Chapters and 7.4 plus 8.1 and 8.3-5: Bonding, Solids, VSEPR, and Polarity

Size: px
Start display at page:

Download "Chapters and 7.4 plus 8.1 and 8.3-5: Bonding, Solids, VSEPR, and Polarity"

Transcription

1 Chapters and 7.4 plus 8.1 and 8.3-5: Bonding, Solids, VSEPR, and Polarity Chemical Bonds and energy bond formation is always exothermic As bonds form, chemical potential energy is released as other forms of energy (usually heat and/or light) Bonds form because the nucleus of one atom is attracted to the electron cloud of a nearby atom If the atoms are too far apart, the attraction is too weak to have any effect Once the atoms reach some critical distance, they will attract each other and move toward some minimum optimal distance If the atoms get too close, the nuclei begin to repel strongly and the atoms move apart Chemical bonds all chemical bonds have two positively charged nuclei mutually attracted to electron density between the nuclei Bond strength is inversely related to bond length Long bonds tend to be weaker Short bonds tend to be stronger Types of chemical bonds (listed strongest to weakest but overlap does occur) Bond Type Identifying Characteristic Metallic sea of freely moving e Ionic e are transferred major Polar covalent e shared unevenly form bond types Nonpolar covalent e shared evenly molecules Hydrogen bonds e nearly naked p+ (N, O, or F) Dipole dipole bonds molecule with one and one + end intermolecular bonds London dispersion forces momentary uneven e distribution Valence electrons and ion formation Positive Ion Formation (cations) Metals tend to lose all their valence e forming cations (because they have low ENC) The resulting cations generally have full s and p sublevels in the next lower energy level These cations do not lose e in this lower energy level because the ENC jumps way up Transition metals tend to lose only the highest energy level s electrons Such configurations are known as pseudo-noble gas configurations Negative Ion Formation (anions) Nonmetals tend to gain e forming anions (because they have high ENC) They gain e until they have full s and p sublevels They do not gain e in the next higher energy level because the ENC is negative there This explains why both metals and nonmetals tend to acquire an outermost energy level that resembles a noble gas configuration (an octet) or pseudo-noble gas configuration Only the first energy level is full with just two e (go on to the next page)

2 Ionic bonds and ionic compounds Ionic bonds form when positive cations are attracted to negatively charged anions Because of the high ENC difference between metals and nonmetals, compounds formed by the reaction of a metal with a nonmetal will be ionic compounds (see Periodic Table below) nonmetal metalloid metal Example of ionic bond formation using LED formulas: NaCl + Na. +. Cl : Na : Cl : Lattice energy energy required to separate 1 mole of ions in an ionic compound Increases as the charge on individual ions increases Decreases as bond length increases Covalent bonds occur when the electronegativity difference between bonding atoms is so slight that the electrons tend to be shared Uneven sharing results in a polar covalent bond Even sharing results in a (mostly) nonpolar covalent bond Very even sharing (ΔEN = 0) results in a strictly nonpolar covalent bond (pure covalent bond) Identifying the major bond types Metals are easy to identify, just check the periodic table. Ex.e (s), Ni (s) or Hg (l) For ionic, polar covalent and nonpolar covalent bonds, you must calculate the electronegativity differences (ΔEN) using pages 10 and 11 in the NYS Chemistry Regents Tables or page 265 in the Glencoe text ΔEN Bond Type Mostly ionic bond 1.7 Mostly polar covalent bond 0.4 Mostly covalent bond (nonpolar covalent bond) 0 Pure covalent bond Examples: NaCl Na = 0.9 Cl = 3.2 ΔEN = = 2.3 ionic bond HCl H = 2.2 Cl = 3.2 ΔEN = = 1.0 polar covalent bond PH 3 P = 2.2 H = 2.2 ΔEN = = 0 nonpolar covalent bond HF H = 2.2 F = 4.0 ΔEN = = 1.8 very polar covalent bond!

3 Molecules are groups of atoms held together by covalent bonds (polar covalent, nonpolar covalent, or a mix of the two covalent types) Intermolecular forces weak chemical bonds that hold a molecule to another nearby molecule Hydrogen bonds especially strong dipole-dipole forces that occur when hydrogen polar covalently bonds to N, O, or F atoms and then the resulting nearly naked proton formed is strongly attracted to the lone electron pair of the N, O, or F of another molecule (or a N, O, or F of another part of a large molecule) Dipole-dipole forces due to shape and polar bond character, many molecules form permanent dipoles (one end of the molecule is partially positive and the other end of the molecule is partially negative. The dipoles align so that opposite charges will be near each other. These forces are not nearly as strong as hydrogen bonds for several reasons. First, they are usually significantly longer (300 pm for dipole-dipole forces compared to 169 pm for hydrogen bonds). Secondly, the dipole-dipole interaction for HCl is much weaker than a true hydrogen bond because the larger electron cloud in chlorine (period 3) can partially cover the proton whereas period 2 elements (N, O, and F) have much smaller and more defined electron clouds which cannot re-cover the proton. van der Waals forces (sometimes called London dispersion forces) due to the fact that electrons are in constant motion in molecules, sometimes the electrons can form an momentary dipole if they become dispersed unevenly. The small buildup of charge on one molecule can cause electrons on a nearby molecule to migrate toward the slightly positive end of the first molecule thereby inducing another momentary dipole in the second molecule. Even though van der Waals forces can constantly shift and reform, their transient nature causes them to be much weaker than permanent dipole-dipole interactions. Factors that will affect intermolecular bonds and, therefore, state (solid, liquid, or gas) Temperature: High temperatures produce gases (molecules move too fast for bonds to form) Strength of the bond: Hydrogen bonded H 2 O is a liquid at room temperature Dipole dipole bonded H 2 S is a gas at room temperature Molecular mass: High mass molecules move slower allowing more time for bonds to form Shape: Long, flat molecules provide more surface area making stronger bonds (pentane is a liquid) Rounder molecules have less surfaced area making weaker bonds (neopentane is a gas) Polarizability: more e or e that disperse more readily create stronger van der Waals forces

4 The four types of solids and their properties Solid Type Sketch Properties Examples Metallic Shiny luster, conducts heat and electricity, malleable and ductile. High melting and boiling points. Copper, zinc. (Name any two metals.) Ionic Network Molecular Usually has a sheen (but not shiny), conducts in liquid state but not in solid state, brittle. High melting and boiling points. Usually has a sheen (but not shiny), does not conduct in either liquid or solid state, brittle high melting and boiling points often decomposing. Usually has a sheen (but not shiny), usually do not conduct in either liquid or solid state, brittle, low melting and boiling points often exist as gases and liquids. Sodium chloride, cupric sulfate. (Any salt.) Quartz, diamond. (Ruby, sapphire, graphite.) Ice [H 2 O (s) ] is hydrogen bonded, iodoform [CHI 3 (s) ] is a dipole-dipole solid, and dry ice [CO 2(s) ] is held by van der Waals forces (or London dispersion forces). (go on to the next page)

5 Lewis Electron Dot (LED) formulas and structures Electron Dot Notation shows only the valence electrons using dots (or x or whatever). O. : or. F : Electron Dot Formulas : or H : O : H Lewis Structures F : or H O H A few rules for Lewis structures Hydrogen atoms will almost never be central atoms Carbon atoms will almost always be central atoms Most atoms will form an octet (end up with 8 e in their valence shells) Some metals will act as if they are losing e so they are deficient (less than 8 e ): Be, B, Al Be F : (The Be is ionic, Be 2+, but takes the same shape as if molecular) Only atoms in period 3 or higher (4, 5, 6 and 7) can have extended octets (more than 8 e ) Xe F : (The Xe has 10 e, not just 8 with extras in the empty 5d orbitals) Only nonmetals will form multiple bonds and only then if they are e deficient O = O Valence Shell Electron Pair Repulsion (VSEPR) theory [see chart next page] The shapes of molecules can be predicted using VSEPR theory and LED structures Create the LED structure Identify the Molecule Type PH 3 is AB 3 E Use the 3D VSEPR sketch Remove atoms from VSEPR for lone e pairs Polar and nonpolar molecules Usually a combination of asymmetry and polar bonds results in polar molecules Examples O = C = O Even though the bonds are polar, the linear molecule will be nonpolar Even though the bonds are nonpolar, the shape results in a polar molecule

6 The chart below shows VSEPR geometries and actual molecule geometries for up to six electron pairs about a central atom Number of e - Pairs VSEPR 3D VSEPR Sketch Molecule Type Molecule Geometry Hybridization Examples 2 linear AB 2 linear sp BeF 2, CO 2 3 planar AB 2 E bent, 120 sp 2 (NO 2 ) AB 3 planar sp 2 BF 3, SO 3 4 tetrahedral AB 2 E 2 bent, 109 sp 3 H 2 O AB 3 E pyramid sp 3 NH 3 AB 4 tetrahedral sp 3 CH 4 5 bipyramid AB 2 E 3 linear sp 3 d XeF 2 AB 3 E 2 T-shaped sp 3 d ClF 3 AB 4 E AB 5 distorted tetrahedron bipyramid AB 2 E 4 linear sp 3 d 2 sp 3 d SF 4 sp 3 d PCl 5 6 octahedral AB 3 E 3 T-shaped sp 3 d 2 AB 4 E 2 square planar sp 3 d 2 XeF 4 AB 5 E square pyramid sp 3 d 2 ClF 5 AB 6 octahedral sp 3 d 2 SF 6 Solubility Since only nonpolar molecules can produce van der Waals forces, only another nonpolar molecule can dissolve a nonpolar molecule Only a dipole can attract other permanent charges, so only dipoles can dissolve ionic compounds and other polar molecules Scientists usually express these observations by the rule: Like dissolves like

Unit Ionic and Covalent Bonds

Unit Ionic and Covalent Bonds Unit 6 --- Ionic and Covalent Bonds Electron Configuration in Ionic Bonding Ionic Bonds Bonding in Metals Valence Electrons Electrons in the highest occupied energy level of an element s atoms Examples

More information

Chapter 6, Section 6.1 Introduction to Chemical Bonding. Objectives. ii) Explain why most atoms form chemical bonds.

Chapter 6, Section 6.1 Introduction to Chemical Bonding. Objectives. ii) Explain why most atoms form chemical bonds. Chapter 6, Section 6.1 Introduction to Chemical Bonding i) Define chemical bond. Objectives ii) Explain why most atoms form chemical bonds. iii) Describe ionic and covalent bonding. iv) Explain why most

More information

CHAPTER 6 Chemical Bonding

CHAPTER 6 Chemical Bonding CHAPTER 6 Chemical Bonding SECTION 1 Introduction to Chemical Bonding OBJECTIVES 1. Define Chemical bond. 2. Explain why most atoms form chemical bonds. 3. Describe ionic and covalent bonding.. 4. Explain

More information

Section 8.3 Molecular Structures

Section 8.3 Molecular Structures Section 8.3 Molecular Structures List the basic steps used to draw Lewis structures. Explain why resonance occurs, and identify resonance structures. Identify three exceptions to the octet rule, and name

More information

Topic 4. Chemical bonding and structure

Topic 4. Chemical bonding and structure Topic 4. Chemical bonding and structure There are three types of strong bonds: Ionic Covalent Metallic Some substances contain both covalent and ionic bonding or an intermediate. 4.1 Ionic bonding Ionic

More information

Dogs Teaching Chemistry?

Dogs Teaching Chemistry? Chemical Bonding Chemical Bond- A mutual attraction between nuclei and the valence electrons of different atoms that binds the atoms together. Most atoms are found in compounds. Atoms are rarely found

More information

Chemical Bonding UNIT 4. Chapters 15 & 16

Chemical Bonding UNIT 4. Chapters 15 & 16 Chemical Bonding UNIT 4 Chapters 15 & 16 Ionic Bonding The bond in ionic compounds (two ions) Held together tightly High melting points Compounds are formed from chemically bound atoms or ions Substances

More information

Unit 5 Chemical Bonding

Unit 5 Chemical Bonding Unit 5 Chemical Bonding Ionic and Metallic Bonding Ionic Compounds Compounds composed of cations and anions are called ionic compounds. Although they are composed of ions, ionic compounds are electrically

More information

Chemistry: Chapter 6

Chemistry: Chapter 6 Ellen Duong, Jake Macneal, Mikelanxhelo Novruzaj, Enxhi Rrapi, Weijia Wang Chemistry: Chapter 6 Vocabulary Chemical bond: mutual electrical attraction between nuclei and valence electrons of different

More information

Bonding. Chapter 8. Sep 4 9:04 AM

Bonding. Chapter 8. Sep 4 9:04 AM Chapter 8 Sep 4 9:04 AM Ionic : The bonding forces that result from the electrostatic attractions of the closely packed. oppositely charged ions. Ionic Compounds: When a metal reacts with a nonmetal Properties:

More information

Valence Electrons and Chemical Bonds

Valence Electrons and Chemical Bonds Valence Electrons and Chemical Bonds A chemical bond is the force that holds two atoms together. Chemical bonds form by the attraction between the positive nucleus of one atom and the negative electrons

More information

Chapter 7 Chemical Bonding

Chapter 7 Chemical Bonding Chapter 7 Chemical Bonding 7.1 Ionic Bonding Octet rule: In forming compounds atoms lose, gain or share electrons to attain a noble gas configuration with 8 electrons in their outer shell (s 2 p 6 ), except

More information

Chapter 11. Chemical Bonds: The Formation of Compounds from Atoms

Chapter 11. Chemical Bonds: The Formation of Compounds from Atoms Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms 1 11.1 Periodic Trends in atomic properties 11.1 Periodic Trends in atomic properties design of periodic table is based on observing properties

More information

Chapter 6: Chemical Bonding

Chapter 6: Chemical Bonding Chapter 6: Chemical Bonding I. Introduction to Chemical Bonding A. A Chemical Bond is a mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together.

More information

Chemical Bonding. Chapter 6

Chemical Bonding. Chapter 6 Chemical Bonding Chapter 6 Introduction to Bonding Chemical bond mutual attraction between the nuclei and valence electrons of different atoms that binds the atoms together Q: Why do atoms bond? A: By

More information

UNIT 6 - CHEMICAL BONDING

UNIT 6 - CHEMICAL BONDING INTRODUCTION TO CHEMICAL BONDING I. Types of Chemical Bonding A. : mutual electrical attraction between the nuclei and valence e- of different atoms that binds the atoms together B. Why do atoms bond together?

More information

CHAPTER 12: CHEMICAL BONDING

CHAPTER 12: CHEMICAL BONDING 12.1 THE CHEMICAL BOND CONCEPT CHAPTER 12: CHEMICAL BONDING octet rule: In forming compounds atoms lose, gain or share electrons to attain a noble gas configuration with 8 electrons in their outer shell.

More information

A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is called a(n)

A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is called a(n) Chemistry I ATOMIC BONDING PRACTICE QUIZ Mr. Scott Select the best answer. 1) A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is

More information

Name: Date: Period: Guided Notes Chemical Bonding Part 1

Name: Date: Period: Guided Notes Chemical Bonding Part 1 Name: Date: Period: Guided Notes Chemical Bonding Part 1 Valence Electrons and Chemical Bonds A is the force that holds two atoms together. Chemical bonds form by the attraction between the positive nucleus

More information

Chapter 6 Chemical Bonding

Chapter 6 Chemical Bonding Chapter 6 Chemical Bonding 6-1 Introduction to Chemical Bonding 1. A chemical bond is a mutual between the nuclei and electrons of different atoms that binds the atoms together. 2. By bonding with each

More information

Drawing Lewis Structures

Drawing Lewis Structures Drawing Lewis Structures 1. Add up all of the valence electrons for the atoms involved in bonding 2. Write the symbols for the elements and show connectivity with single bonds (2 electrons shared). a.

More information

Covalent Bonding and Intermolecular Forces

Covalent Bonding and Intermolecular Forces Intermolecular forces are electromagnetic forces that hold like molecules together. Strong intermolecular forces result in a high melting point and a solid state at room temperature. Molecules that are

More information

Chapter 8 Covalent bonding

Chapter 8 Covalent bonding Chapter 8 Covalent bonding A metal and a nonmetal transfer electrons An ionic bond Two metals just mix and don t react An alloy What do two nonmetals do? Neither one will give away an electron So they

More information

1.3 Bonding. They have full outer shells and the electrons are paired with opposite spins fulfilling the 'octet rule'.

1.3 Bonding. They have full outer shells and the electrons are paired with opposite spins fulfilling the 'octet rule'. 1.3 Bonding Electron configuration: They have full outer shells and the electrons are paired with opposite spins fulfilling the 'octet rule'. Bonding: All other elements on the periodic table will combine

More information

CHAPTER NOTES CHAPTER 16. Covalent Bonding

CHAPTER NOTES CHAPTER 16. Covalent Bonding CHAPTER NOTES CHAPTER 16 Covalent Bonding Goals : To gain an understanding of : NOTES: 1. Valence electron and electron dot notation. 2. Stable electron configurations. 3. Covalent bonding. 4. Polarity

More information

CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided.

CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided. Name Date lass APTER 6 REVIEW hemical Bonding SETIN 1 SRT ANSWER Answer the following questions in the space provided. 1. a A chemical bond between atoms results from the attraction between the valence

More information

Core v Valence Electrons

Core v Valence Electrons Unit 2 Bonding Core v Valence Electrons The core electrons (represented by the noble gas from the previous row) are those electrons held within the atom. These electrons are not involved in the bonding,

More information

Unit 8. Covalent Bonding

Unit 8. Covalent Bonding Unit 8 Covalent Bonding The Ionic Bond When sodium and chlorine atoms combine, the sodium atoms give their electrons to chlorine. Both ions now have stable noble gas electron configurations and the oppositely

More information

Chapter No 4 Structure of molecules. Superior Lalazar Public School and College Thana.

Chapter No 4 Structure of molecules. Superior Lalazar Public School and College Thana. Chapter No 4 Structure of molecules Superior Lalazar Public School and College Thana www.slpsorg.com Chemical Bond: The force of attractions which holds atoms or ions together is called chemical bonds.

More information

Chapter 7. Chemical Bonding I: Basic Concepts

Chapter 7. Chemical Bonding I: Basic Concepts Chapter 7. Chemical Bonding I: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

Chemical Bonds stable octet

Chemical Bonds stable octet Chemical Bonds Elements form bonds to be in a lower energy state 1. Ionic Bonds transfer of electrons, between metal and nonmetal 2. Covalent Bonds sharing of electrons, between two nonmetals 3. Metallic

More information

11 Chemical Bonds: The Formation of Compounds from Atoms

11 Chemical Bonds: The Formation of Compounds from Atoms 11 Chemical Bonds: The Formation of Compounds from Atoms Atoms in Vitamin C (ascorbic acid) bond in a specific orientation which defines the shape of the molecule. The molecules pack in a crystal, photographed

More information

Unit 2: Chemical Bonding. Chemistry2202

Unit 2: Chemical Bonding. Chemistry2202 Unit 2: Chemical Bonding Chemistry2202 Outline Bohr diagrams Lewis Diagrams Types of Bonding Ionic bonding Covalent bonding (Molecular) Metallic bonding Network covalent bonding Types of Bonding (cont

More information

Bonding. NaCl crystal lattice

Bonding. NaCl crystal lattice Bonding Atoms form bonds with one another because in doing so, they become more stable. Being usually stable means having a full octet of eight valence electrons. Atoms can achieve this full octet by either

More information

11 Chemical Bonds: The Formation of Compounds from Atoms. Chapter Outline. Periodic Trends in Atomic Properties. Periodic Trends in Atomic Properties

11 Chemical Bonds: The Formation of Compounds from Atoms. Chapter Outline. Periodic Trends in Atomic Properties. Periodic Trends in Atomic Properties 11 Chemical Bonds The Formation of Compounds from Atoms Chapter Outline 11.1 11.2 Lewis Structures of Atoms 11.3 The Ionic Bond Transfer of Electrons from One Atom to Another 11.4 Predicting Formulas of

More information

BF 3. Giant Ionic Lattice. Simple molecular: With intermolecular forces (van der Waals, permanent dipoles, hydrogen bonds) between molecules

BF 3. Giant Ionic Lattice. Simple molecular: With intermolecular forces (van der Waals, permanent dipoles, hydrogen bonds) between molecules Bonding An Ionic bond is the electrostatic force of attraction between oppositely charged ions formed by electron transfer. Metal atoms lose electrons to form +ve ions. Non-metal atoms gain electrons to

More information

CHEMICAL BONDS TYPES OF BONDS. UNIT 5: Bonding

CHEMICAL BONDS TYPES OF BONDS. UNIT 5: Bonding CEMICAL BONDS UNIT 5: Bonding A. Definition: A chemical bond is the force holding two atoms together in a chemical compound. B. Bonds form from the attraction 1. Between the positive nucleus of one atom

More information

... LED Li. Be. B. C . N : Name lithium beryllium boron carbon nitrogen oxygen fluorine neon. ... LED Na. Mg. Al. Si

... LED Li. Be. B. C . N : Name lithium beryllium boron carbon nitrogen oxygen fluorine neon. ... LED Na. Mg. Al. Si Chapter 5: Atoms, Bonding, and the Periodic Table Valence electrons and bonding Valence electrons electrons in the highest energy level (outermost electron shell) and are held most loosely The number of

More information

CHAPTER 6 CHEMICAL BONDING. Chemical Bond a link between atoms that holds them together in a compound.

CHAPTER 6 CHEMICAL BONDING. Chemical Bond a link between atoms that holds them together in a compound. CHAPTER 6 CHEMICAL BONDING Chemical Bond a link between atoms that holds them together in a compound. Why Bonding Occurs usually to get to a lower energy state. Most atoms drop in energy when they form

More information

Illustrating Bonds - Lewis Dot Structures

Illustrating Bonds - Lewis Dot Structures Illustrating Bonds - Lewis Dot Structures Lewis Dot structures are also known as electron dot diagrams These diagrams illustrate valence electrons and subsequent bonding A line shows each shared electron

More information

1. Which particles may be gained, lost, or shared by an atom when it forms a chemical bond? (1) protons (2) electrons (3) neutrons (4) nucleons

1. Which particles may be gained, lost, or shared by an atom when it forms a chemical bond? (1) protons (2) electrons (3) neutrons (4) nucleons Name: Bonding Review 1. Which particles may be gained, lost, or shared by an atom when it forms a chemical bond? (1) protons (2) electrons (3) neutrons (4) nucleons 2. As energy is released during the

More information

Chemical Bonding. There are three types of bonding:

Chemical Bonding. There are three types of bonding: Chemical Bonding What is a chemical bond? If a system has a lower energy when the atoms are close together than when apart, then bonds exist between those atoms. A bond is an electrostatic force that holds

More information

Chemical Bonding. Introduction to Chemical Bonding

Chemical Bonding. Introduction to Chemical Bonding Chemical Bonding Introduction to Chemical Bonding Chemical Bonds A chemical bond is a mutual attraction between nuclei and valence electrons of different atoms that binds the atoms together. A chemical

More information

Unit 3 Review. Chapter 5 and 6

Unit 3 Review. Chapter 5 and 6 Unit 3 Review Chapter 5 and 6 Which of the following electron configurations belong to an element that is the most chemically reactive? 1. 1s 2 2. 1s 2 2s 2 2p 6 3. 1s 2 2s 2 2p 5 4. 1s 2 2s 2 2p 6 3s

More information

3 Types of Chemical Bonds

3 Types of Chemical Bonds 3 Types of Chemical Bonds 1. Ionic Bonds: refers to the electrostatic forces between oppositely charged particles (usually a metallic and a nonmetallic element). Ex: NaCl ------ Na + and Cl - Because Na

More information

Ionic vs. Covalent Compounds

Ionic vs. Covalent Compounds Ionic vs. Covalent Compounds 7 Electron Dot Diagrams American Chemist, G. N. Lewis (1916), developed a system of representing the valence electrons with dots Electron Dot Structures - Valence electrons

More information

Unit 3: Chemical Bonding

Unit 3: Chemical Bonding Unit 3: Chemical Bonding Listed below are the learning objectives that you will be taught. At the conclusion of each lesson, check one of the four boxes to indicate your level of understanding for each

More information

Bonding. Lewis (Electron Dot) Diagrams. Octet Rule. Electron Dot Diagrams. Lesson Vocabulary

Bonding. Lewis (Electron Dot) Diagrams. Octet Rule. Electron Dot Diagrams. Lesson Vocabulary Bonding Lewis (Electron Dot) Diagrams Lesson Vocabulary octet rule: States that elements tend to form compounds in ways that give each atom eight valence electrons. Lewis electron dot structure: A diagram

More information

Covalent Bonding. Click a hyperlink or folder tab to view the corresponding slides. Exit

Covalent Bonding. Click a hyperlink or folder tab to view the corresponding slides. Exit Covalent Bonding Section 8.1 The Covalent Bond Section 8.2 Naming Molecules Section 8.3 Molecular Structures Section 8.4 Molecular Shapes Section 8.5 Electronegativity and Polarity Click a hyperlink or

More information

Chapter 12: Chemical Bonding. Octet Rule

Chapter 12: Chemical Bonding. Octet Rule Chapter 12: Chemical Bonding Recall that an atom has core and valence electrons. Core electrons are found close to the nucleus. Valence electrons are found in the most distant s and p energy subshells.

More information

The dative covalent bond acts like an ordinary covalent bond when thinking about shape so in NH 4. the shape is tetrahedral

The dative covalent bond acts like an ordinary covalent bond when thinking about shape so in NH 4. the shape is tetrahedral 1.3 Bonding Definition An Ionic bond is the electrostatic force of attraction between oppositely charged ions formed by electron transfer. Metal atoms lose electrons to form ve ions. Non-metal atoms gain

More information

3s 2 3p 4. 2s 2 2p 1. Ionic Compounds. Chemical bonds. Lewis Electron-Dot Symbols

3s 2 3p 4. 2s 2 2p 1. Ionic Compounds. Chemical bonds. Lewis Electron-Dot Symbols Chemical bonds Chemical bond -- a strong attractive force between atoms that binds them together to form chemical compounds There are three classes of chemical bonds: Ionic bonds -- electrostatic forces

More information

II. Electron Sharing. B. Isomers and Resonance

II. Electron Sharing. B. Isomers and Resonance COVALENT BONDS I. Introduction- A. Polar Bond: When nonmetals bond covalently with a large difference in electronegativity, a polar bond is formed. A polar bond has a partial separation of charges. Polar

More information

Bonding Practice Problems

Bonding Practice Problems NAME 1. When compared to H 2 S, H 2 O has a higher 8. Given the Lewis electron-dot diagram: boiling point because H 2 O contains stronger metallic bonds covalent bonds ionic bonds hydrogen bonds 2. Which

More information

Chapter 12 Chemical Bonding

Chapter 12 Chemical Bonding Chapter 12 Chemical Bonding Chapter 12 Review p.373 - Key Terms bond (12.1) bond energy (12.1) ionic bonding (12.1) ionic compound (12.1) covalent bonding (12.1) polar covalent bond (12.1) electronegativity

More information

5. 1 Covalent Bonds. Prentice Hall 2003 Chapter Five 1

5. 1 Covalent Bonds. Prentice Hall 2003 Chapter Five 1 5. 1 Covalent Bonds Covalent bond: : A bonds formed by sharing electrons between atoms. Molecule: A group of atoms held together by covalent bonds. The nonmetals near the middle of the periodic table reach

More information

Chemical Bonding. Elements of the Lewis Theory. More Lewis Theory. Electron Dot Diagrams. Lewis Structures, Polarity and Bond Classification

Chemical Bonding. Elements of the Lewis Theory. More Lewis Theory. Electron Dot Diagrams. Lewis Structures, Polarity and Bond Classification Elements of the Lewis Theory Chemical Bonding Lewis Structures, Polarity and Bond Classification 1. Valence electrons play a fundamental role in chemical bonding 2. Sometimes bonding involves the TRANSFER

More information

Section 12.1 Chapter 12 Characteristics of Bonds and Structures Objectives

Section 12.1 Chapter 12 Characteristics of Bonds and Structures Objectives Objectives 1. To learn about ionic and covalent bonds and explain how they are formed - what holds compounds together? 2. To learn about the polar covalent bond are all covalent bonds equal? 3. To understand

More information

2C Intermolecular forces, structure and properties:

2C Intermolecular forces, structure and properties: Electronegativity and polarity Polar and non-polar bonds: 1) Non-Polar bonds: 2C Intermolecular forces, structure and properties: A covalent bond shares an electron pair: In a hydrogen molecule, the electrons

More information

Lewis Structures. Molecular Shape. VSEPR Model (Valence Shell Electron Pair Repulsion Theory)

Lewis Structures. Molecular Shape. VSEPR Model (Valence Shell Electron Pair Repulsion Theory) Lewis Structures Molecular Shape VSEPR Model (Valence Shell Electron Pair Repulsion Theory) PART 1: Ionic Compounds Complete the table of Part 1 by writing: The Lewis dot structures for each metallic and

More information

MOLECULAR COMPOUNDS Section Review

MOLECULAR COMPOUNDS Section Review Name Date Class MOLECULAR COMPOUNDS Section Review Objectives Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides Vocabulary covalent bond diatomic

More information

Announcements. 2. Lon-capa HW Remaining. 3. Online ICES Evaluations. 4. Bring clickers to Thursday lecture!

Announcements. 2. Lon-capa HW Remaining. 3. Online ICES Evaluations. 4. Bring clickers to Thursday lecture! Announcements 1. Exam #3: Thursday, Dec. 6 th, 7:00-8:15pm (Conflict: 5:15-6:30pm, sign up outside of 101 CA) No calculators allowed Exam rooms posted on-line 2. Lon-capa HW Remaining 1. Homework 8 Type

More information

Chapter 8: Covalent Bonding

Chapter 8: Covalent Bonding Chapter 8: Covalent Bonding Section 8.1 Section 8.2 Section 8.3 Section 8.4 Section 8.5 The Covalent Bond Naming Molecules Molecular Structures Molecular Shapes Electronegativity and Polarity Review Vocabulary

More information

Lewis Structure Exercise

Lewis Structure Exercise Lewis Structure Exercise A Lewis structure shows how the valence electrons are arranged and indicates the bonding between atoms in a molecule. We represent the elements by their symbols. The shared electron

More information

CHEMISTRY BONDING REVIEW

CHEMISTRY BONDING REVIEW Answer the following questions. CHEMISTRY BONDING REVIEW 1. What are the three kinds of bonds which can form between atoms? The three types of Bonds are Covalent, Ionic and Metallic. Name Date Block 2.

More information

Models of Chemical Bonding

Models of Chemical Bonding Models of Chemical Bonding Bonds are forces holding atoms or ions together Bonds form as a result of lowering of the total energy (energy of separated species is higher than that of bonded species) 9.1

More information

Introduction to Ionic Bonds

Introduction to Ionic Bonds Introduction to Ionic Bonds The forces that hold matter together are called chemical bonds. There are four major types of bonds. We need to learn in detail about these bonds and how they influence the

More information

AP TOPIC 8: Chemical Bonding

AP TOPIC 8: Chemical Bonding AP TOPIC 8: Chemical Bonding Introduction In the study of bonding we will consider several different types of chemical bond and some of the theories associated with them. TYPES OF BONDING INTRA (Within

More information

X-ray diffraction: Electron density map of NaCl

X-ray diffraction: Electron density map of NaCl 4. Bonding Ionic Bonding Evidence for the existence of ions X-ray diffraction: Electron density map of NaCl These maps show the likelihood of finding electrons in a region The contours are lines of equal

More information

NOTES:&&UNIT&5:& Bonding& & & & & & & & & & & & &

NOTES:&&UNIT&5:& Bonding& & & & & & & & & & & & & Name:&& & Regents&Chemistry:&Mr.&Palermo& & & & NOTES:&&UNIT&5:& Bonding& & & & & & & & & & & & & & & & & & & & www.mrpalermo.com& Name:&& & Key Ideas Compounds&can&be&differentiated&by&their&chemical&and&physical&properties.&(3.1dd)&

More information

Chemistry II Unit 6 Practice Test

Chemistry II Unit 6 Practice Test Practice for Unit 5b Exam 2013 1 Unit6Practicetest2014.odt Chemistry II Unit 6 Practice Test Reading: This material is covered in chapter 5 and chapter 12 in your book. Your notes and your molecular drawings

More information

Ch. 4 Atoms and Bonding Outline

Ch. 4 Atoms and Bonding Outline Ch. 4 Atoms and Bonding Outline Lesson 1 A. Atoms bond to form compounds. This happens due to the behavior of the electrons of the atoms. 1. Electrons are found on different energy levels outside of an

More information

When it comes to Chemical Bonding, I can ANSWERS

When it comes to Chemical Bonding, I can ANSWERS When it comes to Chemical Bonding, I can ANSWERS 1. The 3 types of chemical bonds are IONIC, COVALENT, and METALLIC bonds. 2. When atoms have 8 valence electrons they are most stable. (exception 2 for

More information

Review session Bonding. 1. Which statement best describes the substance that results when electrons are transferred from a metal to a nonmetal?

Review session Bonding. 1. Which statement best describes the substance that results when electrons are transferred from a metal to a nonmetal? Name: Tuesday, May 06, 2008 Review session Bonding 1. Which statement best describes the substance that results when electrons are transferred from a metal to a nonmetal? 1. It contains ionic bonds and

More information

Chapter 8 Covalent Bonding

Chapter 8 Covalent Bonding Tues 8.1 and 8.2 Chapter 8 Covalent Bonding Wed HW: Read 8.1 and 8.2 : #1-20 Lewis dot only More 8.2 VSEPR Theory Dot and Shape Lewis dot extension (packet pp 11-12) Thur HW: 21-39, 47 Resonance, and,

More information

Covalent Bonding C H A P T E R 9

Covalent Bonding C H A P T E R 9 Covalent Bonding C H A P T E R 9 I. The Covalent Bond A. Covalent bond: chemical bond resulting from the sharing of valence electrons 1. Occurs when atoms have similar attractions for electrons neither

More information

Chapter -10 Chemical Bonding

Chapter -10 Chemical Bonding Chapter -10 Chemical Bonding Synopsis Atoms of elements which have the atoms are electrical neutral. All atoms have a tendency to attain the 8 electrons in their valency orbit as in noble gases. For this,

More information

Bonding Two groups of bonds: Primary Bonds----Covalent Primary bonds consist of three types of bonds: ionic, covalent and metallic

Bonding Two groups of bonds: Primary Bonds----Covalent Primary bonds consist of three types of bonds: ionic, covalent and metallic Chemical Bonds Chemical bond is an attraction between atoms or molecules and allows the formation of chemical compounds, which contain two or more atoms. A bond is a link that binds 2 or more atoms of

More information

CHEM 101 Fall 10 Make-Up Exam (a)

CHEM 101 Fall 10 Make-Up Exam (a) CHEM 101 Fall 10 Make-Up Exam (a) On the answer sheet (scantron) write your name, student ID number, and recitation section number. Choose the best (most correct) answer for each question and enter it

More information

8/19/2011. Periodic Trends and Lewis Dot Structures. Review PERIODIC Table

8/19/2011. Periodic Trends and Lewis Dot Structures. Review PERIODIC Table Periodic Trends and Lewis Dot Structures Chapter 11 Review PERIODIC Table Recall, Mendeleev and Meyer organized the ordering the periodic table based on a combination of three components: 1. Atomic Number

More information

The breaking of bonds and the forming of bonds occur during chemical reactions.

The breaking of bonds and the forming of bonds occur during chemical reactions. Chemical Bonding The breaking of bonds and the forming of bonds occur during chemical reactions. Aspirin The formula for a molecule of aspirin is C 9 H 8 O 4 Is it an ionic or covalent (molecular) compound?

More information

CHEMISTRY NOTES: Structures, Shapes, Polarity and IMF s

CHEMISTRY NOTES: Structures, Shapes, Polarity and IMF s CHEMISTRY NOTES: Structures, Shapes, Polarity and IMF s DRAWING LEWIS STRUCTURES: RULES 1) Draw the skeleton structure for the molecule. The central atom will generally be the least electronegative element

More information

Attention BMC Students,

Attention BMC Students, Attention BMC Students, There will be no chemistry seminars on October 23 rd (Thursday) and October 24 th (Friday). For those who miss the seminar, an optional make-up seminar will be given on Oct. 27,

More information

CHAPTER 10: CHEMICAL BONDING

CHAPTER 10: CHEMICAL BONDING CHAPTER 10: CHEMICAL BONDING Problems: 1-10, 13-48, 49(skip c), 50(b,c), 51, 52(a,d), 55-58, 61-64, 65(a-c), 66(c,d), 67-68, 69(b-d), 71, 75-80, 83-89, 90(skip b), 91(b,d), 92(c,d), 95-96, 98-99, 101 10.1

More information

Noble Gases are the most elements. Why? Notice that this makes a full outer energy level have electrons.

Noble Gases are the most elements. Why? Notice that this makes a full outer energy level have electrons. NAME: Mods: Now that we know proper formula writing and naming of chemical compounds so we can speak the language of Chemistry, let s move on to understanding how and why these compounds are put together!

More information

Shape of Molecules and their Interactions. Chapter 3

Shape of Molecules and their Interactions. Chapter 3 1 Shape of Molecules and their Interactions Chapter 3 Lewis Structures 2 Predicts what molecules look like in three dimension. The 3-Dimensional structure determines the physical properties such as B.P.,

More information

the relative numbers of each kind of atoms in a chemical compound by using atomic symbols and whole number numerical subscripts.

the relative numbers of each kind of atoms in a chemical compound by using atomic symbols and whole number numerical subscripts. Chapter 6 Section 1: Introduction to Chemical Bonding Chemical Bond Covalent Bonding Ionic Bonding Nonpolar-Covalent Bond Polar Polar-Covalent Bond 161 a mutual electrical attraction between the nuclei

More information

1/13/2015. BONDING Notes

1/13/2015. BONDING Notes BONDING Notes Mr. Buchanan Introduction to Bonding Atoms are generally found in nature in combination held together by chemical bonds. A chemical bond is a mutual electrical attraction between the nuclei

More information

CHEMICAL BONDING IONIC & METALLIC BONDS

CHEMICAL BONDING IONIC & METALLIC BONDS CHEMICAL BONDING IONIC & METALLIC BONDS Mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together When atoms form chemical bonds they have Lower

More information

Chemical Bonding Honors Chemistry Lesson

Chemical Bonding Honors Chemistry Lesson Chemical Bonding Honors Chemistry Lesson 12.15 Linus Pauling: Bonding: Measurement of force of attraction between 2 atoms. A bond has a lower potential energy than when separate. + 0 Valence electrons

More information

length bond strength bond Triple Covalent Bond Each atom shares pairs ( ) of electrons

length bond strength bond Triple Covalent Bond Each atom shares pairs ( ) of electrons CP NT Ch 8 & 9 Covalent Compounds Why do atoms bond? Atoms want to achieve a noble gas configuration ( ) For bonds there is a of electrons to get an octet of electrons For covalent bonds there is a of

More information

Effect of unshared pairs on molecular geometry

Effect of unshared pairs on molecular geometry Chapter 7 covalent bonding Introduction Lewis dot structures are misleading, for example, could easily represent that the electrons are in a fixed position between the 2 nuclei. The more correct designation

More information

INTERMOLECULAR FORCES

INTERMOLECULAR FORCES INTERMOLECULAR FORCES Matter can exist in one of three forms: solid, liquid or gas. Earlier we discussed the differences in properties between these three forms of matter. In this chapter we discuss the

More information

Assignment 9 Solutions. Chapter 8, #8.32, 36, 38, 42, 54, 56, 72, 100, 102, Chapter 10, #10.24, 40, 55, 63. Number of e in Valence Shell

Assignment 9 Solutions. Chapter 8, #8.32, 36, 38, 42, 54, 56, 72, 100, 102, Chapter 10, #10.24, 40, 55, 63. Number of e in Valence Shell Assignment 9 Solutions Chapter 8, #8.32, 36, 38, 42, 54, 56, 72, 100, 102, Chapter 10, #10.24, 40, 55, 63. 8.32. Collect and Organize Of B 3+, I, Ca 2+, and Pb 2+ we are to identify which have a complete

More information

7.1 The Covalent Bond. 7.2 Strengths of Covalent Bonds

7.1 The Covalent Bond. 7.2 Strengths of Covalent Bonds Chapter 7: Covalent Bonds and Molecular Structure (7.1-7.7, 7.9, 7.11, 7.12) Chapter Goals: Be Able to: Predict which compounds are ionic and which are molecular. Use the periodic table to predict which

More information

Question 4.2: Write Lewis dot symbols for atoms of the following elements: Mg, Na, B, O, N, Br.

Question 4.2: Write Lewis dot symbols for atoms of the following elements: Mg, Na, B, O, N, Br. Question 4.1: Explain the formation of a chemical bond. A chemical bond is defined as an attractive force that holds the constituents (atoms, ions etc.) together in a chemical species. Various theories

More information

Ionic vs. Covalent Compounds UNIT 3: BONDING. Covalent or Ionic? Ionic Compounds. Ionic Bonding NaCl example. Ionic Nomenclature 9/30/2011

Ionic vs. Covalent Compounds UNIT 3: BONDING. Covalent or Ionic? Ionic Compounds. Ionic Bonding NaCl example. Ionic Nomenclature 9/30/2011 Ionic vs. Covalent Compounds Ionic compounds contain a metal formula units Covalent compounds only non-metals molecules UNIT 3: BONDING Covalent & Ionic Covalent or Ionic? H 2 O covalent NaCl ionic HgSO

More information

Unit 4: Chemical Bonding Practice Packet

Unit 4: Chemical Bonding Practice Packet Name: Unit 4: Chemical Bonding Practice Packet 1. I can state the three types of chemical bonds. 2. I can state the number of valence electrons that an atom attains to be most stable. 3. I can state the

More information

5/26/2015. Chapter 10 Structures of Solids and Liquids. VSEPR Theory. Two Electron Groups. Shapes of Molecules. Two Electron Groups with Double Bonds

5/26/2015. Chapter 10 Structures of Solids and Liquids. VSEPR Theory. Two Electron Groups. Shapes of Molecules. Two Electron Groups with Double Bonds Chapter 10 Structures of Solids and Liquids 10.2 Shapes of Molecules and Ions (VSEPR Theory) VSEPR Theory In the valence-shell electron-pair repulsion theory (VSEPR), the electron groups around a central

More information

Chapter 8: Chemical Bonding and Climate Change

Chapter 8: Chemical Bonding and Climate Change Chapter 8: Chemical Bonding and Climate Change Problems: 8.1-8.58, 8.63-8.72, 8.77-8.79, 8.81-8.108, 8.111, 8.113-8.127, 8.129-8.135, 8.138, 8.140, 8.146 8.1 CHEMICAL BONDS chemical bond: what holds atoms

More information