattern at all stages of loading up to failure were constructed and shown in Figures(3) and (4), and Plate(2) editor@iaeme.com

7 Analysis for Behavior And ultimate Strength of Concrete Corbels with Hybrid Reinforcement Figure 3 Load-deflection curve for specimens with main hybrid reinforcement and (a/d=0.75) Figure 4 Load-Deflection Curve for Specimens with Main Hybrid Reinforcement and (a/d=0.33) 31 editor@iaeme.com

8 Prof. Dr. Ammar Yaser Ali and Ahmed Mohammed Mahdi 32

9 Analysis for Behavior And ultimate Strength of Concrete Corbels with Hybrid Reinforcement Plate 2 Cracks pattern for specimens with main hybrid reinforcement 6.2. Deflections and Cracks Pattern for Specimens with Secondary Hybrid Reinforcement Load-deflection curves of the tested corbels and cracks pattern at all stages of loading up to failure were constructed and shown in Figures(5) and (6), and Plate(3). Figure 5 Load-deflection curve for specimens with secondary hybrid reinforcement and (a/d=0.75) Figure 6 Load-deflection curve for specimens with secondary hybrid reinforcement and (a/d=0.33) 33 editor@iaeme.com

10 Prof. Dr. Ammar Yaser Ali and Ahmed Mohammed Mahdi Plate 3 Cracks pattern for specimens with secondary hybrid reinforcement 7. CONCLUSIONS Based on the experimental testing results and the theoretical analysis results obtained by ANSYS Program version (14.5) for the models of reinforced concrete corbels with hybrid reinforcement together with parametric study, the following conclusions can be stated within the scope of this study: The crowded corbel reinforcement according to the requirements of ACI code provisions and the small size of corbels when compared with other structural elements make the use of hybrid reinforcement better solutions for this problem. The problems associated with the brittle nature of CFRP bars can be overcome by combining CFRP and steel bars to take advantage of features with collected together in hybrid reinforcement technology. Presence of CFRP bars as an alternative to steel bars led to increase the ultimate shear strength of concrete corbels by about (5.6-44) %, and (2.3-20) % for specimens with hybrid in main reinforcement only (group A) with (a/d) (0.75, and 0.33) respectively when an increase in the hybridization ratio (20-100)%. When increase the hybridization ratio of secondary reinforcement from (0 to 50)% and (0 to 100)%, the ultimate shear strength will increase by about (16%, 10%) and (6.4%, 15.5%) for span of shear-to-effective depth ratio (0.75, and 0.33), respectively. The first cracking loads were increased by about (0-43.4)% and decreased by about (0-18.6)% with increasing hybridization ratio (20-100)% for specimens 34 editor@iaeme.com

11 Analysis for Behavior And ultimate Strength of Concrete Corbels with Hybrid Reinforcement hybridization in main reinforcement only with (a/d) (0.75, and 0.33) respectively and decreased by about (18.6%) and (13.9%) for specimens hybridization in closed stirrup only with (a/d) (0.75) and a little effect in first crack load with (a/d) (0.33) when increased the hybridization ratio (50% to 100%). For concrete corbels with hybrid reinforcement in main tension and with (a/d) (0.75), the mode of failure altered from tension to compression flexural failure followed by diagonal splitting with increasing the hybridization ratio. While the corbels with (a/d) (0.33), the mode of failure classified as shear-friction failure without changing. For concrete corbels with hybrid reinforcement in horizontal closed stirrup and with (a/d) (0.75), the mode of failure altered from flexural tension failure to premature diagonal splitting failure with increasing the hybridization ratio. While the corbels with (a/d) (0.33), the mode of failure classified as shear-friction failure without changing. Deflection at service loads increase for all specimens with increase the hybridization ratio, due to brittle behavior, lower modules of elasticity, and lower bond strength for CFRP bars, in sup-group AI (main hybrid reinforcement with (a/d) (0.75)) the deflection increasing (18.75% - 125%) and for sup-group AII (main hybrid reinforcement with (a/d) 0.33)) the increasing (18.4% %), for sup-group BI, and BII (secondary hybrid reinforcement with (a/d)(0.75, and 0.33) the increasing (20% %), (12.2% %), respectively with increase the hybridization ratio (50% to 100%). The ultimate shear strength predicted by the numerical analysis were close to that measured during experimental testing with maximum difference (2.8%) as average. The first cracking load obtained from numerical data showed results lower than the experimental data recorded with difference about (8.75%) as average. 8. REFERENCES [1] ACI Committee 318, 2011, Building Code Requirements for Structural Concrete (ACI ), American Concrete Institute, Farmington Hills, USA, pp [2] Mattock, A. H., Chen, K.C, and Soongswang, K., 1976, The Behavior of Reinforced Concrete Corbels, Journal of PCI Journal, March, pp [3] ACI Committee 440, 2006, Guide for the Design and Construction of Concrete Reinforced with FRP Bars (ACI 440.XR), American Concrete Institute, Farmington Hills, pp [4] Javaid Ahmad and Dr. Javed Ahmad Bhat. Ductility of Timber Beams Strengthened Using CFRP Plates. International Journal of Civil Engineering and Technology, 4(5), 2013, pp [5] Iraqi Specification No.45, 1984, Natural Sources for Gravel that is used in concrete and construction, Baghdad, [6] Iraqi Specification No.5, 1984, Portland cement, Baghdad, [7] Yaman S.S. Al-Kamaki, Riadh Al-Mahaidi and Azad A. Mohammed. Behavior of Concrete Damaged By High Temperature Exposure and Confined with CFRP Fabrics. International Journal of Civil Engineering and Technology, 5(8), 2014, pp editor@iaeme.com

USE OF CFRP LAMINATES FOR STRENGTHENING OF REINFORCED CONCRETE CORBELS

USE OF CFRP LAMINATES FOR STRENGTHENING OF REINFORCED CONCRETE CORBELS International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 11, Nov 2015, pp. 11-20, Article ID: IJCIET_06_11_002 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=6&itype=11

More information

BEHAVIOR OF SHORT CONCRETE COLUMNS REINFORCED BY CFRP BARS AND SUBJECTED TO ECCENTRIC LOAD

BEHAVIOR OF SHORT CONCRETE COLUMNS REINFORCED BY CFRP BARS AND SUBJECTED TO ECCENTRIC LOAD International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 10, Oct 2015, pp. 15-24 Article ID: IJCIET_06_10_002 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=6&itype=10

More information

CFRP STRENGTHENING OF CIRCULAR CONCRETE SLAB WITH AND WITHOUT OPENINGS

CFRP STRENGTHENING OF CIRCULAR CONCRETE SLAB WITH AND WITHOUT OPENINGS International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 1, Jan-Feb 2016, pp. 290-303, Article ID: IJCIET_07_01_024 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=1

More information

IMPROVING THE STRUT AND TIE METHOD BY INCLUDING THE CONCRETE SOFTENING EFFECT

IMPROVING THE STRUT AND TIE METHOD BY INCLUDING THE CONCRETE SOFTENING EFFECT International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 117 127, Article ID: IJCIET_07_02_009 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

Detailing of Reinforcment in Concrete Structures

Detailing of Reinforcment in Concrete Structures Chapter 8 Detailing of Reinforcment in Concrete Structures 8.1 Scope Provisions of Sec. 8.1 and 8.2 of Chapter 8 shall apply for detailing of reinforcement in reinforced concrete members, in general. For

More information

Numerical modelling of shear connection between concrete slab and sheeting deck

Numerical modelling of shear connection between concrete slab and sheeting deck 7th fib International PhD Symposium in Civil Engineering 2008 September 10-13, Universität Stuttgart, Germany Numerical modelling of shear connection between concrete slab and sheeting deck Noémi Seres

More information

Draft Table of Contents. Building Code Requirements for Structural Concrete and Commentary ACI 318-14

Draft Table of Contents. Building Code Requirements for Structural Concrete and Commentary ACI 318-14 Draft Table of Contents Building Code Requirements for Structural Concrete and Commentary ACI 318-14 BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE (ACI 318 14) Chapter 1 General 1.1 Scope of ACI 318

More information

THEORETICAL BEHAVIOR OF COMPOSITE CONSTRUCTION PRECAST REACTIVE POWDER RC GIRDER AND ORDINARY RC DECK SLAB

THEORETICAL BEHAVIOR OF COMPOSITE CONSTRUCTION PRECAST REACTIVE POWDER RC GIRDER AND ORDINARY RC DECK SLAB International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 12, Dec 215, pp. 8-21, Article ID: IJCIET_6_12_2 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=6&itype=12

More information

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading:

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading: SEISMIC DESIGN Various building codes consider the following categories for the analysis and design for earthquake loading: 1. Seismic Performance Category (SPC), varies from A to E, depending on how the

More information

In-situ Load Testing to Evaluate New Repair Techniques

In-situ Load Testing to Evaluate New Repair Techniques In-situ Load Testing to Evaluate New Repair Techniques W.J. Gold 1 and A. Nanni 2 1 Assistant Research Engineer, Univ. of Missouri Rolla, Dept. of Civil Engineering 2 V&M Jones Professor, Univ. of Missouri

More information

1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 1 Introduction / Design Criteria for Reinforced Concrete Structures

1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 1 Introduction / Design Criteria for Reinforced Concrete Structures Prof. Oral Buyukozturk Massachusetts Institute of Technology Outline 1 1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 1 Introduction / Design Criteria for Reinforced Concrete Structures

More information

Fire-Damage or Freeze-Thaw of Strengthening Concrete Using Ultra High Performance Concrete

Fire-Damage or Freeze-Thaw of Strengthening Concrete Using Ultra High Performance Concrete Fire-Damage or Freeze-Thaw of Strengthening Concrete Using Ultra High Performance Concrete Ming-Gin Lee 1,a, Yi-Shuo Huang 1,b 1 Department of Construction Engineering, Chaoyang University of Technology,Taichung

More information

APE T CFRP Aslan 500

APE T CFRP Aslan 500 Carbon Fiber Reinforced Polymer (CFRP) Tape is used for structural strengthening of concrete, masonry or timber elements using the technique known as Near Surface Mount or NSM strengthening. Use of CFRP

More information

INFLUENCE OF STEEL FIBERS AS ADMIX IN NORMAL CONCRETE MIX

INFLUENCE OF STEEL FIBERS AS ADMIX IN NORMAL CONCRETE MIX International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 1, Jan-Feb 2016, pp. 93-103, Article ID: IJCIET_07_01_008 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=1

More information

THE EFFECT OF STIRRUPS AND HOOKED STEEL FIBERS INSTEAD ON MOMENT-ROTATION CAPACITY OF BEAM-COLUMN CONNECTIONS

THE EFFECT OF STIRRUPS AND HOOKED STEEL FIBERS INSTEAD ON MOMENT-ROTATION CAPACITY OF BEAM-COLUMN CONNECTIONS THE EFFECT OF STIRRUPS AND HOOKED STEEL FIBERS INSTEAD ON MOMENT-ROTATION CAPACITY OF BEAM-COLUMN CONNECTIONS Assist. Prof. Dr. S. KamilAkın 1, Assist. Prof. Dr. Nail Kara 1, 1 Department of Civil Engineering,

More information

Hardened Concrete. Lecture No. 14

Hardened Concrete. Lecture No. 14 Hardened Concrete Lecture No. 14 Strength of Concrete Strength of concrete is commonly considered its most valuable property, although in many practical cases, other characteristics, such as durability

More information

DESIGN AND ANALYSIS OF BRIDGE WITH TWO ENDS FIXED ON VERTICAL WALL USING FINITE ELEMENT ANALYSIS

DESIGN AND ANALYSIS OF BRIDGE WITH TWO ENDS FIXED ON VERTICAL WALL USING FINITE ELEMENT ANALYSIS International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 34-44, Article ID: IJCIET_07_02_003 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

Methods for Seismic Retrofitting of Structures

Methods for Seismic Retrofitting of Structures Methods for Seismic Retrofitting of Structures Retrofitting of existing structures with insufficient seismic resistance accounts for a major portion of the total cost of hazard mitigation. Thus, it is

More information

NONLINEAR FINITE ELEMENT ANALYSIS FOR REINFORCED CONCRETE SLABS UNDER PUNCHING LOADS

NONLINEAR FINITE ELEMENT ANALYSIS FOR REINFORCED CONCRETE SLABS UNDER PUNCHING LOADS International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 3, May June 2016, pp. 392 397, Article ID: IJCIET_07_03_040 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=3

More information

Technical Notes 3B - Brick Masonry Section Properties May 1993

Technical Notes 3B - Brick Masonry Section Properties May 1993 Technical Notes 3B - Brick Masonry Section Properties May 1993 Abstract: This Technical Notes is a design aid for the Building Code Requirements for Masonry Structures (ACI 530/ASCE 5/TMS 402-92) and Specifications

More information

SEISMIC RETROFITTING TECHNIQUE USING CARBON FIBERS FOR REINFORCED CONCRETE BUILDINGS

SEISMIC RETROFITTING TECHNIQUE USING CARBON FIBERS FOR REINFORCED CONCRETE BUILDINGS Fracture Mechanics of Concrete Structures Proceedings FRAMCOS-3 AEDIFICA TIO Publishers, D-79104 Freiburg, Germany SEISMIC RETROFITTING TECHNIQUE USING CARBON FIBERS FOR REINFORCED CONCRETE BUILDINGS H.

More information

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab, DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared

More information

Chapter 5 Bridge Deck Slabs. Bridge Engineering 1

Chapter 5 Bridge Deck Slabs. Bridge Engineering 1 Chapter 5 Bridge Deck Slabs Bridge Engineering 1 Basic types of bridge decks In-situ reinforced concrete deck- (most common type) Pre-cast concrete deck (minimize the use of local labor) Open steel grid

More information

ABSTRACT 1. INTRODUCTION 2. DESCRIPTION OF THE SEGMENTAL BEAM

ABSTRACT 1. INTRODUCTION 2. DESCRIPTION OF THE SEGMENTAL BEAM Ninth LACCEI Latin American and Caribbean Conference (LACCEI 11), Engineering for a Smart Planet, Innovation, Information Technology and Computational Tools for Sustainable Development, August 3-, 11,

More information

METHOD OF STATEMENT FOR STATIC LOADING TEST

METHOD OF STATEMENT FOR STATIC LOADING TEST Compression Test, METHOD OF STATEMENT FOR STATIC LOADING TEST Tension Test and Lateral Test According to the American Standards ASTM D1143 07, ASTM D3689 07, ASTM D3966 07 and Euro Codes EC7 Table of Contents

More information

Research on the meaning of reinforcement ductility for a behavior of double-spans reinforced concrete beam.

Research on the meaning of reinforcement ductility for a behavior of double-spans reinforced concrete beam. Research on the meaning of reinforcement ductility for a behavior of double-spans reinforced concrete beam. Prepared by: Contents list Page 1. Purpose of the research 3 2. Test models and stand description

More information

Retrofitting By Means Of Post Tensioning. Khaled Nahlawi 1

Retrofitting By Means Of Post Tensioning. Khaled Nahlawi 1 Retrofitting By Means Of Post Tensioning Khaled Nahlawi 1 Abstract An analytical program was prepared to retrofit the Holy Cross Church in Santa Cruz, California. An inelastic analysis was perfonned on

More information

SHEAR PERFORMANCE OF FIBER REINFORCED SELF COMPACTING CONCRETE DEEP BEAMS

SHEAR PERFORMANCE OF FIBER REINFORCED SELF COMPACTING CONCRETE DEEP BEAMS International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 1, Jan-Feb 2016, pp. 25-46, Article ID: IJCIET_07_01_003 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=1

More information

Analysis and Repair of an Earthquake-Damaged High-rise Building in Santiago, Chile

Analysis and Repair of an Earthquake-Damaged High-rise Building in Santiago, Chile Analysis and Repair of an Earthquake-Damaged High-rise Building in Santiago, Chile J. Sherstobitoff Ausenco Sandwell, Vancouver, Canada P. Cajiao AMEC, Vancouver, Canada P. Adebar University of British

More information

Experimental and analytical investigation of ferrocement water pipe

Experimental and analytical investigation of ferrocement water pipe Vol. 4(4), pp. 157-167, May, 2013 DOI 10.5897/JCECT2013.0230 ISSN 1996-0816 2013 Academic Journals http://www.academicjournals.org/jcect Journal of Civil Engineering and Construction Technology Full Length

More information

MODELLING OF AN INFILL WALL FOR THE ANALYSIS OF A BUILDING FRAME SUBJECTED TO LATERAL FORCE

MODELLING OF AN INFILL WALL FOR THE ANALYSIS OF A BUILDING FRAME SUBJECTED TO LATERAL FORCE International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 1, Jan-Feb 2016, pp. 180-187, Article ID: IJCIET_07_01_015 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=1

More information

Field Damage Inspection and Static Load Test Analysis of Jiamusi Highway Prestressed Concrete Bridge in China

Field Damage Inspection and Static Load Test Analysis of Jiamusi Highway Prestressed Concrete Bridge in China Advanced Materials Research Vols. 163-167 (2011) pp 1147-1156 Online available since 2010/Dec/06 at www.scientific.net (2011) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amr.163-167.1147

More information

PCI BIG BEAM COMPETITION

PCI BIG BEAM COMPETITION PCI BIG BEAM COMPETITION Official Rules for the PCI Engineering Design Competition Academic Year 2015-16 PROGRAM The PCI Student Education Committee is inviting entries from students to participate in

More information

National Council of Examiners for Engineering and Surveying. Principles and Practice of Engineering Structural Examination

National Council of Examiners for Engineering and Surveying. Principles and Practice of Engineering Structural Examination Structural Effective Beginning with the April 2011 The structural engineering exam is a breadth and exam examination offered in two components on successive days. The 8-hour Vertical Forces (Gravity/Other)

More information

Detailing of Reinforcement in Concrete Structures

Detailing of Reinforcement in Concrete Structures THE CIVIL & STRUCTURAL ENGINEERING PANEL ENGINEERS AUSTRALIA SYDNEY DIVISION 28 August 2012 Detailing of Reinforcement in Concrete Structures R.I. Gilbert Introduction: Detailing is often considered to

More information

NONLINEAR BEHAVIOR AND FRAGILITY ASSESSMENT OF MULTI-STORY CONFINED MASONRY WALLS UNDER CYCLIC LOADS

NONLINEAR BEHAVIOR AND FRAGILITY ASSESSMENT OF MULTI-STORY CONFINED MASONRY WALLS UNDER CYCLIC LOADS International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 1, Jan-Feb 216, pp. 113-127, Article ID: IJCIET_7_1_1 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=1

More information

OPTIMAL DIAGRID ANGLE TO MINIMIZE DRIFT IN HIGH-RISE STEEL BUILDINGS SUBJECTED TO WIND LOADS

OPTIMAL DIAGRID ANGLE TO MINIMIZE DRIFT IN HIGH-RISE STEEL BUILDINGS SUBJECTED TO WIND LOADS International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 11, Nov 215, pp. 1-1, Article ID: IJCIET_6_11_1 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=6&itype=11

More information

SEISMIC UPGRADE OF OAK STREET BRIDGE WITH GFRP

SEISMIC UPGRADE OF OAK STREET BRIDGE WITH GFRP 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3279 SEISMIC UPGRADE OF OAK STREET BRIDGE WITH GFRP Yuming DING 1, Bruce HAMERSLEY 2 SUMMARY Vancouver

More information

B.TECH. (AEROSPACE ENGINEERING) PROGRAMME (BTAE) Term-End Examination December, 2011 BAS-010 : MACHINE DESIGN

B.TECH. (AEROSPACE ENGINEERING) PROGRAMME (BTAE) Term-End Examination December, 2011 BAS-010 : MACHINE DESIGN No. of Printed Pages : 7 BAS-01.0 B.TECH. (AEROSPACE ENGINEERING) PROGRAMME (BTAE) CV CA CV C:) O Term-End Examination December, 2011 BAS-010 : MACHINE DESIGN Time : 3 hours Maximum Marks : 70 Note : (1)

More information

FLEXURAL BEHAVIOUR OF HYBRID FRP-UHPC GIRDERS UNDER STATIC LOADING

FLEXURAL BEHAVIOUR OF HYBRID FRP-UHPC GIRDERS UNDER STATIC LOADING Proceedings of 8 th International Conference on Short and Medium Span Bridge Niagara Falls, Canada 21 FLEXURAL BEHAVIOUR OF HYBRID FRP-UHPC GIRDERS UNDER STATIC LOADING Donna S. M. Chen Department of Civil

More information

Experimental assessment of concrete damage due to exposure to high temperature and efficacy of the repair system

Experimental assessment of concrete damage due to exposure to high temperature and efficacy of the repair system MATEC Web of Conferences 6, 06002 (2013) DOI: 10.1051/matecconf/20130606002 C Owned by the authors, published by EDP Sciences, 2013 Experimental assessment of concrete damage due to exposure to high temperature

More information

Step 11 Static Load Testing

Step 11 Static Load Testing Step 11 Static Load Testing Test loading is the most definitive method of determining load capacity of a pile. Testing a pile to failure provides valuable information to the design engineer and is recommended

More information

STUDY OF STRENGTH OF CONCRETE WITH PALM OIL FUEL ASH AS CEMENT REPLACEMENT

STUDY OF STRENGTH OF CONCRETE WITH PALM OIL FUEL ASH AS CEMENT REPLACEMENT International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 3, May June 2016, pp. 337 341, Article ID: IJCIET_07_03_033 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=3

More information

Optimum proportions for the design of suspension bridge

Optimum proportions for the design of suspension bridge Journal of Civil Engineering (IEB), 34 (1) (26) 1-14 Optimum proportions for the design of suspension bridge Tanvir Manzur and Alamgir Habib Department of Civil Engineering Bangladesh University of Engineering

More information

Page 1 of 18 28.4.2008 Sven Alexander Last revised 1.3.2010. SB-Produksjon STATICAL CALCULATIONS FOR BCC 250

Page 1 of 18 28.4.2008 Sven Alexander Last revised 1.3.2010. SB-Produksjon STATICAL CALCULATIONS FOR BCC 250 Page 1 of 18 CONTENT PART 1 BASIC ASSUMPTIONS PAGE 1.1 General 1. Standards 1.3 Loads 1. Qualities PART ANCHORAGE OF THE UNITS.1 Beam unit equilibrium 3. Beam unit anchorage in front..1 Check of capacity..

More information

Requirements for the Use of PRESSS Moment-Resisting Frame Systems

Requirements for the Use of PRESSS Moment-Resisting Frame Systems Requirements for the Use of PRESSS Moment-Resisting Frame Systems Neil M. Hawkins, Ph.D. Professor Emeritus Department of Civil Engineering University of Illinois at Urbana-Champaign Urbana, Illinois S.

More information

16. Beam-and-Slab Design

16. Beam-and-Slab Design ENDP311 Structural Concrete Design 16. Beam-and-Slab Design Beam-and-Slab System How does the slab work? L- beams and T- beams Holding beam and slab together University of Western Australia School of Civil

More information

Deflection Calculation of RC Beams: Finite Element Software Versus Design Code Methods

Deflection Calculation of RC Beams: Finite Element Software Versus Design Code Methods Deflection Calculation of RC Beams: Finite Element Software Versus Design Code Methods G. Kaklauskas, Vilnius Gediminas Technical University, 1223 Vilnius, Lithuania (gintaris.kaklauskas@st.vtu.lt) V.

More information

APPRAISAL ON THE STRENGTH OF CONCRETE PRODUCED WITH VARYING AGGREGATE SIZE

APPRAISAL ON THE STRENGTH OF CONCRETE PRODUCED WITH VARYING AGGREGATE SIZE International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 3, May June 2016, pp. 233 240, Article ID: IJCIET_07_03_023 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=3

More information

Design and Construction of Cantilevered Reinforced Concrete Structures

Design and Construction of Cantilevered Reinforced Concrete Structures Buildings Department Practice Note for Authorized Persons, Registered Structural Engineers and Registered Geotechnical Engineers APP-68 Design and Construction of Cantilevered Reinforced Concrete Structures

More information

Assistant Professor of Civil Engineering, University of Texas at Arlington

Assistant Professor of Civil Engineering, University of Texas at Arlington FRC Performance Comparison: Direct Tensile Test, Beam Type Bending Test, and Round Panel Test Shih Ho Chao (Presenting Author) Assistant Professor of Civil Engineering, University of Texas at Arlington

More information

MATERIALS AND MECHANICS OF BENDING

MATERIALS AND MECHANICS OF BENDING HAPTER Reinforced oncrete Design Fifth Edition MATERIALS AND MEHANIS OF BENDING A. J. lark School of Engineering Department of ivil and Environmental Engineering Part I oncrete Design and Analysis b FALL

More information

Cover. When to Specify Intermediate Precast Concrete Shear Walls. 10.10 Rev 4. White Paper WP004

Cover. When to Specify Intermediate Precast Concrete Shear Walls. 10.10 Rev 4. White Paper WP004 Cover Introduction In regard to precast concrete systems, the addition of two new categories of Seismic Force Resisting Systems (SFRS) in IBC 2006 has created some confusion about whether to specify intermediate

More information

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials. Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity

More information

DESIGN OF SLABS. Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia

DESIGN OF SLABS. Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia DESIGN OF SLABS Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia Introduction Types of Slab Slabs are plate elements

More information

Basics of Reinforced Concrete Design

Basics of Reinforced Concrete Design Basics of Reinforced Concrete Design Presented by: Ronald Thornton, P.E. Define several terms related to reinforced concrete design Learn the basic theory behind structural analysis and reinforced concrete

More information

PERFORMANCE OF SLABS REINFORCED BY PEIKKO PSB STUDS

PERFORMANCE OF SLABS REINFORCED BY PEIKKO PSB STUDS TECHNICAL ARTICLES PERFORMANCE OF SLABS REINFORCED BY PEIKKO PSB STUDS Demonstrated by full scale tests and validated by ETA approval starting April 2013 Authors: Aurelio Muttoni (Professor), Ecole Polytechnique

More information

DEVELOPMENT OF A NEW TEST FOR DETERMINATION OF TENSILE STRENGTH OF CONCRETE BLOCKS

DEVELOPMENT OF A NEW TEST FOR DETERMINATION OF TENSILE STRENGTH OF CONCRETE BLOCKS 1 th Canadian Masonry Symposium Vancouver, British Columbia, June -5, 013 DEVELOPMENT OF A NEW TEST FOR DETERMINATION OF TENSILE STRENGTH OF CONCRETE BLOCKS Vladimir G. Haach 1, Graça Vasconcelos and Paulo

More information

Structural Failures Cost Lives and Time

Structural Failures Cost Lives and Time Structural Failures Cost Lives and Time Recent failures of storage bins, silos and other structures highlight the need to increase awareness of hazards associated with these structures. Since 2010, one

More information

SEISMIC DESIGN PROVISIONS FOR PRECAST CONCRETE STRUCTURES. S.K. Ghosh, Ph. D. President S.K. Ghosh Associates Inc. Northbrook, IL BACKGROUND

SEISMIC DESIGN PROVISIONS FOR PRECAST CONCRETE STRUCTURES. S.K. Ghosh, Ph. D. President S.K. Ghosh Associates Inc. Northbrook, IL BACKGROUND SEISMIC DESIGN PROVISIONS FOR PRECAST CONCRETE STRUCTURES S.K. Ghosh, Ph. D. President S.K. Ghosh Associates Inc. Northbrook, IL BACKGROUND Until recently, precast concrete structures could be built in

More information

Steel fibres to improve structural performance of reinforced concrete members

Steel fibres to improve structural performance of reinforced concrete members Steelibres to Improve Structural Performance of Reinforced Concrete Members by Prof. György L. Balázs TU Budapest and Ass. Prof. Imre Kovács UD Steel fibres to improve structural performance of reinforced

More information

Stress Strain Relationships

Stress Strain Relationships Stress Strain Relationships Tensile Testing One basic ingredient in the study of the mechanics of deformable bodies is the resistive properties of materials. These properties relate the stresses to the

More information

SLAB DESIGN. Introduction ACI318 Code provides two design procedures for slab systems:

SLAB DESIGN. Introduction ACI318 Code provides two design procedures for slab systems: Reading Assignment SLAB DESIGN Chapter 9 of Text and, Chapter 13 of ACI318-02 Introduction ACI318 Code provides two design procedures for slab systems: 13.6.1 Direct Design Method (DDM) For slab systems

More information

A Decade of Performance of FRP-Repaired Concrete Structures

A Decade of Performance of FRP-Repaired Concrete Structures A Decade of Performance of FRP-Repaired Concrete Structures Shamim A. Sheikh and S. Mukhtar Homam Department of Civil Engineering University of Toronto Toronto, Canada ABSTRACT During the last ten years,

More information

EXPERIMENTAL INVESTIGATION ON STRENGTH AND DURABILITY PROPERTIES OF HYBRID FIBER REINFORCED CONCRETE

EXPERIMENTAL INVESTIGATION ON STRENGTH AND DURABILITY PROPERTIES OF HYBRID FIBER REINFORCED CONCRETE EXPERIMENTAL INVESTIGATION ON STRENGTH AND DURABILITY PROPERTIES OF HYBRID FIBER REINFORCED CONCRETE SUDHEER JIROBE 1, BRIJBHUSHAN.S 2, MANEETH P D 3 1 M.Tech. Student, Department of Construction technology,

More information

INSTRUCTIONS FOR USE

INSTRUCTIONS FOR USE 2/2013 ANCHOR BOLTS INSTRUCTIONS FOR USE - Threaded rebars ATP, AHP, AJP - Threaded high strength steel bolts ALP-L, ALP-P, AMP ATP AHP ALP-L ALP-P AMP Eurocode design according to EN1993-1-8 (2005) &

More information

Miss S. S. Nibhorkar 1 1 M. E (Structure) Scholar,

Miss S. S. Nibhorkar 1 1 M. E (Structure) Scholar, Volume, Special Issue, ICSTSD Behaviour of Steel Bracing as a Global Retrofitting Technique Miss S. S. Nibhorkar M. E (Structure) Scholar, Civil Engineering Department, G. H. Raisoni College of Engineering

More information

STRENGTH OF CONCRETE INCORPORATING AGGREGATES RECYCLED FROM DEMOLITION WASTE

STRENGTH OF CONCRETE INCORPORATING AGGREGATES RECYCLED FROM DEMOLITION WASTE STRENGTH OF CONCRETE INCORPORATING AGGREGATES RECYCLED FROM DEMOLITION WASTE R. Kumutha and K. Vijai Department of Civil Engineering, Sethu Institute of Technology, Pulloor, Kariapatti, India E-Mail: kumuthar@yahoo.co.in,

More information

AN EXPERIMENTAL STUDY ON STRENGTH AND FRACTURE PROPERTIES OF SELF HEALING CONCRETE

AN EXPERIMENTAL STUDY ON STRENGTH AND FRACTURE PROPERTIES OF SELF HEALING CONCRETE International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 3, May June 2016, pp. 398 406, Article ID: IJCIET_07_03_041 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=3

More information

SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE

SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: TREY HAMILTON, UNIVERSITY OF FLORIDA NOTE: MOMENT DIAGRAM CONVENTION In PT design,

More information

BEHAVIOR OF WELDED T-STUBS SUBJECTED TO TENSILE LOADS

BEHAVIOR OF WELDED T-STUBS SUBJECTED TO TENSILE LOADS BEHAVIOR OF WELDED T-STUBS SUBJECTED TO TENSILE LOADS R.A. Herrera 1, G. Desjouis 2, G. Gomez 2, M. Sarrazin 3 1 Assistant Professor, Dept. of Civil Engineering, University of Chile, Santiago, Chile 2

More information

The Original Carbon Fiber Reinforced Polymer System

The Original Carbon Fiber Reinforced Polymer System Infrastructure The Original Carbon Fiber Reinforced Polymer System Phone: 52.292.39 Toll Free: 866.38.269 Fax: 52.48.5274 282 E. Fort Lowell Rd. Tucson, AZ 8576 www.dowaksausa.com Test results are supported

More information

Design of Fibre Reinforced Concrete Beams and Slabs

Design of Fibre Reinforced Concrete Beams and Slabs Design of Fibre Reinforced Concrete Beams and Slabs Master of Science Thesis in the Master s Programme Structural Engineering and Building Performance Design AMMAR ABID, KENNETH B. FRANZÉN Department of

More information

EFFECT OF NANO-SILICA ON CONCRETE CONTAINING METAKAOLIN

EFFECT OF NANO-SILICA ON CONCRETE CONTAINING METAKAOLIN International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 1, Jan-Feb 2016, pp. 104-112, Article ID: IJCIET_07_01_009 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=1

More information

Uniaxial Compressive Strength of Cold-formed Steel Tubular Sections with Recycled Aggregate Concrete Infill

Uniaxial Compressive Strength of Cold-formed Steel Tubular Sections with Recycled Aggregate Concrete Infill Uniaxial Compressive Strength of Cold-formed Steel Tubular Sections with Recycled Aggregate Concrete Infill N.Umamaheswari 1, S. Arul Jayachandran 2 1 Associate Professor/Civil, SRM University, Kattankulathur,

More information

bi directional loading). Prototype ten story

bi directional loading). Prototype ten story NEESR SG: Behavior, Analysis and Design of Complex Wall Systems The laboratory testing presented here was conducted as part of a larger effort that employed laboratory testing and numerical simulation

More information

Reinforced Concrete Design

Reinforced Concrete Design FALL 2013 C C Reinforced Concrete Design CIVL 4135 ii 1 Chapter 1. Introduction 1.1. Reading Assignment Chapter 1 Sections 1.1 through 1.8 of text. 1.2. Introduction In the design and analysis of reinforced

More information

EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST

EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST Abstract Camelia SLAVE University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti

More information

June 2007 CHAPTER 7 - CULVERTS 7.0 CHAPTER 7 - CULVERTS 7.1 GENERAL

June 2007 CHAPTER 7 - CULVERTS 7.0 CHAPTER 7 - CULVERTS 7.1 GENERAL 7.0 7.1 GENERAL For the purpose of this manual, culverts are defined as structures that are completely surrounded by soil and located below the surface of the roadway parallel to the general direction

More information

1.5 Concrete (Part I)

1.5 Concrete (Part I) 1.5 Concrete (Part I) This section covers the following topics. Constituents of Concrete Properties of Hardened Concrete (Part I) 1.5.1 Constituents of Concrete Introduction Concrete is a composite material

More information

ACCELERATING ADMIXTURE RAPIDITE -ITS EFFECT ON PROPERTIES OF CONCRETE

ACCELERATING ADMIXTURE RAPIDITE -ITS EFFECT ON PROPERTIES OF CONCRETE International Journal of Civil Engineering and Technology (IJCIET Volume 6, Issue 12, Dec 215, pp. 58-65, Article ID: IJCIET_6_12_6 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=6&itype=12

More information

INTRODUCTION TO BEAMS

INTRODUCTION TO BEAMS CHAPTER Structural Steel Design LRFD Method INTRODUCTION TO BEAMS Third Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural Steel Design and Analysis

More information

A Comparative Analysis of Modulus of Rupture and Splitting Tensile Strength of Recycled Aggregate Concrete

A Comparative Analysis of Modulus of Rupture and Splitting Tensile Strength of Recycled Aggregate Concrete American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-03, Issue-02, pp-141-147 www.ajer.org Research Paper Open Access A Comparative Analysis of Modulus of Rupture

More information

EXPERIMENTAL INVESTIGATION ON BEHAVIOUR OF NANO CONCRETE

EXPERIMENTAL INVESTIGATION ON BEHAVIOUR OF NANO CONCRETE International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 315 320, Article ID: IJCIET_07_02_027 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

SECTION 3 DESIGN OF POST- TENSIONED COMPONENTS FOR FLEXURE

SECTION 3 DESIGN OF POST- TENSIONED COMPONENTS FOR FLEXURE SECTION 3 DESIGN OF POST- TENSIONED COMPONENTS FOR FLEXURE DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: TREY HAMILTON, UNIVERSITY OF FLORIDA NOTE: MOMENT DIAGRAM CONVENTION In PT design,

More information

Comparison of Seismic Performance of D-region of Existing RC Structures Designed with Different Recommendations

Comparison of Seismic Performance of D-region of Existing RC Structures Designed with Different Recommendations Comparison of Seismic Performance of D-region of Existing RC Structures Designed with Different Recommendations Balthasar Novák 1, K.Ramanjaneyulu 2, Constanze Roehm 3 and Saptarshi Sasmal 4 1 Professor,

More information

STRENGTHENING AND LOAD TESTING OF THREE BRIDGES IN BOONE COUNTY, MO

STRENGTHENING AND LOAD TESTING OF THREE BRIDGES IN BOONE COUNTY, MO STRENGTHENING AND LOAD TESTING OF THREE BRIDGES IN BOONE COUNTY, MO S. Schiebel 1, R. Parretti 1, A. Nanni 2, and M. Huck 3 ABSTRACT Three bridges in Boone County, Missouri (Brown School Road Bridge, Coats

More information

Tension Development and Lap Splice Lengths of Reinforcing Bars under ACI 318-02

Tension Development and Lap Splice Lengths of Reinforcing Bars under ACI 318-02 ENGINEERING DATA REPORT NUMBER 51 Tension Development and Lap Splice Lengths of Reinforcing Bars under ACI 318-02 A SERVICE OF THE CONCRETE REINFORCING STEEL INSTITUTE Introduction Section 1.2.1 in the

More information

FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples

FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples FOUNDATION DESIGN Proportioning elements for: Transfer of seismic forces Strength and stiffness Shallow and deep foundations Elastic and plastic analysis Foundation Design 14-1 Load Path and Transfer to

More information

Section 5A: Guide to Designing with AAC

Section 5A: Guide to Designing with AAC Section 5A: Guide to Designing with AAC 5A.1 Introduction... 3 5A.3 Hebel Reinforced AAC Panels... 4 5A.4 Hebel AAC Panel Design Properties... 6 5A.5 Hebel AAC Floor and Roof Panel Spans... 6 5A.6 Deflection...

More information

Prediction Of Behaviour Of Reinforced Concrete Deep Beams With Web Openings Using Finite Elements

Prediction Of Behaviour Of Reinforced Concrete Deep Beams With Web Openings Using Finite Elements Khalaf : Prediction Of Behaviour Of Reinforced Concrete Deep Beams With Web Prediction Of Behaviour Of Reinforced Concrete Deep Beams With Web Openings Using Finite Elements Khalaf Ibrahem Mohammad, Civil

More information

Behavior of High-Strength Concrete Rectangular Columns

Behavior of High-Strength Concrete Rectangular Columns Seventh International Congress on Advances in Civil Engineering, October11-13, 26 Yildiz TechnicalUniversity, Istanbul, Turkey Behavior of High-Strength Concrete Rectangular Columns S. Kim, H. C. Mertol,

More information

Design, Construction, and Field-Testing of an RC Box Culvert Bridge Reinforced with GFRP Bars

Design, Construction, and Field-Testing of an RC Box Culvert Bridge Reinforced with GFRP Bars Design, Construction, and Field-Testing of an RC Box Culvert Bridge Reinforced with GFRP Bars TAREK ALKHRDAJI, Ph. D. Candidate of Civil Engineering, University of Missouri-Rolla and ANTONIO NANNI, Jones

More information

A NEW APPROACH FOR MEASUREMENT OF TENSILE STRENGTH OF CONCRETE

A NEW APPROACH FOR MEASUREMENT OF TENSILE STRENGTH OF CONCRETE Journal of Research (Science), Bahauddin Zakariya University, Multan, Pakistan. Vol.16, No.1, June 2005, pp. 01-09 ISSN 1021-1012 A NEW APPROACH FOR MEASUREMENT OF TENSILE STRENGTH OF CONCRETE A. Ghaffar,

More information

A Simple Method of Gripping Prestressing Strands for Tension Tests

A Simple Method of Gripping Prestressing Strands for Tension Tests A Simple Method of Gripping Prestressing Strands for Tension Tests Presents a simple technique for gripping a prestressing strand to measure its breaking strength, modulus of elasticity or stress-strain

More information

EXPERIMENTAL STUDY ON SHEAR BEHAVIOR OF REINFORCED RECYCLED AGGREGATE CONCRETE BEAMS

EXPERIMENTAL STUDY ON SHEAR BEHAVIOR OF REINFORCED RECYCLED AGGREGATE CONCRETE BEAMS International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 128 139, Article ID: IJCIET_07_02_010 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

Performance of Existing Reinforced Concrete Columns under Bidirectional Shear & Axial Loading

Performance of Existing Reinforced Concrete Columns under Bidirectional Shear & Axial Loading Performance of Existing Reinforced Concrete Columns under Bidirectional Shear & Axial Loading Laura M. Flores University of California, San Diego REU Institution: University of California, Berkeley REU

More information

Strengthening of Brick Masonry Walls against Earthquake Loading

Strengthening of Brick Masonry Walls against Earthquake Loading International Journal of Advanced Structures and Geotechnical Engineering ISSN 2319-5347, Vol. 01, No. 01, July 2012 Strengthening of Brick Masonry Walls against Earthquake ing KHAN SHAHZADA, MUHAMMAD

More information

Seismic Retrofit of Reinforced Concrete Beam- Column T-Joints in Bridge Piers with FRP Composite Jackets

Seismic Retrofit of Reinforced Concrete Beam- Column T-Joints in Bridge Piers with FRP Composite Jackets SP-258 1 Seismic Retrofit of Reinforced Concrete Beam- Column T-Joints in Bridge Piers with FRP Composite Jackets by C.P. Pantelides and J. Gergely Synopsis: The research described encompasses laboratory

More information