SOME TOUGH COLLEGE PROBLEMS! .. : 4. How many electrons should be shown in the Lewis dot structure for carbon monoxide? N O O

Size: px
Start display at page:

Download "SOME TOUGH COLLEGE PROBLEMS! .. : 4. How many electrons should be shown in the Lewis dot structure for carbon monoxide? N O O"

Transcription

1 SME TUGH CLLEGE PRBLEMS! LEWIS DT STRUCTURES 1. An acceptable Lewis dot structure for 2 is (A) (B) (C) 2. Which molecule contains one unshared pair of valence electrons? (A) H 2 (B) H 3 (C) CH 4 acl 3. The most reasonable Lewis structure for Cl is Cl Cl (E) Cl (A) Cl (B) Cl (C) 4. How many electrons should be shown in the Lewis dot structure for carbon monoxide? (A) 8 (B) 14 (C) The Lewis structure of 2 + is best drawn as + (E) + (A) (B) (C) (E) Which has a Lewis dot structure with the greatest number of unshared pairs on the central atom? (A) H 3 (B) IF 3 (C) SeCl 2 ICl 2 7. Which molecule contains only two unshared pairs of electrons? (A) H 2 (B) H 3 (C) BeCl 2 Mg 1

2 8. Which of the following molecules would have a trigonal planar molecular arrangement? (A) CBr 4 (B) BF 3 (C) F 2 PCl 3 (E) AsF 5 9. In the Lewis structure of SF 2, there are single bonds and total lone pairs? (A) 2,8 (B) 3,8 (C) 2,2 2,6 (E) 3,6 10. Which of the following species is ICRRECTLY matched with the number of lone pairs found on the central atom? (A) S (B) 3 1 (C) XeF 2 3 S 2 1 (E) IF Which of the following molecules violates the octet rule? (A) CBr 4 (B) F 3 (C) F 2 PCl 3 (E) AsF Which of these contains at least one multiple bond? (A) 3 (B) PH 3 (C) 2 H 4 SiCl 4 (E) BH Sulfur dioxide can be described by the structures below. This implies that S S (A) The two bonds in S 2 are of equal length, and the electronic distribution in the two S bonds is identical. (B) The single bond is longer than the double bond and the electronic distribution in the two S bonds is different. (C) An electron pair in the S 2 molecule alternates back and forth between the two sulfur oxygen electron pairs so that the two different bonds seem to exchange positions. The S 2 molecule revolves so that the two different bonds seem to exchange positions. 14. How many different resonance forms are possible for the oxalate anion, C 2 2 4? (A) 3 (B) 7 (C) 6 1 (E) Which molecule exhibits resonance? (A) 3 (B) BeCl 2 (C) C 2 H 2 Se (E) F What are the formal charges on the boron and nitrogen in the compound BF 3 H 3? (A) 2 and +2 (B) +2 and 2 (C) 0 and 0 +1 and 1 (E) 1 and +1 2

3 17. The structure of the C 3 2 ion can be described by these Lewis structures which means that (A) (B) (C) C C two C bonds are single bonds, the third C bond is a double bond. three independent forms of the C 2 3 ion coexist in equilibrium. the electrons must be rapidly exchanging among the three forms. the C 2 3 ion exists in only one form which is a composite or average of the three principal structures shown. C 18. Which is the least significant contributing structure to the resonance hybrid of the nitrate ion? (A) (B) (C) 19. What are the formal charges on each of the atoms in the PH + 4 ion? (A) P = 0; H = ¼+ (B) P = 0, H = 0 (C) P = 4+; H = 1 P=1+; H=0 (E)P=0; H= What is the formal charge on the sulfur atom in the sulfate anion (S 2 4 )? (A) 2 (B) 0 (C) 2 4 (E) 6 3

4 21. What is the formal charge on the nitrogen atom in the nitrate anion? (A) 2 (B) 1 (C) 0 +1 (E) +2 EERGY I VS. EERGY UT 22. Given the bond energies (in kj/mol) below, calculate the energy change (in kj) for C(g) + H 2 (g) + F 2 (g) CH 2 F 2 (g). Is this a spontaneous process meaning, is it going to occur easily without much effort? C H 414 C F 486 H H 435 F F 159 H F 569 (A) ΔH = +900 (C) ΔH = 900 (B) ΔH = 465 ΔH = Calculate energy change for H 3 (g) + Cl 2 (g) H 2 Cl(g) + HCl(g) using the bond energies H 389 Cl Cl 243 H Cl 431 Cl 201. Is this a spontaneous process meaning, is it going to occur easily without much effort? (A) 337 kj (B) +337 kj (C) 84 kj 0 kj 24. Calculate the energy change for the reaction, C 2 H 4 + H 2 C 2 H 5 H using the following bond energies (in kj/mol). Is this a spontaneous process meaning, is it going to occur easily without much effort? CH 413 C 358 CC 347 H 467 HH 432 C=C 614 C= 799 (A) 37 (B) +179 (C) (E) Using the bond energies given, estimate the energy change for making carbonic acid (H 2 C 3 ) from C 2 and H 2. Is this a spontaneous process meaning, is it going to occur easily without much effort? CH 413 C 358 CC 347 H 467 C= 799 C 1070 (A) +493 kj/mol (B) 493 kj/mol (C) +83 kj/mol +799 kj/mol (E) 467 kj/mol ELECTREGATIVITY AD BD PLARITY 26. Which would be expected to be the most electronegative? (A) P (B) As (C) Si Al 27. The element with the greatest tendency to gain electrons is (A) F (B) At (C) (E) Bi 28. Which atom has the highest electronegativity? (A) Br (B) Mg (C) C 4

5 29. Which of these elements should be the most active as a nonmetal, given that their electronegativity values are Q 0.9 R 1.0 T 2.8 X 3.0 Z 4.0 (A) Q (B) R (C) T X (E) Z 30. Which of the following statements about electronegativity (E) is FALSE? (A) (B) (C) onmetals usually have higher E than metals Electronegativities can be directly measured experimentally HCl has a higher partial ionic character than HI because the E of Cl > E of I In general, an atom s E is inversely related to its radius 31. In which bond are the partial charges on the atoms correct? (A) δ+ Si δ (B) δ+ ClBr δ (C) δ+ B δ δ+ ClCl δ 32. Which of the following compounds contains the LEAST polar bonds? Atoms H S P As Cl Si Sb Electronegativity (A) PH 3 (B) AsCl 3 (C) SiH 4 SbCl 3 (E) H 2 S 33. Which set of bonds is arranged in order of increasing polarity? (A) SiS < Si < SiP < SiF (B) Si < SiF < SiS < SiP (C) SiF < SiS < Si < SiP SiP < SiS < Si < SiF 34. The BrCl molecule may be represented by the formula BrCl. The polarity is best represented as (A) Br δ+ Cl δ+ (B) Br δ Cl δ+ (C) Br δ Cl δ Br δ+ Cl δ IIC BDIG 35. The lattice energy for ionic crystals increases as the charge on the ions and the size of the ions? (A) increases, increases (B) increases, decreases (C) decreases, increases decreases, decreases 36. Select the compound with the highest (most negative) lattice energy? (A) CaS (B) Mg (C) ai LiBr 37. Select the compound with the lowest (least negative) lattice energy? (A) CsBr (B) acl (C) Sr Ca 5

6 38. Calculate the lattice energy for LiBr(s) given the following information Li(s) Li(g), ΔH = +166 kj/mol ΔH f (LiBr) = 351 kj/mol Br 2 (l) 2 Br(g), ΔH = +194 kj/mol EA of Br(g) = 325 kj/mol IE of Li(g) = kj/mol (A) 906 (B) 1575 (C) (E) Use a BornHaber cycle based on the formation of Mg to determine heat released for the process, (g) + 2e 2 (g) in kj/mol Mg(s) Mg(g) ΔH = +150 kj/mol ΔH f (Mg) = 602 kj/mol Lattice energy of Mg(s) = 3920 kj/mol IE1 + IE2 Mg = kj/mol Bond energy of = = 498 kj/mol (A) 1314 (B) +739 (C) (E) Calculate the lattice energy of magnesium sulfide given that (in kj/mol) Mg(s) Mg(g) ΔH = 153 IE(1) Mg, IE(2) Mg ΔH = 700, 1480 ΔH f (MgS) ΔH = 343 S 8 (s) 8S(g) ΔH = 4460 EA(1) S, EA(2) S ΔH = 100, 203 (A) 6833 kj/mol (B) 2930 kj/mol (C) 2244 kj/mol 6147 kj/mol 41. Calculate the electron affinity of chlorine from the following data (in kj/mol) Rb(s) Rb(g) ΔH = 85.8 IE (Rb) ΔH = diss E. (Cl 2 ) ΔH =226 ΔH(latt)(RbCl) ΔH = 695 ΔH f (RbCl) ΔH = 431 (A) 530 kj/mol (B) 445 kj/mol (C) 417 kj/mol 332 kj/mol VSEPR 42. Which pair is geometrically similar? (A) S 2 and C 2 (B) C 2 and F 2 (C) PH 3 and BF 3 S 2 and The structure for SeF 3+ is (A) trigonal pyramidal. (B) square planar. (C) tetrahedral. rectangular planar. 44. The molecular structure of BrF 5 is (A) square pyramidal. (B) trigonal pyramidal. (C) trigonal bipyramidal. octahedral. 45. Which is planar? (A) H 3 (B) S 2 3 (C) C 2 3 H 3 + 6

7 46. Which molecule is linear? (A) H 2 (B) H 3 (C) 2 C 2 (E) H 2 S 47. A molecule consists of four bonding pairs of electrons and no lone pairs. What is its structure? (A) square planar (B) tetrahedral (C) linear square pyramidal 48. Which statement is true of methane? (A) It is a tetrahedral molecule. (B) It contains single and double bonds. (C) It has extremely strong chemical bonds It does not occur in nature. 49. H 3 (pyramidal geometry) reacts with BF 3 (planar geometry) to form the addition compound, H 3 BF 3. What is the geometry around the nitrogen and boron centers in the addition compound? (A) Both centers are tetrahedral. (B) itrogen tetrahedral and boron linear. (C) itrogen pyramidal and boron planar. itrogen planar and boron pyramidal. 50. Which of the following molecules does T possess a trigonal pyramidal molecular shape? (A) H 3 (B) CCl 2 (C) H 3 + Cl 3 (E) PFCl Which of these molecules or ions has a square planar structure? (A) SiBr 4 (B) H 4 + (C) Cl 4 XeF According to VSEPR theory, the III bond in I 3 is expected to be (A) 180 (B) 270 (C) (E) Predict the real bond angles in BrF 3 using the VSEPR theory (A) more than 120 (B) between 109 and 120 (C) between 90 and 109 less than Predict the real bond angles in SeCl 2 using the VSEPR theory (A) more than 120 (B) between 109 and 120 (C) between 90 and Which is the largest bond angle? (A) angle S in S 2 4 (B) angle Cl C Cl in HCCl 3 (C) angle F Be F in BeF 2 angle H H in H Which compound would be expected to have the largest dipole moment? (A) C 2 (B) BF 3 (C) S 2 CF 4 7

8 57. Which molecule is polar? (A) BF 3 (B) C 2 (C) CF 4 H 2 S 58. The bond type and molecular polarity of SiCl 4 are Bond Type Polarity of Molecule Bond Type Polarity of Molecule (A) polar nonpolar (B) polar polar (C) nonpolar polar nonpolar nonpolar 59. Which molecule is nonpolar? (A) CCl 4 (B) HCl (C) CF 3 Cl CHCl 3 (E) H Experiment shows that the molecule H 2 Se has a dipole moment. Which statement MUST therefore be incorrect? (A) The H 2 Se molecule is linear. (B) The H 2 Se molecule is covalent. (C) The H 2 Se molecule is electrically neutral. There must be a difference in electronegativity between hydrogen and selenium. 61. Which of the following possesses polar bonds but has no molecular charge? (A) BF 3 (B) 2 (C) CHCl 3 PF 3 (E) Cl f the molecules C 2, H 3, H 2 and CH 4, which are polar? (A) C 2, H 3 and H 2 (B) H 3, H 2 and CH 4 (C) C 2 and CH 4 (B) C 2 and H 3 (E) H 3 and H Which of the following has a net dipole moment? (A) BeCl 2 (B) SF 2 (C) KrF 2 C Which of the following has no molecular charge? (A) CS 2 (B) H 2 S (C) CH 2 Cl 2 PH 3 (E) CH 2 GEERAL STUFF 65. Which one of the following properties is least characteristic of substances composed of small, covalentlybonded molecules? (A) low melting point (B) low boiling point (C) weak bonds poor electrical conductor when solid (E) poor electrical conductor when molten 8

9 66. Which of the following properties is least characteristic of metals? (A) high melting point (B) high boiling point (C) brittleness good electrical conductor when solid (E) good electrical conductor when molten 67. Which of the following properties is least characteristic of ionic compounds? (A) high melting point (B) high boiling point (C) brittleness poor electrical conductor when solid (E) poor electrical conductor when molten ASWERS D B C C C D A B A B E A A E A E D A D C D D D A C A A D E B A A D D B B A D B B D D A A C D B A A B D A D C C C D A A A A E B A C C E 9

ch9 and 10 practice test

ch9 and 10 practice test 1. Which of the following covalent bonds is the most polar (highest percent ionic character)? A. Al I B. Si I C. Al Cl D. Si Cl E. Si P 2. What is the hybridization of the central atom in ClO 3? A. sp

More information

Chapter 9-10 practice test

Chapter 9-10 practice test Class: Date: Chapter 9-10 practice test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which one of the following is most likely to be an ionic compound?

More information

CHEM 1301 SECOND TEST REVIEW. Covalent bonds are sharing of electrons (ALWAYS valence electrons). Use Lewis structures to show this sharing.

CHEM 1301 SECOND TEST REVIEW. Covalent bonds are sharing of electrons (ALWAYS valence electrons). Use Lewis structures to show this sharing. CEM 1301 SECOND TEST REVIEW Lewis Structures Covalent bonds are sharing of electrons (ALWAYS valence electrons). Use Lewis structures to show this sharing. Rules OCTET RULE an atom would like to have 8

More information

EXAM 4 CH (Blackstock) November 30, 2006

EXAM 4 CH (Blackstock) November 30, 2006 EXAM 4 CH101.004 (Blackstock) November 30, 2006 Student name (print): honor pledge: 1. Which of these choices is the general electron configuration for the outermost electrons of elements in the alkaline

More information

2. Atoms with very similar electronegativity values are expected to form

2. Atoms with very similar electronegativity values are expected to form AP hemistry Practice Test #6 hapter 8 and 9 1. Which of the following statements is incorrect? a. Ionic bonding results from the transfer of electrons from one atom to another. b. Dipole moments result

More information

5. Which of the following subatomic particles are most important in determining the chemical reactivity and physical properties of an atom?

5. Which of the following subatomic particles are most important in determining the chemical reactivity and physical properties of an atom? 1. For the following compounds draw the Lewis Structure and determine: (a) The # of Bonding Pairs (b) The # of Lone pairs (c) The electron domain shape (d) The molecular shape (e) Hybridization (f) Whether

More information

Illustrating Bonds - Lewis Dot Structures

Illustrating Bonds - Lewis Dot Structures Illustrating Bonds - Lewis Dot Structures Lewis Dot structures are also known as electron dot diagrams These diagrams illustrate valence electrons and subsequent bonding A line shows each shared electron

More information

Chapter 11. Chemical Bonds: The Formation of Compounds from Atoms

Chapter 11. Chemical Bonds: The Formation of Compounds from Atoms Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms 1 11.1 Periodic Trends in atomic properties 11.1 Periodic Trends in atomic properties design of periodic table is based on observing properties

More information

ACE PRACTICE TEST Chapter 8, Quiz 3

ACE PRACTICE TEST Chapter 8, Quiz 3 ACE PRACTICE TEST Chapter 8, Quiz 3 1. Using bond energies, calculate the heat in kj for the following reaction: CH 4 + 4 F 2 CF 4 + 4 HF. Use the following bond energies: CH = 414 kj/mol, F 2 = 155 kj/mol,

More information

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts 8.1 Types of Chemical Bonds A. Ionic Bonding 1. Electrons are transferred 2. Metals react with nonmetals 3. Ions paired have lower energy

More information

Drawing Lewis Structures

Drawing Lewis Structures Drawing Lewis Structures 1. Add up all of the valence electrons for the atoms involved in bonding 2. Write the symbols for the elements and show connectivity with single bonds (2 electrons shared). a.

More information

Questions on Chapter 8 Basic Concepts of Chemical Bonding

Questions on Chapter 8 Basic Concepts of Chemical Bonding Questions on Chapter 8 Basic Concepts of Chemical Bonding Circle the Correct Answer: 1) Which ion below has a noble gas electron configuration? A) Li 2+ B) Be 2+ C) B2+ D) C2+ E) N 2-2) Of the ions below,

More information

8/19/2011. Periodic Trends and Lewis Dot Structures. Review PERIODIC Table

8/19/2011. Periodic Trends and Lewis Dot Structures. Review PERIODIC Table Periodic Trends and Lewis Dot Structures Chapter 11 Review PERIODIC Table Recall, Mendeleev and Meyer organized the ordering the periodic table based on a combination of three components: 1. Atomic Number

More information

CH 222 Chapter Seven Concept Guide

CH 222 Chapter Seven Concept Guide CH 222 Chapter Seven Concept Guide 1. Lewis Structures Draw the Lewis Dot Structure for cyanide ion, CN -. 1 C at 4 electrons = 4 electrons 1 N at 5 electrons = 5 electrons -1 charge = + 1 electron Total

More information

EXPERIMENT - 1. Molecular Geometry- Lewis Dot structures

EXPERIMENT - 1. Molecular Geometry- Lewis Dot structures EXPERIMENT - 1 Molecular Geometry- Lewis Dot structures INTRODUCTION Although it has recently become possible to image molecules and even atoms using a high-resolution microscope, most of our information

More information

Valence Electrons. core and CHAPTER 9. Introduction. Bonds - Attractive forces that hold atoms together in compounds

Valence Electrons. core and CHAPTER 9. Introduction. Bonds - Attractive forces that hold atoms together in compounds Structure and Molecular Bonding CAPTER 9 1 Introduction Bonds - Attractive forces that hold atoms together in compounds Valence Electrons - The electrons involved in bonding are in the outermost (valence)

More information

Sample Exercise 8.1 Magnitudes of Lattice Energies

Sample Exercise 8.1 Magnitudes of Lattice Energies Sample Exercise 8.1 Magnitudes of Lattice Energies Without consulting Table 8.2, arrange the following ionic compounds in order of increasing lattice energy: NaF, CsI, and CaO. Analyze: From the formulas

More information

Question 4.2: Write Lewis dot symbols for atoms of the following elements: Mg, Na, B, O, N, Br.

Question 4.2: Write Lewis dot symbols for atoms of the following elements: Mg, Na, B, O, N, Br. Question 4.1: Explain the formation of a chemical bond. A chemical bond is defined as an attractive force that holds the constituents (atoms, ions etc.) together in a chemical species. Various theories

More information

EXPERIMENT 17 : Lewis Dot Structure / VSEPR Theory

EXPERIMENT 17 : Lewis Dot Structure / VSEPR Theory EXPERIMENT 17 : Lewis Dot Structure / VSEPR Theory Materials: Molecular Model Kit INTRODUCTION Although it has recently become possible to image molecules and even atoms using a high-resolution microscope,

More information

Lewis Structure Exercise

Lewis Structure Exercise Lewis Structure Exercise A Lewis structure shows how the valence electrons are arranged and indicates the bonding between atoms in a molecule. We represent the elements by their symbols. The shared electron

More information

Electronegativity. Tip: Element Electronegativity Element Electronegativity. Hydrogen (H) 2,1. Lithium (Li) 1,0. Beryllium (Be) 1,5.

Electronegativity. Tip: Element Electronegativity Element Electronegativity. Hydrogen (H) 2,1. Lithium (Li) 1,0. Beryllium (Be) 1,5. Electronegativity So far we have looked at covalent molecules. But how do we know that they are covalent? The answer comes from electronegativity. Each element (except for the noble gases) has an electronegativity

More information

Sample Exercise 8.1 Magnitudes of Lattice Energies

Sample Exercise 8.1 Magnitudes of Lattice Energies Sample Exercise 8.1 Magnitudes of Lattice Energies Without consulting Table 8.2, arrange the ionic compounds NaF, CsI, and CaO in order of increasing lattice energy. Analyze From the formulas for three

More information

Chapter 8: Bonding General Concepts. Valence Electrons. Representative Elements & Lewis Dot Structures

Chapter 8: Bonding General Concepts. Valence Electrons. Representative Elements & Lewis Dot Structures Chapter 8: Bonding General Concepts Valence Electrons 8.1 Chemical Bond Formation 8.2 Covalent Bonding (Lewis Dot Structures) 8.3 Charge Distribution in Covalent Compounds 8.4 Resonance 8.5 Molecular Shapes

More information

11 Chemical Bonds: The Formation of Compounds from Atoms. Chapter Outline. Periodic Trends in Atomic Properties. Periodic Trends in Atomic Properties

11 Chemical Bonds: The Formation of Compounds from Atoms. Chapter Outline. Periodic Trends in Atomic Properties. Periodic Trends in Atomic Properties 11 Chemical Bonds The Formation of Compounds from Atoms Chapter Outline 11.1 11.2 Lewis Structures of Atoms 11.3 The Ionic Bond Transfer of Electrons from One Atom to Another 11.4 Predicting Formulas of

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A chemical bond formed between two identical atoms is a(an) bond. A) covalent B) ionic C) molecular

More information

5. Which of the following is the correct Lewis structure for SOCl 2

5. Which of the following is the correct Lewis structure for SOCl 2 Unit C Practice Problems Chapter 8 1. Draw the lewis structures for the following molecules: a. BeF 2 b. SO 3 c. CNS 1- d. NO 2. The correct Lewis symbol for ground state carbon is a) b) c) d) e) 3. Which

More information

CHEMISTRY 1710 - Practice Exam #5 - SPRING 2014 (KATZ)

CHEMISTRY 1710 - Practice Exam #5 - SPRING 2014 (KATZ) CHEMISTRY 1710 - Practice Exam #5 - SPRING 2014 (KATZ) Name: Score: This is a multiple choice exam. Choose the BEST answer from the choices which are given and write the letter for your choice in the space

More information

Theme 3: Bonding and Molecular Structure. (Chapter 8)

Theme 3: Bonding and Molecular Structure. (Chapter 8) Theme 3: Bonding and Molecular Structure. (Chapter 8) End of Chapter questions: 5, 7, 9, 12, 15, 18, 23, 27, 28, 32, 33, 39, 43, 46, 67, 77 Chemical reaction valence electrons of atoms rearranged (lost,

More information

Chapter 7. Comparing Ionic and Covalent Bonds. Ionic Bonds. Types of Bonds. Quick Review of Bond Types. Covalent Bonds

Chapter 7. Comparing Ionic and Covalent Bonds. Ionic Bonds. Types of Bonds. Quick Review of Bond Types. Covalent Bonds Comparing Ionic and Covalent Bonds Chapter 7 Covalent Bonds and Molecular Structure Intermolecular forces (much weaker than bonds) must be broken Ionic bonds must be broken 1 Ionic Bonds Covalent Bonds

More information

CHEMISTRY BONDING REVIEW

CHEMISTRY BONDING REVIEW Answer the following questions. CHEMISTRY BONDING REVIEW 1. What are the three kinds of bonds which can form between atoms? The three types of Bonds are Covalent, Ionic and Metallic. Name Date Block 2.

More information

Prepare well for this topic!!

Prepare well for this topic!! 1 Bonding There is almost always a chemical bonding question. Since this is such an important topic, you should be prepared for any and all bonding questions. Prepare well for this topic!! Some suggestions

More information

Chapter 12 Review 1: Covalent Bonds and Molecular Structure

Chapter 12 Review 1: Covalent Bonds and Molecular Structure Chapter 12 Review 1: Covalent Bonds and Molecular Structure 1) How are ionic bonds and covalent bonds different, and what types of elements combine to form each? Ionic bonds result from the transfer of

More information

CHEMISTRY NOTES: Structures, Shapes, Polarity and IMF s

CHEMISTRY NOTES: Structures, Shapes, Polarity and IMF s CHEMISTRY NOTES: Structures, Shapes, Polarity and IMF s DRAWING LEWIS STRUCTURES: RULES 1) Draw the skeleton structure for the molecule. The central atom will generally be the least electronegative element

More information

George Mason University General Chemistry 211 Chapter 10 The Shapes (Geometry) of Molecules

George Mason University General Chemistry 211 Chapter 10 The Shapes (Geometry) of Molecules Acknowledgements George Mason University General Chemistry 211 Chapter 10 The Shapes (Geometry) of Molecules Course Text Chemistry the Molecular Nature of Matter and Change, 7 th edition, 2011, McGraw-Hill

More information

CHAPTER 6 Chemical Bonding

CHAPTER 6 Chemical Bonding CHAPTER 6 Chemical Bonding SECTION 1 Introduction to Chemical Bonding OBJECTIVES 1. Define Chemical bond. 2. Explain why most atoms form chemical bonds. 3. Describe ionic and covalent bonding.. 4. Explain

More information

Ch 8-9 Practice Test Answer Key

Ch 8-9 Practice Test Answer Key Ch 8-9 Practice Test Answer Key 18. Which of the atoms below is least likely to violate the octet rule? a) Be- deficient likely b) P- can expland c) S- can expand d) B- deficient is likely e) F- usually

More information

Lewis Structures. Molecular Shape. VSEPR Model (Valence Shell Electron Pair Repulsion Theory)

Lewis Structures. Molecular Shape. VSEPR Model (Valence Shell Electron Pair Repulsion Theory) Lewis Structures Molecular Shape VSEPR Model (Valence Shell Electron Pair Repulsion Theory) PART 1: Ionic Compounds Complete the table of Part 1 by writing: The Lewis dot structures for each metallic and

More information

Covalent Bonding & Molecular Compounds Multiple Choice Review PSI Chemistry

Covalent Bonding & Molecular Compounds Multiple Choice Review PSI Chemistry Covalent Bonding & Molecular Compounds Multiple Choice Review PSI Chemistry Name 1) Which pair of elements is most apt to form a molecular compound with each other? A) aluminum, oxygen B) magnesium, iodine

More information

Effect of unshared pairs on molecular geometry

Effect of unshared pairs on molecular geometry Chapter 7 covalent bonding Introduction Lewis dot structures are misleading, for example, could easily represent that the electrons are in a fixed position between the 2 nuclei. The more correct designation

More information

Chapter 8 Basic Concepts of Chemical Bonding

Chapter 8 Basic Concepts of Chemical Bonding Chapter 8 Basic Concepts of Chemical Bonding Why do TiCl 4 and TiCl 3 have different colors?... different chemical properties?... different physical states? Chemical Bonding and Properties Difference in

More information

Assignment 4 (155859) Question 1234567891111213141516171819221222324252627282933132 1. Question DetailsLairdUChem1 3.Supp.2. [952419] Which two species are isoelectronic? Ba 2+ and Ba Cl - and Na + Sr

More information

Chemistry 4th Edition McMurry/Fay

Chemistry 4th Edition McMurry/Fay 7 Chapter Covalent Bonding Chemistry 4th Edition McMurry/Fay Dr. Paul Charlesworth Michigan Technological University The Covalent Bond 01 Covalent bonds are formed by sharing at least one pair of electrons.

More information

EXPERIMENT 9 Dot Structures and Geometries of Molecules

EXPERIMENT 9 Dot Structures and Geometries of Molecules EXPERIMENT 9 Dot Structures and Geometries of Molecules INTRODUCTION Lewis dot structures are our first tier in drawing molecules and representing bonds between the atoms. The method was first published

More information

Chemical Bonding -- Lewis Theory (Chapter 9)

Chemical Bonding -- Lewis Theory (Chapter 9) Chemical Bonding -- Lewis Theory (Chapter 9) Ionic Bonding 1. Ionic Bond Electrostatic attraction of positive (cation) and negative (anion) ions Neutral Atoms e - transfer (IE and EA) cation + anion Ionic

More information

UNIT TEST Atomic & Molecular Structure. Name: Date:

UNIT TEST Atomic & Molecular Structure. Name: Date: SCH4U UNIT TEST Atomic & Molecular Structure Name: _ Date: Part A - Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Who postulated that electrons

More information

Topic 4. Chemical bonding and structure

Topic 4. Chemical bonding and structure Topic 4. Chemical bonding and structure There are three types of strong bonds: Ionic Covalent Metallic Some substances contain both covalent and ionic bonding or an intermediate. 4.1 Ionic bonding Ionic

More information

Chapter 8. Chemical Bonding. Introduction. Molecular and Ionic Compounds. Chapter 8 Topics. Ionic and Covalent. Ionic and Covalent

Chapter 8. Chemical Bonding. Introduction. Molecular and Ionic Compounds. Chapter 8 Topics. Ionic and Covalent. Ionic and Covalent Introduction Chapter 8 Chemical Bonding How and why to atoms come together (bond) to form compounds? Why do different compounds have such different properties? What do molecules look like in 3 dimensions?

More information

A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is called a(n)

A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is called a(n) Chemistry I ATOMIC BONDING PRACTICE QUIZ Mr. Scott Select the best answer. 1) A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is

More information

Types of Bonds. Lewis Dot. Lewis Dot. Ionic vs. Molecular Compounds. Lewis Dot. Lewis Dot. Types of Bonds 2/27/2012

Types of Bonds. Lewis Dot. Lewis Dot. Ionic vs. Molecular Compounds. Lewis Dot. Lewis Dot. Types of Bonds 2/27/2012 Types of Bonds A. Electronegativity The ability of an atom to attract electrons to itself in a bond 1. Periodic Trends (link to size) Metals Low Electronegativity Non Metals High Electroneg The smaller

More information

EXPERIMENT 14: COMPARISONS OF THE SHAPES OF MOLECULES AND IONS USING MODELS

EXPERIMENT 14: COMPARISONS OF THE SHAPES OF MOLECULES AND IONS USING MODELS EXPERIMENT 14: CMPARISNS F TE SAPES F MLECULES AND INS USING MDELS PURPSE Models of various molecules and ions will be constructed and their shapes and geometries will be compared. BACKGRUND LEWIS STRUCTURES

More information

TRENDS IN ATOMIC PROPERTIES: THE PERIODIC TABLE

TRENDS IN ATOMIC PROPERTIES: THE PERIODIC TABLE TRENDS IN ATOMIC PROPERTIES: THE PERIODIC TABLE Electron configurations determine organization of the periodic table Next properties of elements and their periodic behavior Elemental properties determined

More information

We emphasize Lewis electron dot structures because of their usefulness in explaining structure of covalent molecules, especially organic molecules.

We emphasize Lewis electron dot structures because of their usefulness in explaining structure of covalent molecules, especially organic molecules. Chapter 10 Bonding: Lewis electron dot structures and more Bonding is the essence of chemistry! Not just physics! Chemical bonds are the forces that hold atoms together in molecules, in ionic compounds,

More information

Inorganic Chemistry with Doc M. Day 3. Covalent bonding: Lewis dot structures and Molecular Shape.

Inorganic Chemistry with Doc M. Day 3. Covalent bonding: Lewis dot structures and Molecular Shape. Inorganic Chemistry with Doc M. Day 3. Covalent bonding: Lewis dot structures and Molecular Shape. Topics: 1. Covalent bonding, Lewis dot structures in review, formal charges 2. VSEPR 6. Resonance 3. Expanded

More information

Self Assessment_Ochem I

Self Assessment_Ochem I UTID: 2013 Objective Test Section Identify the choice that best completes the statement or answers the question. There is only one correct answer; please carefully bubble your choice on the scantron sheet.

More information

Lewis Dot Structure Answer Key

Lewis Dot Structure Answer Key Lewis Dot Structure Answer Key 1) Nitrogen is the central atom in each of the following species: N2 N2 - N2 + Nitrogen can also form electron deficient compounds with a single unpaired electron on the

More information

CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided.

CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided. Name Date lass APTER 6 REVIEW hemical Bonding SETIN 1 SRT ANSWER Answer the following questions in the space provided. 1. a A chemical bond between atoms results from the attraction between the valence

More information

The Lewis electron dot structures below indicate the valence electrons for elements in Groups 1-2 and Groups 13-18

The Lewis electron dot structures below indicate the valence electrons for elements in Groups 1-2 and Groups 13-18 AP EMISTRY APTER REVIEW APTER 7: VALENT BNDING You should understand the nature of the covalent bond. You should be able to draw the Lewis electron-dot structure for any atom, molecule, or polyatomic ion.

More information

Chemical Bonding. There are three types of bonding:

Chemical Bonding. There are three types of bonding: Chemical Bonding What is a chemical bond? If a system has a lower energy when the atoms are close together than when apart, then bonds exist between those atoms. A bond is an electrostatic force that holds

More information

Chemistry 105, Chapter 7 Exercises

Chemistry 105, Chapter 7 Exercises hemistry 15, hapter 7 Exercises Types of Bonds 1. Using the periodic table classify the bonds in the following compounds as ionic or covalent. If covalent, classify the bond as polar or not. Mg2 4 i2 a(3)2

More information

In the box below, draw the Lewis electron-dot structure for the compound formed from magnesium and oxygen. [Include any charges or partial charges.

In the box below, draw the Lewis electron-dot structure for the compound formed from magnesium and oxygen. [Include any charges or partial charges. Name: 1) Which molecule is nonpolar and has a symmetrical shape? A) NH3 B) H2O C) HCl D) CH4 7222-1 - Page 1 2) When ammonium chloride crystals are dissolved in water, the temperature of the water decreases.

More information

CHEM 200/202 Exam 3 November 15, 2014

CHEM 200/202 Exam 3 November 15, 2014 HM 200/202 xam 3 ovember 15, 2014 ame: Lab Section #: Please mark your answers on the scantron sheet using a #2 pencil and also mark your answers on the exam itself. Mark Test rom A on your scantron. 1.

More information

Periodic Table Trends

Periodic Table Trends Name Date Period Periodic Table Trends (Ionization Energy and Electronegativity) Ionization Energy The required to an electron from a gaseous atom or ion. Period Trend: As the atomic number increases,

More information

Lewis Structures & the VSEPR Model

Lewis Structures & the VSEPR Model Lewis Structures & the VSEPR Model A Directed Learning Activity for Hartnell College Chemistry 1 Funded by the Title V STEM Grant #P031S090007 through Hartnell College For information contact lyee@hartnell.edu

More information

Chemistry 3012 Foundational Chemistry Laboratory Manual

Chemistry 3012 Foundational Chemistry Laboratory Manual Chemistry 3012 Foundational Chemistry Laboratory Manual Table of Contents Page Experiment 1. Experiment 2. Experiment 3. Experiment 4. Experiment 5. Experiment 6. Experiment 7. Experiment 8. Determining

More information

Bonding & Molecular Shape Ron Robertson

Bonding & Molecular Shape Ron Robertson Bonding & Molecular Shape Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\00bondingtrans.doc The Nature of Bonding Types 1. Ionic 2. Covalent 3. Metallic 4. Coordinate covalent Driving

More information

The Lewis structure is a model that gives a description of where the atoms, charges, bonds, and lone pairs of electrons, may be found.

The Lewis structure is a model that gives a description of where the atoms, charges, bonds, and lone pairs of electrons, may be found. CEM110 Week 12 Notes (Chemical Bonding) Page 1 of 8 To help understand molecules (or radicals or ions), VSEPR shapes, and properties (such as polarity and bond length), we will draw the Lewis (or electron

More information

Assignment 9 Solutions. Chapter 8, #8.32, 36, 38, 42, 54, 56, 72, 100, 102, Chapter 10, #10.24, 40, 55, 63. Number of e in Valence Shell

Assignment 9 Solutions. Chapter 8, #8.32, 36, 38, 42, 54, 56, 72, 100, 102, Chapter 10, #10.24, 40, 55, 63. Number of e in Valence Shell Assignment 9 Solutions Chapter 8, #8.32, 36, 38, 42, 54, 56, 72, 100, 102, Chapter 10, #10.24, 40, 55, 63. 8.32. Collect and Organize Of B 3+, I, Ca 2+, and Pb 2+ we are to identify which have a complete

More information

3.4 Covalent Bonds and Lewis Structures

3.4 Covalent Bonds and Lewis Structures 3.4 Covalent Bonds and Lewis Structures The Lewis Model of Chemical Bonding In 1916 G. N. Lewis proposed that atoms combine in order to achieve a more stable electron configuration. Maximum stability results

More information

Chapter10 Tro. 4. Based on the Lewis structure, the number of electron domains in the valence shell of the CO molecule is A) 1 B) 2 C) 3 D) 4 E) 5

Chapter10 Tro. 4. Based on the Lewis structure, the number of electron domains in the valence shell of the CO molecule is A) 1 B) 2 C) 3 D) 4 E) 5 Chapter10 Tro 1. All of the geometries listed below are examples of the five basic geometries for molecules with more than 3 atoms except A) planar triangular B) octahedral C) tetrahedral D) trihedral

More information

3/5/2014. iclicker Participation Question: A. MgS < AlP < NaCl B. MgS < NaCl < AlP C. NaCl < AlP < MgS D. NaCl < MgS < AlP

3/5/2014. iclicker Participation Question: A. MgS < AlP < NaCl B. MgS < NaCl < AlP C. NaCl < AlP < MgS D. NaCl < MgS < AlP Today: Ionic Bonding vs. Covalent Bonding Strengths of Covalent Bonds: Bond Energy Diagrams Bond Polarities: Nonpolar Covalent vs. Polar Covalent vs. Ionic Electronegativity Differences Dipole Moments

More information

Chemistry Workbook 2: Problems For Exam 2

Chemistry Workbook 2: Problems For Exam 2 Chem 1A Dr. White Updated /5/1 1 Chemistry Workbook 2: Problems For Exam 2 Section 2-1: Covalent Bonding 1. On a potential energy diagram, the most stable state has the highest/lowest potential energy.

More information

Name: Class: Date: 3) The bond angles marked a, b, and c in the molecule below are about,, and, respectively.

Name: Class: Date: 3) The bond angles marked a, b, and c in the molecule below are about,, and, respectively. Name: Class: Date: Unit 9 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The basis of the VSEPR model of molecular bonding is. A) regions of

More information

Health Science Chemistry I CHEM-1180 Experiment No. 15 Molecular Models (Revised 05/22/2015)

Health Science Chemistry I CHEM-1180 Experiment No. 15 Molecular Models (Revised 05/22/2015) (Revised 05/22/2015) Introduction In the early 1900s, the chemist G. N. Lewis proposed that bonds between atoms consist of two electrons apiece and that most atoms are able to accommodate eight electrons

More information

Exercises Topic 2: Molecules

Exercises Topic 2: Molecules hemistry for Biomedical Engineering. Exercises Topic 2 Authors: ors: Juan Baselga & María González Exercises Topic 2: Molecules 1. Using hybridization concepts and VSEPR model describe the molecular geometry

More information

: : Solutions to Additional Bonding Problems

: : Solutions to Additional Bonding Problems Solutions to Additional Bonding Problems 1 1. For the following examples, the valence electron count is placed in parentheses after the empirical formula and only the resonance structures that satisfy

More information

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s)

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) BONDING MIDTERM REVIEW 7546-1 - Page 1 1) Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) 2) The bond between hydrogen and oxygen in

More information

Unit 4 Bonding Exam. 1) Which of the following bonds exhibits the greatest ionic character? a) H - F b) H - I c) H - Br d) H - Cl

Unit 4 Bonding Exam. 1) Which of the following bonds exhibits the greatest ionic character? a) H - F b) H - I c) H - Br d) H - Cl Unit 4 Bonding Exam Name Multiple Choice 2 pts. each 1) Which of the following bonds exhibits the greatest ionic character? a) H - F b) H - I c) H - Br d) H - Cl 2) Generally, how many valence electrons

More information

Background: Electron Dot Formula Basics

Background: Electron Dot Formula Basics Background: Electron Dot Formula Basics 1. What do the dots in an electron dot formula represent? 2. Describe the pattern of electron dot formulas as you move from left to right in a period of the Periodic

More information

Chapter 8. Homework. Valence Electrons. Molecular Structure & Bonding. Example of Lewis Dot Symbols

Chapter 8. Homework. Valence Electrons. Molecular Structure & Bonding. Example of Lewis Dot Symbols Homework Chapter 8 Bonding and Molecular Shapes: Fundamental Concepts Chapter 8 21, 23, 31, 35, 39, 47, 51, 57, 61, 65, 71, 73, 81, 83, 89, 105, 109, 113 Molecular Structure & Bonding Structure Refers

More information

Chapter 5 Chemical Compounds. An Introduction to Chemistry by Mark Bishop

Chapter 5 Chemical Compounds. An Introduction to Chemistry by Mark Bishop Chapter 5 Chemical Compounds An Introduction to Chemistry by Mark Bishop Chapter Map Elements, Compounds, and Mixtures Element: A substance that cannot be chemically converted into simpler substances;

More information

Unit 28 Molecular Geometry

Unit 28 Molecular Geometry Unit 28 Molecular Geometry There are two concepts in the study of molecular geometry. One is called the Valence Shell Electron Pair Repulsion (VSEPR) model. The other is electron orbital hybridization.

More information

Worked solutions to student book questions Chapter 7 Covalent molecules, networks and layers

Worked solutions to student book questions Chapter 7 Covalent molecules, networks and layers E1. a Give the electronic configuration for an atom of beryllium. b How many electrons are in the outer shell of an atom of beryllium in the molecule BeH 2? AE1. a 1s 2 2s 2 b 4 E2. The noble gases helium

More information

Molecular Geometry and Chemical Bonding Theory

Molecular Geometry and Chemical Bonding Theory Chapter 10 Molecular Geometry and Chemical Bonding Theory Concept Check 10.1 An atom in a molecule is surrounded by four pairs of electrons, one lone pair and three bonding pairs. Describe how the four

More information

Lewis Dot Symbols for Representative Elements

Lewis Dot Symbols for Representative Elements CHEM 110 - Section 4 Guest Instructor: Prof. Elizabeth Gaillard Fall 2011 Lewis Dot Symbols for Representative Elements Principal Types of Chemical Bonds: Ionic and Covalent Ionic bond - a transfer of

More information

THE STRUCTURE OF MOLECULES AN EXPERIMENT USING MOLECULAR MODELS 2009 by David A. Katz. All rights reserved.

THE STRUCTURE OF MOLECULES AN EXPERIMENT USING MOLECULAR MODELS 2009 by David A. Katz. All rights reserved. THE STRUCTURE OF MOLECULES AN EXPERIMENT USING MOLECULAR MODELS 2009 by David A. Katz. All rights reserved. In a footnot to a 1857 paper, Friedrich August Kekulé suggested that carbon was tetratomic, that

More information

Lewis dot symbols are representations of the elements which give a dot (. ) for each valence electron on the atom.

Lewis dot symbols are representations of the elements which give a dot (. ) for each valence electron on the atom. Worksheet 12 - Chemical Bonding The concept of electron configurations allowed chemists to explain why chemical molecules are formed from the elements. In 1916 the American chemist Gilbert Lewis proposed

More information

Recall that ionic bonds form when the combining atoms give up or accept electrons. Another way that atoms can combine is by sharing electrons.

Recall that ionic bonds form when the combining atoms give up or accept electrons. Another way that atoms can combine is by sharing electrons. Molecular Compounds and Covalent Bonds Recall that ionic bonds form when the combining atoms give up or accept electrons. Another way that atoms can combine is by sharing electrons. Atoms that are held

More information

Chemical Bonding and Molecular Structure (Chapter 10)

Chemical Bonding and Molecular Structure (Chapter 10) Chemical Bonding and Molecular Structure (Chapter 10) Molecular Structure 1. General Summary -- Structure and Bonding Concepts Electronic Configuration of Atoms Octet Rule Lewis Electron Dot ormula of

More information

GRADE 11 PHYSICAL SCIENCES SESSION 3: CHEMICAL BONDING. Key Concepts. X-planation

GRADE 11 PHYSICAL SCIENCES SESSION 3: CHEMICAL BONDING. Key Concepts. X-planation GRADE 11 PHYSICAL SCIENCES SESSION 3: CHEMICAL BONDING Key Concepts In this session we will focus on summarising what you need to know about: Bonding Covalent bonding Electronegativity in covalent bonding

More information

7.14 Linear triatomic: A-----B-----C. Bond angles = 180 degrees. Trigonal planar: Bond angles = 120 degrees. B < B A B = 120

7.14 Linear triatomic: A-----B-----C. Bond angles = 180 degrees. Trigonal planar: Bond angles = 120 degrees. B < B A B = 120 APTER SEVEN Molecular Geometry 7.13 Molecular geometry may be defined as the three-dimensional arrangement of atoms in a molecule. The study of molecular geometry is important in that a molecule s geometry

More information

CHAPTER 12: CHEMICAL BONDING

CHAPTER 12: CHEMICAL BONDING CHAPTER 12: CHEMICAL BONDING Active Learning Questions: 3-9, 11-19, 21-22 End-of-Chapter Problems: 1-36, 41-59, 60(a,b), 61(b,d), 62(a,b), 64-77, 79-89, 92-101, 106-109, 112, 115-119 An American chemist

More information

A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing.

A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing. CHAPTER EIGHT BNDING: GENERAL CNCEPT or Review 1. Electronegativity is the ability of an atom in a molecule to attract electrons to itself. Electronegativity is a bonding term. Electron affinity is the

More information

Additional practice problems, Exam 4 (Chapters 9, 10, 12, and maybe 13) 10/30/2006

Additional practice problems, Exam 4 (Chapters 9, 10, 12, and maybe 13) 10/30/2006 Additional practice problems, Exam 4 (Chapters 9, 10, 12, and maybe 13) 10/30/2006 The practice sheet is intended to be only one part of your preparations for the quiz. Expect to see problems and questions

More information

Copyright 2014 Edmentum - All rights reserved. Chemistry Chemical bonding, molecular structure and Gases Blizzard Bag 2014-2015

Copyright 2014 Edmentum - All rights reserved. Chemistry Chemical bonding, molecular structure and Gases Blizzard Bag 2014-2015 Copyright 2014 Edmentum - All rights reserved. Chemistry Chemical bonding, molecular structure and Gases Blizzard Bag 2014-2015 1. Which of the following is a unit of pressure? A. newton-meters per second

More information

Chemical Bonding: Covalent Systems Written by Rebecca Sunderman, Ph.D Week 1, Winter 2012, Matter & Motion

Chemical Bonding: Covalent Systems Written by Rebecca Sunderman, Ph.D Week 1, Winter 2012, Matter & Motion Chemical Bonding: Covalent Systems Written by Rebecca Sunderman, Ph.D Week 1, Winter 2012, Matter & Motion A covalent bond is a bond formed due to a sharing of electrons. Lewis structures provide a description

More information

Exam. Name. 1) Chlorine (atomic number = 17) has the electronic configuration:. E) 1s22s22d103s2

Exam. Name. 1) Chlorine (atomic number = 17) has the electronic configuration:. E) 1s22s22d103s2 Exam Name 1) Chlorine (atomic number = 17) has the electronic configuration:. A) 1s22s22p62d63s1 B) 1s22s22p63s23d5 C) 1s22s22p62d53s2 D) 1s22s22p63s23p5 E) 1s22s22d103s2 2) The complete electron configuration

More information

Chemical Bonding I: Lewis Theory

Chemical Bonding I: Lewis Theory Chemical Bonding I: Lewis Theory Review Questions 9.1 Bonding theories are central to chemistry because they explain how atoms bond together to form molecules. Bonding theories explain why some combinations

More information

Molecular Geometry and VSEPR We gratefully acknowledge Portland Community College for the use of this experiment.

Molecular Geometry and VSEPR We gratefully acknowledge Portland Community College for the use of this experiment. Molecular and VSEPR We gratefully acknowledge Portland ommunity ollege for the use of this experiment. Objectives To construct molecular models for covalently bonded atoms in molecules and polyatomic ions

More information

Chemical Bonds: A Preview Chapter 9 Section 1.1 Forces called chemical bonds hold atoms together in molecules and keep ions in place in solid ionic

Chemical Bonds: A Preview Chapter 9 Section 1.1 Forces called chemical bonds hold atoms together in molecules and keep ions in place in solid ionic Chemical Bonds: A Preview Chapter 9 Section 1.1 Forces called chemical bonds hold atoms together in molecules and keep ions in place in solid ionic compounds. Chemical bonds are electrostatic forces; they

More information

Electronegativity The ability of an atom, when in a compound, to attract e - density to itself. Linus Pauling 1930s The Nature of the Chemical Bond

Electronegativity The ability of an atom, when in a compound, to attract e - density to itself. Linus Pauling 1930s The Nature of the Chemical Bond Study Guide for Exam #2 MSU LBS 171 Profs. Robert LaDuca and Ryan Sweeder Molecule: chem. combo. of 2 or more atoms bonded together Element: matter that is made up of only one type of atom Compound: matter

More information