Molecular Geometry and VSEPR We gratefully acknowledge Portland Community College for the use of this experiment.

Size: px
Start display at page:

Download "Molecular Geometry and VSEPR We gratefully acknowledge Portland Community College for the use of this experiment."

Transcription

1 Molecular and VSEPR We gratefully acknowledge Portland ommunity ollege for the use of this experiment. Objectives To construct molecular models for covalently bonded atoms in molecules and polyatomic ions To use valence bond theory to account for the bonding in covalently bonded systems To apply the valence shell electron pair repulsion theory and valence bond theory to the geometries and polarities of molecules Discussion An understanding of the structure of a m olecule is f undamental to an explanation of its ch emical and physical properties. For example, water is a liquid at room temperature, dissolves innumerable salts and sugars, is more dense than ice, and has a low vapor pressure, in part, because its molecules are bent rather than linear. Lewis Theory of Bonding Because structure is so important, chemists have developed a number of theories to explain and predict molecular geometries. In 1916, G. N. Lewis developed a theory that focused on the significance of valence electrons (electrons in the outer shell) in chemical reactions and in bonding. e proposed the "octet rule", in which atoms form bonds by losing, gaining, or sharing enough electrons to have the same number of valence electrons (eight) as the nearest noble gas in the Periodic Table. The bond formed is ionic or covalent depending on whether the electrons are transferred or shared between atoms. The octet rule is valid for nearly all compounds formed between atoms of the second period and for a large number of compounds formed between atoms of other representative elements. There are three types of exceptions to the octet rule: molecules having an atom with less than eight electrons, molecules having an atom with more than eight electrons and molecules having an odd number of electrons. Elements of the second and third family may also form stable molecules in which they have less than eight electrons surrounding the central element. For example the molecule BF 3. Elements beyond the third period may form stable molecules with more than eight electrons surrounding the central element. For example Pl 5. Radicals have an odd number of electrons therefore they have unpaired electrons, for example the molecule NO. More than 8 electrons Less than 8 electrons Odd number of Electrons- Radical Lewis emphasized the importance of valence electrons using a Lewis symbol to represent an atom of the element-the symbol for the element surrounded with its corresponding number of valence electrons. For main group elements the number of valence electrons is the same as their family number. For example, Na is the Lewis symbol for the sodium atom, and a is the Lewis symbol for calcium. The Lewis symbols for the atoms are used to account for the bonding in a compound; the resulting representation is called the Lewis formula (or Lewis structure) for the compound. The Lewis formula for water shows that by sharing valence electrons between the oxygen and hydrogen, all three atoms obtain the same number of valence electrons as the nearest noble gas; that is, the hydrogen atoms are isoelectronic with helium atoms and the oxygen atom is isoelectronic with the neon atom.

2 Often it is quite easy to construct an octet rule structure for a molecule. Given that an oxygen atom has six valence electrons (Group 6) and a hydrogen atom has one, it is clear that one O and two atoms have a total of eight valence electrons. Sometimes in these structures a pair of bonding electrons is substituted by a line, while non-bonding electrons or lone are represented with dots. Structures like that of 2 O, involving only single bonds and nonbonding electron, are common. Sometimes, however, there is a "shortage" of electrons; that is, it is not possible to construct an octet rule structure in which all the electron are either in single bonds or are nonbonding. 2 4 is a typical example of such a species. In such cases, octet rule structures can often be made in which two atoms are bonded by two, rather than one pair, of electrons. The two of electrons form a double bond. In the 2 4 molecule, shown above, the atoms each get four of their electrons from the double bond. The assumption that electrons behave this way is supported by the fact that the = double bond is both shorter and stronger than the - single bond in the 2 6 molecule. Double bonds, and triple bonds, occur in many molecules, usually between, O, N, and/or S atoms. For some molecules with a given molecular formula, it is possible to satisfy the octet rule with different atomic arrangements. A simple example would be, 2 6 O: O O The two molecules are called isomers of each other, and the phenomenon is called isomerism. Although the molecular formulas of both substances are the same, 2 6 O, their properties differ markedly because of their different atomic arrangements. Isomerism is very common, particularly in organic chemistry, and when double bonds are present, isomerism can occur in very small molecules as in, 2 2 l 2 : l l l l l l The first two isomers result from the fact that there is no rotation around a double bond, although such rotation can occur around single bonds. The third isomeric structure cannot be converted to either of the first two without breaking bonds. With certain molecules, given a fixed atomic geometry, it is possible to satisfy the octet rule with more than one bonding arrangement. The classic example is benzene, whose molecular formula is 6 6 :

3 These two structures are called resonance structures, and molecules such as benzene, which have two or more resonance structures, are said to exhibit resonance. The actual bonding in such molecules is thought to be an average of the bonding present in the resonance structures. The stability of molecules exhibiting resonance is found to be higher than that anticipated for any single resonant structure. Although a Lewis formula accounts for the bonding based on the valence electrons on each atom, it does not explain how the valence electrons are shared, nor does it predict any three-dimensional structure for a molecule. The valence bond (VB) theory and the valence shell electron pair repulsion (VSEPR) theory provide some insight into the nature of the bonding between atoms and the three-dimensional structure of the molecule. Valence Bond (VB) Theory of Bonding The basic postulate of VB theory is that a covalent bond forms when a pair of electrons is shared by overlapping atomic orbitals between bonding atoms. When these overlapping orbitals point directly at one another, creating a cylindrical symmetry of electron density along the internuclear axis, the bond is a sigma ( ) bond. For example, a bond forms between a hydrogen atom and a fluorine atom making the F molecule when the 1s atomic orbital of the hydrogen atom (having a single electron) overlaps with a 2p atomic orbital of the fluorine atom (also having a single electron). The result is a pair of shared valence electrons along the internuclear axis between the two atoms. 1s 2p bond F F In 1931, Linus Pauling proposed that the orientation of orbitals involved in a bonding determines the three-dimensional structure of a polyatomic molecule or ion. A detailed look at the bonding and structure of methane, 4, supports this. The valence shell electron configuration for carbon is 2s 2 2p 2. Only two "free" 2p electrons are available for bonding on the isolated carbon atom. For methane, however, all four - bonds are equivalent, all -- bond angles are and the geometric structure is tetrahedral. To account for the properties of 4, VB theory states that the bonded carbon atom must not maintain the use of the same 2s and 2p atomic orbitals as on the "isolated" atom. But rather, it must adjust its valence shell orbitals to allow each of its four valence electrons to bond; in so doing, an independent region of space for each electron is available for bonding. 2s 2p As we began with four valence shell atomic orbitals, one s orbital and three p orbitals, we name the four new orbitals in the bonded atom as a combination of these four, we say that each of the four new orbitals is an sp 3 orbital. The word hybrid is often tagged to the name of these new orbitals; the four sp 3 hybrid orbitals are a hybrid of the one s and the three p orbitals from the isolated carbon atom; each has a single electron available for sharing in the formation of a covalent bond. 2p hybridization sp 3 2s ybridization of the valence shell orbitals on the carbon atom.

4 Each sp 3 hybrid orbital bond overlaps with a 1s atomic orbital on the hydrogen atom to form four equivalent to bonds. The four - bonds are oriented in space as a tetrahedron to lessen electrostatic interaction between the hydrogen nuclei. s orbitals of hydrogen sp 3 hybrid orbitals of carbon Four sp 3 hybrid orbitals on a carbon in methane produce a tetrahedral structure. For some molecules one or more of nonbonding electrons in the valence shell of the central atom of the molecule occupy hybrid orbitals. Because these hybrid orbitals are the same as the hybrid orbitals forming the bonds, they also contribute to the geometry of the molecule. Therefore, the orientation of all hybrid valence shell orbitals (those forming the bonds and those containing of nonbonding electrons) determines the geometry of the molecule. ybridization modes for valence shell orbitals in bonding atoms and their corresponding geometries are summarized in Table 1. ybridization igh Electron Density Areas Around entral Atom Bonding Electron Pairs Lone Pairs Molecular Bond Angle Example sp Linear 180 BeF 2 sp Trigonal Planar 120 BF 3 sp Bent / Angular <120 GeF 2 sp Tetrahedral sp Trigonal Pyramidal <109.5 N 3 sp Bent / Angular < O sp 3 d Trigonal Bipyramidal 90, 120 Pl 5 sp 3 d SeeSaw 180, SF 4 120, 90 sp 3 d T-Shape 180, Pl 3 90 sp 3 d Linear 180 XeF 2 sp 3 d Octahedral 90 SF 6 sp 3 d Square Pyramidal 90, 180 IF 5 sp 3 d Square Planar 90, 180 XeF 4 Valence Shell Electron Pair Repulsion Theory of Bonding

5 VSEPR theory proposes that the geometry of a molecule is determined by the repulsive interaction of electron in the valence shell of its central atom. The orientation is such that the distance between the electron is maximized so that electron pair-electron pair interactions are minimized. onstruction of the Lewis formula of a molecule provides the first link in predicting the geometry of the molecule. Methane, 4, has four bonding electron in the valence shell of its carbon atom (the central atom in the molecule). Repulsive interactions between these four electron are minimized when the electron are positioned at the vertices of a tetrahedron. One can generalize that all molecules having four electron in the valence shell of their central atom have a tetrahedral arrangement of these electron. The nitrogen atom in ammonia, N 3, and the oxygen atom in water, 2 O, also have four electron in their valence shell! N O The arrangement of the bonding and nonbonding electron around the central atom gives rise to the corresponding electronic geometry, i.e., tetrahedral. The bonding electrons give rise to the molecular geometry and actual shape of the molecule, trigonal pyramidal for N 3 and bent for 2 O. Various molecular shapes can be determined from Lewis formulas and s which use the following notations: A Xm En Refers to the central atom Refers to "m" number of bonding of electrons on A Refers to "n" number of nonbonding of electrons on A If a molecule has the formula AXmEn, it means there are m + n electron in the valence shell of A, the central atom of the molecule; m are bonding and n are nonbonding electron. For N 3 it would AX 3 E and for 2 O it would be : AX 2 E 2 It should be noted here that electrons on the central atom contributing to a multiple bond do not affect the geometry of a molecule. For example in SO 2, the sulfur atom is sp 2 hybridized, the is AX2E, and the molecule is V-shaped. Further applications of these theories are presented in more advanced chemistry courses. Table 1 summarizes the geometries of molecules or ions and the corresponding bond angle(s) predicted by the VB and VSEPR theories. Polarity of Molecules or Ions Once the three-dimensional shape of a molecule is determined, its polarity can be qualitatively understood. A molecule is polar if an unsymmetrical distribution of electrons exists in the molecule resulting in a partial separation of charges. An unsymmetrical distribution of charge occurs when bonded atoms have different electronegativities; the atoms having a higher electronegativity (electronegativity increases as you move up and to the right in the periodic table) more strongly attract bonding electrons, acquiring a greater electron density and a partial negative charge, -, relative to another portion of the molecule, +. Thus all heteronuclear diatomic molecules are polar. The greater the electronegativity differences of the atoms, the greater the distortion of the electron density, thus, the more polar is the molecule. The direction and magnitude of the polarity are represented by a vector, drawn in the direction of the greater electron density; the + center of the molecule is indicated by a plus sign on the tail of the vector. For example, the F molecule is more polar than the l molecule because the fluorine atom is more electronegative than the chlorine; both are more electronegative than the hydrogen atom. Therefore, the + is on the hydrogen; the vector is drawn in the direction of the fluorine and chlorine. -F -l If more than one polar bond exists in a molecule, the entire molecule may be polar or nonpolar, depending on the geometry of the molecule since the polarity from one bond may be cancelled by the polarity of another. onsider BF 3 and OF 2. The BF 3 molecule has a of AX3, where each B-F bond is polar. Table 1 shows that the BF 3 molecule has a trigonal planar geometry (Figure 4). The

6 three more electronegative fluorine atoms attract the bonding electron from the boron atom with equal magnitude, that is all dipoles are cancelled. Polarity of bonds in BF 3 A geometric sum of the magnitude (all the same) and direction of the three vectors equals zero. Because in the BF 3 molecule there is no resultant vector that can be drawn to indicate a resultant + or - electron density in the molecule, it is said to be a nonpolar molecule, even though each B-F bond is polar. The OF 2 molecule has the AX 2 E 2 and each O-F bond is polar. Table 1 shows that OF 2 has a V-shaped geometry. The geometric sum of the magnitude (all the same) and direction of the two vectors produces a resultant vector that is not equal to zero. A resultant vector can be drawn indicating a + and - electron density in the molecule. In such cases the molecule is polar; therefore, OF 2 is a polar molecule. Experimentally, polar molecules are attracted to an electric field; nonpolar molecules are not. In an experiment using an electrostatically charged rod, a polar liquid, such as water, flowing near an electrically charged rod, is deflected slightly whereas a nonpolar liquid, such as benzene, is unaffected by the electric charge. Although the conclusions we have drawn regarding molecular geometry and polarity can be obtained from Lewis structures, it is much easier to draw such conclusions from models of molecules and ions. The rules we have cited for octet rule structures transfer readily to models. In many ways the models are easier to construct than are the drawings of Lewis structures on paper. In addition, the models are threedimensional and hence much more representative of the actual species. Using the models, it is relatively easy to see both geometry and polarity, as well as to deduce Lewis structures. In this experiment you will assemble models for a sizeable number of common chemical species and interpret them in the ways we have discussed.

7 ALL INFORMATION FOR TESE MOLESULES IS TO BE PALED DIRETLY INTO YOUR LAB NOTEBOOKS Using an appropriate set of molecular models, construct the following molecules/polyatomic ions, and write their Lewis formulas. Determine the number of bonding orbitals (or electron involved in bonding), nonbonding orbitals (or number of nonbonding electron ), and degree of hybridization of the valence shell orbitals on the central atom. Also determine the, the geometry of the molecule/polyatomic ion, and its polarity. Molecule or Polyatomic Lewis Structure Data Sketch of the 3-D Ion 1. F 3 l Bonding orbitals or 4 0 ybridization sp3 AX4 tetrahedral nonpolar no none 2. N3 Bonding orbitals or ybridization 3. 2 O Bonding orbitals or ybridization - 4. NO 3 Bonding orbitals or ybridization Bonding orbitals or ybridization

8 Molecule or Polyatomic Lewis Structure Data Sketch of the 3-D Ion Ol Bonding orbitals or ybridization 3-7. PO 4 Bonding orbitals or ybridization - 8. BF 4 Bonding orbitals or ybridization Ol Bonding orbitals or ybridization 10. P1 2 F2 Bonding orbitals or ybridization 11. SF6 Bonding orbitals or ybridization

9 Molecule or Polyatomic Lewis Structure Data Sketch of the 3-D Ion 12. Pl 2 F 3 Bonding orbitals or ybridization 13. BrF 3 Bonding orbitals or ybridization 14. SF 4 Bonding orbitals or ybridization IF 4 Bonding orbitals or ybridization SO 3 Bonding orbitals or ybridization

10 Molecule or Polyatomic Lewis Structure Data Sketch of the 3-D Ion 17. XeF 2 Bonding orbitals or ybridization 18. SF 2 Bonding orbitals or ybridization

Effect of unshared pairs on molecular geometry

Effect of unshared pairs on molecular geometry Chapter 7 covalent bonding Introduction Lewis dot structures are misleading, for example, could easily represent that the electrons are in a fixed position between the 2 nuclei. The more correct designation

More information

7.1 The Covalent Bond. 7.2 Strengths of Covalent Bonds

7.1 The Covalent Bond. 7.2 Strengths of Covalent Bonds Chapter 7: Covalent Bonds and Molecular Structure (7.1-7.7, 7.9, 7.11, 7.12) Chapter Goals: Be Able to: Predict which compounds are ionic and which are molecular. Use the periodic table to predict which

More information

STUDY GUIDE AP Chemistry CHAPTER NINE- Molecular Geometry and Bonding Theories Sections 9.1 through 9.6 Only

STUDY GUIDE AP Chemistry CHAPTER NINE- Molecular Geometry and Bonding Theories Sections 9.1 through 9.6 Only 9.1 Molecular Shapes STUDY GUIDE AP Chemistry CHAPTER NINE- Molecular Geometry and Bonding Theories Sections 9.1 through 9.6 Only Lewis structures give atomic connectivity: they tell us which atoms are

More information

Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories

Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories C h e m i s t r y 1 A : C h a p t e r 1 0 P a g e 1 Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories Homework: Read Chapter 10: Work out sample/practice

More information

LEWIS STRUCTURES. 1. For the A-group elements, the number of valence electrons of an atom is equal to the group number.

LEWIS STRUCTURES. 1. For the A-group elements, the number of valence electrons of an atom is equal to the group number. Revised 12/2015 LEWIS STRUCTURES Chemistry 1104 L The purpose of this experiment is to gain practical experience of drawing lewis structures and to use molecular models to represent the three-dimensional

More information

The Lewis electron dot structures below indicate the valence electrons for elements in Groups 1-2 and Groups 13-18

The Lewis electron dot structures below indicate the valence electrons for elements in Groups 1-2 and Groups 13-18 AP EMISTRY APTER REVIEW APTER 7: VALENT BNDING You should understand the nature of the covalent bond. You should be able to draw the Lewis electron-dot structure for any atom, molecule, or polyatomic ion.

More information

EXPERIMENT 17 : Lewis Dot Structure / VSEPR Theory

EXPERIMENT 17 : Lewis Dot Structure / VSEPR Theory EXPERIMENT 17 : Lewis Dot Structure / VSEPR Theory Materials: Molecular Model Kit INTRODUCTION Although it has recently become possible to image molecules and even atoms using a high-resolution microscope,

More information

Chapter 7. Chemical Bonding I: Basic Concepts

Chapter 7. Chemical Bonding I: Basic Concepts Chapter 7. Chemical Bonding I: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

Chapter 7. Chemical Bond Concept

Chapter 7. Chemical Bond Concept Chapter 7 Covalent Bonds & Molecular Structure Chemical Bond Concept Recall that an atom has core and valence electrons. Core electrons are found close to the nucleus. Valence electrons are found in the

More information

Name: Date: Lab Partners: Lab section: Covalent Bonding Part II Molecular Geometry

Name: Date: Lab Partners: Lab section: Covalent Bonding Part II Molecular Geometry Name: Date: Lab Partners: Lab section: Covalent Bonding Part II Molecular Geometry The purpose of this lab is to use molecular models to help you understand the theoretical concepts of covalent bonding

More information

Illustrating Bonds - Lewis Dot Structures

Illustrating Bonds - Lewis Dot Structures Illustrating Bonds - Lewis Dot Structures Lewis Dot structures are also known as electron dot diagrams These diagrams illustrate valence electrons and subsequent bonding A line shows each shared electron

More information

Chapter 12: Chemical Bonding. Octet Rule

Chapter 12: Chemical Bonding. Octet Rule Chapter 12: Chemical Bonding Recall that an atom has core and valence electrons. Core electrons are found close to the nucleus. Valence electrons are found in the most distant s and p energy subshells.

More information

Chapter 9: Molecular Geometry and Hybridization of Atomic Orbitals

Chapter 9: Molecular Geometry and Hybridization of Atomic Orbitals Previous Chapter Table of Contents Next Chapter Chapter 9: Molecular Geometry and Hybridization of Atomic Orbitals Section 9.1: Molecular Geometry and the VSEPR Model Molecular geometry is the three-dimensional

More information

The Geometrical Structure of Molecules: An Experiment Using Molecular Models

The Geometrical Structure of Molecules: An Experiment Using Molecular Models The Geometrical Structure of Molecules: An Experiment Using Molecular Models Many years ago it was observed that in many of its compounds the carbon atom formed four chemical linkages to other atoms. As

More information

N H H. For example, consider ammonia, NH 3, which has the Lewis structure: The nitrogen atom has four pairs of valence electrons, 3 bonding pairs

N H H. For example, consider ammonia, NH 3, which has the Lewis structure: The nitrogen atom has four pairs of valence electrons, 3 bonding pairs Objectives: The objectives of this laboratory experience are to: Write Lewis structure representations of the bonding and valence electrons in molecules. Use the VSEPR model to predict the molecular geometries

More information

Chapter 6, Section 6.1 Introduction to Chemical Bonding. Objectives. ii) Explain why most atoms form chemical bonds.

Chapter 6, Section 6.1 Introduction to Chemical Bonding. Objectives. ii) Explain why most atoms form chemical bonds. Chapter 6, Section 6.1 Introduction to Chemical Bonding i) Define chemical bond. Objectives ii) Explain why most atoms form chemical bonds. iii) Describe ionic and covalent bonding. iv) Explain why most

More information

Valence Bond Theory - Description

Valence Bond Theory - Description Bonding and Molecular Structure - PART 2 - Valence Bond Theory and Hybridization 1. Understand and be able to describe the Valence Bond Theory description of covalent bond formation. 2. Understand and

More information

EXPERIMENT - 1. Molecular Geometry- Lewis Dot structures

EXPERIMENT - 1. Molecular Geometry- Lewis Dot structures EXPERIMENT - 1 Molecular Geometry- Lewis Dot structures INTRODUCTION Although it has recently become possible to image molecules and even atoms using a high-resolution microscope, most of our information

More information

Chapter 8: Bonding General Concepts. Valence Electrons. Representative Elements & Lewis Dot Structures

Chapter 8: Bonding General Concepts. Valence Electrons. Representative Elements & Lewis Dot Structures Chapter 8: Bonding General Concepts Valence Electrons 8.1 Chemical Bond Formation 8.2 Covalent Bonding (Lewis Dot Structures) 8.3 Charge Distribution in Covalent Compounds 8.4 Resonance 8.5 Molecular Shapes

More information

Molecular Geometry and Chemical Bonding Theory

Molecular Geometry and Chemical Bonding Theory Molecular Geometry and Chemical Bonding Theory The Valence -Shell Electron -Pair Repulsion (VSEPR) Model predicts the shapes of the molecules and ions by assuming that the valence shell electron pairs

More information

Chemical Bonds stable octet

Chemical Bonds stable octet Chemical Bonds Elements form bonds to be in a lower energy state 1. Ionic Bonds transfer of electrons, between metal and nonmetal 2. Covalent Bonds sharing of electrons, between two nonmetals 3. Metallic

More information

Question 4.2: Write Lewis dot symbols for atoms of the following elements: Mg, Na, B, O, N, Br.

Question 4.2: Write Lewis dot symbols for atoms of the following elements: Mg, Na, B, O, N, Br. Question 4.1: Explain the formation of a chemical bond. A chemical bond is defined as an attractive force that holds the constituents (atoms, ions etc.) together in a chemical species. Various theories

More information

Chemistry 4th Edition McMurry/Fay

Chemistry 4th Edition McMurry/Fay 7 Chapter Covalent Bonding Chemistry 4th Edition McMurry/Fay Dr. Paul Charlesworth Michigan Technological University The Covalent Bond 01 Covalent bonds are formed by sharing at least one pair of electrons.

More information

A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing.

A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing. CHAPTER EIGHT BNDING: GENERAL CNCEPT or Review 1. Electronegativity is the ability of an atom in a molecule to attract electrons to itself. Electronegativity is a bonding term. Electron affinity is the

More information

Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory

Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory Lecture Presentation Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory Sherril Soman Grand Valley State University Taste The taste of a food depends on

More information

Lecture and Covalent Bonding Theories

Lecture and Covalent Bonding Theories Lecture 22-24 and Covalent Bonding Theories Shapes we ve learned to draw Lewis structures and account for all the valence electrons in a molecule. But: Lewis structures are two dimensional and molecules

More information

This document explains how to work out the shapes of molecules and polyatomic ions.

This document explains how to work out the shapes of molecules and polyatomic ions. SHAPES OF MOLECULES AND IONS This document explains how to work out the shapes of molecules and polyatomic ions. The valence shell electron pair repulsion theory The shape of a molecule or ion is governed

More information

Topic 4. Chemical bonding and structure

Topic 4. Chemical bonding and structure Topic 4. Chemical bonding and structure There are three types of strong bonds: Ionic Covalent Metallic Some substances contain both covalent and ionic bonding or an intermediate. 4.1 Ionic bonding Ionic

More information

Chemical Bonds. a. Duet Rule: 2 electrons needed to satisfy valence shell. i. What follows this rule? Hydrogen and Helium

Chemical Bonds. a. Duet Rule: 2 electrons needed to satisfy valence shell. i. What follows this rule? Hydrogen and Helium Chemical Bonds 1. Important points about Lewis Dot: a. Duet Rule: 2 electrons needed to satisfy valence shell. i. What follows this rule? Hydrogen and Helium b. Octet Rule: 8 electrons needed to satisfy

More information

Lewis Structure Exercise

Lewis Structure Exercise Lewis Structure Exercise A Lewis structure shows how the valence electrons are arranged and indicates the bonding between atoms in a molecule. We represent the elements by their symbols. The shared electron

More information

1. A chemical bond represents a force that holds groups of two or more atoms together and makes them function as a unit.

1. A chemical bond represents a force that holds groups of two or more atoms together and makes them function as a unit. Chapter 12 Chemical Bonding 1. A chemical bond represents a force that holds groups of two or more atoms together and makes them function as a unit. 2. An ionic compound results when a metallic element

More information

Unit 8. Covalent Bonding

Unit 8. Covalent Bonding Unit 8 Covalent Bonding The Ionic Bond When sodium and chlorine atoms combine, the sodium atoms give their electrons to chlorine. Both ions now have stable noble gas electron configurations and the oppositely

More information

H H. required that the linkages be directed toward the corners of a tetrahedron, at the center of which lay the carbon atom.

H H. required that the linkages be directed toward the corners of a tetrahedron, at the center of which lay the carbon atom. General hemistry I (F, 09-10) I TRODUTIO Many years ago it was observed that in many of its compounds, the carbon atom formed four chemical linkages to other atoms. As early as 1870, graphic formulas of

More information

Chemistry 132.E2. Structure and Shape of Molecules

Chemistry 132.E2. Structure and Shape of Molecules Chemistry 132.E2. Structure and Shape of Molecules Objectives To learn how to draw Lewis structures of molecules and ions. To use VSEPR to predict the shapes of molecules. To determine whether equivalent

More information

Section 12.1 Chapter 12 Characteristics of Bonds and Structures Objectives

Section 12.1 Chapter 12 Characteristics of Bonds and Structures Objectives Objectives 1. To learn about ionic and covalent bonds and explain how they are formed - what holds compounds together? 2. To learn about the polar covalent bond are all covalent bonds equal? 3. To understand

More information

Section 8.3 Molecular Structures

Section 8.3 Molecular Structures Section 8.3 Molecular Structures List the basic steps used to draw Lewis structures. Explain why resonance occurs, and identify resonance structures. Identify three exceptions to the octet rule, and name

More information

Name: Date: Lab Partners: Lab section:

Name: Date: Lab Partners: Lab section: ame: Date: Lab Partners: Lab section: Covalent Bonding Part I: Lewis Structures Introduction: A covalent bond results from the sharing of electrons between two atoms. Electrostatic interactions occur between

More information

Chapter 10. Chemical Bonding II

Chapter 10. Chemical Bonding II Student Objectives 10.1 Artificial Sweeteners: Fooled by Molecular Shape Know and understand that energy content and taste are due to microscopic properties related to structure but are independent of

More information

Unit Ionic and Covalent Bonds

Unit Ionic and Covalent Bonds Unit 6 --- Ionic and Covalent Bonds Electron Configuration in Ionic Bonding Ionic Bonds Bonding in Metals Valence Electrons Electrons in the highest occupied energy level of an element s atoms Examples

More information

LOCALIZED ELECTRON (LE) THEORY

LOCALIZED ELECTRON (LE) THEORY I. LEWIS STRUCTURES LOCALIZED ELECTRON (LE) THEORY A. Background. Lewis structures (named for G.N. Lewis) provide a two-dimensional picture of bonding in covalent compounds. They are based on the theory

More information

Lewis Structures. Molecular Shape. VSEPR Model (Valence Shell Electron Pair Repulsion Theory)

Lewis Structures. Molecular Shape. VSEPR Model (Valence Shell Electron Pair Repulsion Theory) Lewis Structures Molecular Shape VSEPR Model (Valence Shell Electron Pair Repulsion Theory) PART 1: Ionic Compounds Complete the table of Part 1 by writing: The Lewis dot structures for each metallic and

More information

Ionic vs. Covalent Compounds

Ionic vs. Covalent Compounds Ionic vs. Covalent Compounds 7 Electron Dot Diagrams American Chemist, G. N. Lewis (1916), developed a system of representing the valence electrons with dots Electron Dot Structures - Valence electrons

More information

PART 3 Chemical Bonds, Valence Bond Method, and Molecular Shapes. Reference: Chapter 9 10 in textbook

PART 3 Chemical Bonds, Valence Bond Method, and Molecular Shapes. Reference: Chapter 9 10 in textbook PART 3 Chemical Bonds, Valence Bond Method, and Molecular Shapes Reference: Chapter 9 10 in textbook 1 Valence Electron Valence Electrons Define: the outer shell electrons Important for determination of

More information

Chemical Bonding II. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory

Chemical Bonding II. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Chemical Bonding II Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Lewis Theory of Molecular Shape and Polarity Structure Determines Properties! Properties of molecular substances depend

More information

Chapter Ten. Chemical Bonding ll Molecular Geometry and Hybridization of Atomic Orbitals

Chapter Ten. Chemical Bonding ll Molecular Geometry and Hybridization of Atomic Orbitals 1 Chapter Ten Chemical Bonding ll Molecular Geometry and Hybridization of Atomic Orbitals Molecular Geometry 2 The Valence-Shell Electron-Pair Repulsion (VSEPR) Method based on the idea that pairs of valence

More information

Chem1028/ (Please note that you have to attend lectures to complete this set of notes please use your molecular model kits.

Chem1028/ (Please note that you have to attend lectures to complete this set of notes please use your molecular model kits. Chem1028/9 2012 MOLECULAR GEOMETRIES AND BONDING THEORIES (Please note that you have to attend lectures to complete this set of notes please use your molecular model kits.) Mrs Meirim / Room C103 1 BONDING

More information

Geometry of Covalent Compounds

Geometry of Covalent Compounds Geometry of Covalent Compounds Introduction: In order to utilize lab time and use the molecular model kits most effectively, we recommend completing as many of the Lewis Dot Structures as you can before

More information

Chapter -10 Chemical Bonding

Chapter -10 Chemical Bonding Chapter -10 Chemical Bonding Synopsis Atoms of elements which have the atoms are electrical neutral. All atoms have a tendency to attain the 8 electrons in their valency orbit as in noble gases. For this,

More information

Molecular Structure covalent compounds valence bond theory molecular orbital theory overlap shared covalent bond electron pair bond

Molecular Structure covalent compounds valence bond theory molecular orbital theory overlap shared covalent bond electron pair bond Molecular Structure I. Valence Bond Theory A. General 1. We will consider the covalent compounds formed by the interactions of nonmetals. 2. They interact by sharing electrons between them. 3. Two theories,

More information

Chapter 11. Chemical Bonds: The Formation of Compounds from Atoms

Chapter 11. Chemical Bonds: The Formation of Compounds from Atoms Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms 1 11.1 Periodic Trends in atomic properties 11.1 Periodic Trends in atomic properties design of periodic table is based on observing properties

More information

EXPERIMENT 9 Dot Structures and Geometries of Molecules

EXPERIMENT 9 Dot Structures and Geometries of Molecules EXPERIMENT 9 Dot Structures and Geometries of Molecules INTRODUCTION Lewis dot structures are our first tier in drawing molecules and representing bonds between the atoms. The method was first published

More information

2. Atoms with very similar electronegativity values are expected to form

2. Atoms with very similar electronegativity values are expected to form AP hemistry Practice Test #6 hapter 8 and 9 1. Which of the following statements is incorrect? a. Ionic bonding results from the transfer of electrons from one atom to another. b. Dipole moments result

More information

Valence shell electrons repel each other Valence shell electrons are arranged geometrically around the central atom to

Valence shell electrons repel each other Valence shell electrons are arranged geometrically around the central atom to Molecular Geometry (Valence Shell Electron Pair Repulsion -VSEPR) & Hybridization of Atomic Orbitals (Valance Bond Theory) Chapter 10 Valence Shell Electron Pair Repulsion (VSEPR) Valence shell electrons

More information

Chapter 8 Bonding and Molecular Structure

Chapter 8 Bonding and Molecular Structure Chapter 8 Bonding and Molecular Structure Jeffrey Mack California State University, Sacramento Chemical Bonding Things we must consider: What holds the atoms in a molecule or ionic compound together? Why

More information

Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories. Copyright McGraw-Hill

Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories. Copyright McGraw-Hill Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories 1 9.1 Molecular Geometry Molecular geometry is the threedimensional shape of a molecule. CCl 4 Geometry can be predicted using Lewis

More information

SHAPES OF MOLECULES (VSEPR MODEL)

SHAPES OF MOLECULES (VSEPR MODEL) 1 SAPES MLEULES (VSEPR MDEL) Valence Shell Electron-Pair Repulsion model - Electron pairs surrounding atom spread out as to minimize repulsion. - Electron pairs can be bonding pairs (including multiple

More information

Chapter 8: Covalent Bonding

Chapter 8: Covalent Bonding Chapter 8: Covalent Bonding Section 8.1 Section 8.2 Section 8.3 Section 8.4 Section 8.5 The Covalent Bond Naming Molecules Molecular Structures Molecular Shapes Electronegativity and Polarity Review Vocabulary

More information

1. A chemical bond is a force that holds groups of two or more atoms together and makes them function as a unit.

1. A chemical bond is a force that holds groups of two or more atoms together and makes them function as a unit. CHAPTER 12 1. A chemical bond is a force that holds groups of two or more atoms together and makes them function as a unit. 2. The bond energy represents the energy required to break a chemical bond. 3.

More information

Theme 3: Bonding and Molecular Structure. (Chapter 8)

Theme 3: Bonding and Molecular Structure. (Chapter 8) Theme 3: Bonding and Molecular Structure. (Chapter 8) End of Chapter questions: 5, 7, 9, 12, 15, 18, 23, 27, 28, 32, 33, 39, 43, 46, 67, 77 Chemical reaction valence electrons of atoms rearranged (lost,

More information

Molecular Models: The shape of simple molecules and ions

Molecular Models: The shape of simple molecules and ions Molecular Models: The shape of simple molecules and ions Background The shape of a molecule is very important when investigating its properties and reactivity. For example, compare CO 2 and SO 2. Carbon

More information

Lewis Dot Structure Answer Key

Lewis Dot Structure Answer Key Lewis Dot Structure Answer Key 1) Nitrogen is the central atom in each of the following species: N2 N2 - N2 + Nitrogen can also form electron deficient compounds with a single unpaired electron on the

More information

Chapter 10 Molecular Geometry and Chemical Bonding Theory

Chapter 10 Molecular Geometry and Chemical Bonding Theory Chem 1: Chapter 10 Page 1 Chapter 10 Molecular Geometry and Chemical Bonding Theory I) VSEPR Model Valence-Shell Electron-Pair Repulsion Model A) Model predicts Predicts electron arrangement and molecular

More information

Shapes of Molecules. AX m E n. A. Molecular Geometry

Shapes of Molecules. AX m E n. A. Molecular Geometry Shapes of Molecules A. Molecular Geometry Lewis structures provide us with the number and types of bonds around a central atom, as well as any NB electron pairs. They do not tell us the 3-D structure of

More information

II. Electron Sharing. B. Isomers and Resonance

II. Electron Sharing. B. Isomers and Resonance COVALENT BONDS I. Introduction- A. Polar Bond: When nonmetals bond covalently with a large difference in electronegativity, a polar bond is formed. A polar bond has a partial separation of charges. Polar

More information

7.14 Linear triatomic: A-----B-----C. Bond angles = 180 degrees. Trigonal planar: Bond angles = 120 degrees. B < B A B = 120

7.14 Linear triatomic: A-----B-----C. Bond angles = 180 degrees. Trigonal planar: Bond angles = 120 degrees. B < B A B = 120 APTER SEVEN Molecular Geometry 7.13 Molecular geometry may be defined as the three-dimensional arrangement of atoms in a molecule. The study of molecular geometry is important in that a molecule s geometry

More information

COVALENT BONDING. [MH5; Chapter 7]

COVALENT BONDING. [MH5; Chapter 7] COVALENT BONDING [MH5; Chapter 7] Covalent bonds occur when electrons are equally shared between two atoms. The electrons are not always equally shared by both atoms; these bonds are said to be polar covalent.

More information

CHAPTER NOTES CHAPTER 16. Covalent Bonding

CHAPTER NOTES CHAPTER 16. Covalent Bonding CHAPTER NOTES CHAPTER 16 Covalent Bonding Goals : To gain an understanding of : NOTES: 1. Valence electron and electron dot notation. 2. Stable electron configurations. 3. Covalent bonding. 4. Polarity

More information

Hydrogen Oxygen. Chlorine. Chloride ion

Hydrogen Oxygen. Chlorine. Chloride ion Chapter 2. Molecular structure and bonding Lewis structures 2.1 The octet rule Lewis structures: a review Lewis Theory 3.1 The octet rule All elements except hydrogen ( hydrogen have a duet of electrons)

More information

Chemistry 212 MOLECULAR SHAPES AND STRUCTURE LEARNING OBJECTIVES

Chemistry 212 MOLECULAR SHAPES AND STRUCTURE LEARNING OBJECTIVES Chemistry 212 MOLECULAR SHAPES AND STRUCTURE LEARNING OBJECTIVES - Become proficient at drawing structures, and - use those structure to build models according to the predictions of the VSEPR theory, and

More information

Chapter 6 Chemical Bonding

Chapter 6 Chemical Bonding Chapter 6 Chemical Bonding 6-1 Introduction to Chemical Bonding 1. A chemical bond is a mutual between the nuclei and electrons of different atoms that binds the atoms together. 2. By bonding with each

More information

COVALENT BONDING. [MH5; Chapter 7]

COVALENT BONDING. [MH5; Chapter 7] COVALENT BONDING [MH5; Chapter 7] Covalent bonds occur when electrons are equally shared between two atoms. The electrons are not always equally shared by both atoms; these bonds are said to be polar covalent.

More information

Basic Concept: Chemical Bonding

Basic Concept: Chemical Bonding Basic Concept: Chemical Bonding Ionic bond: Type of chemical bond that involves the electrostatic attraction between oppositely charged ions. These ions represent atoms that have lost one or more electrons

More information

Molecular Geometry and Chemical Bonding Theory

Molecular Geometry and Chemical Bonding Theory Chapter 10 Molecular Geometry and Chemical Bonding Theory Concept Check 10.1 An atom in a molecule is surrounded by four pairs of electrons, one lone pair and three bonding pairs. Describe how the four

More information

Valence Electrons. core and CHAPTER 9. Introduction. Bonds - Attractive forces that hold atoms together in compounds

Valence Electrons. core and CHAPTER 9. Introduction. Bonds - Attractive forces that hold atoms together in compounds Structure and Molecular Bonding CAPTER 9 1 Introduction Bonds - Attractive forces that hold atoms together in compounds Valence Electrons - The electrons involved in bonding are in the outermost (valence)

More information

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts 8.1 Types of Chemical Bonds A. Ionic Bonding 1. Electrons are transferred 2. Metals react with nonmetals 3. Ions paired have lower energy

More information

Lab Manual Supplement

Lab Manual Supplement Objectives 1. Learn about the structures of covalent compounds and polyatomic ions. 2. Draw Lewis structures based on valence electrons and the octet rule. 3. Construct 3-dimensional models of molecules

More information

Molecular Geometry and Bonding Theories

Molecular Geometry and Bonding Theories Geometry Theories Mr. Matthew Totaro AP Chemistry Legacy High School Shapes The shape of a molecule plays an important role in its reactivity. By noting the number of bonding and nonbonding electron pairs,

More information

Covalent Bonding Nomenclature Lewis structure Resonance VSEPR theory Molecular Polarity. Edward Wen, PhD

Covalent Bonding Nomenclature Lewis structure Resonance VSEPR theory Molecular Polarity. Edward Wen, PhD Covalent Bonding Nomenclature Lewis structure Resonance VSEPR theory Molecular Polarity Edward Wen, PhD Binary Covalent Compounds: Two Nonmetals (such as CO 2 ) 1. Name first element in formula first use

More information

MOLECULAR COMPOUNDS FORMATION. Distance. Potential Energy BOND LENGTH. BOND ENERGY bond and. form neutral PROPERTIES. Page 1 of 9

MOLECULAR COMPOUNDS FORMATION. Distance. Potential Energy BOND LENGTH. BOND ENERGY bond and. form neutral PROPERTIES. Page 1 of 9 CHEMICAL BONDS Covalent Bonding MOLECULAR COMPOUNDS neutral group of atoms that are held together by covalent bonds chemical compound whose simplest units are molecules indicates the relative numbers of

More information

11 Chemical Bonds: The Formation of Compounds from Atoms. Chapter Outline. Periodic Trends in Atomic Properties. Periodic Trends in Atomic Properties

11 Chemical Bonds: The Formation of Compounds from Atoms. Chapter Outline. Periodic Trends in Atomic Properties. Periodic Trends in Atomic Properties 11 Chemical Bonds The Formation of Compounds from Atoms Chapter Outline 11.1 11.2 Lewis Structures of Atoms 11.3 The Ionic Bond Transfer of Electrons from One Atom to Another 11.4 Predicting Formulas of

More information

Unit 5 Chemical Bonding

Unit 5 Chemical Bonding Unit 5 Chemical Bonding Ionic and Metallic Bonding Ionic Compounds Compounds composed of cations and anions are called ionic compounds. Although they are composed of ions, ionic compounds are electrically

More information

Chapter 9. and Bonding Theories

Chapter 9. and Bonding Theories Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 9 Theories John D. Bookstaver St. Charles Community College Cottleville, MO Shapes The

More information

Sample Exercise 9.1 Using the VSEPR Model

Sample Exercise 9.1 Using the VSEPR Model Sample Exercise 9.1 Using the VSEPR Model Use the VSEPR model to predict the molecular geometry of (a) O 3, (b) SnCl 3. Analyze: We are given the molecular formulas of a molecule and a polyatomic ion,

More information

VSEPR Model. The Valence-Shell Electron Pair Repulsion Model. Predicting Molecular Geometry

VSEPR Model. The Valence-Shell Electron Pair Repulsion Model. Predicting Molecular Geometry VSEPR Model The structure around a given atom is determined principally by minimizing electron pair repulsions. The Valence-Shell Electron Pair Repulsion Model The valence-shell electron pair repulsion

More information

OME General Chemistry

OME General Chemistry OME General Chemistry Lecture 4: VSEPR, Hybridization, MO Theory Dr. Hartwig Pohl Office: Beyer-Bau 122e Email: hartwig.pohl@iapp.de Phone: +49 351 463 42576 1 Molecular Structure: VSEPR What do molecules

More information

Chapter 1 Structure and Bonding

Chapter 1 Structure and Bonding Chapter 1 Structure and Bonding Organic Chemistry, Third Edition Janice Gorzynski Smith University of Hawai i Prepared by Layne A. Morsch The University of Illinois - Springfield Modified and Used for

More information

Section 1: Organic Structure and Bonding

Section 1: Organic Structure and Bonding Section 1: Organic Structure and Bonding What is Organic Chemistry? Compounds containing only carbon and hydrogen, also known as, are the simplest form of organic compounds. Examples: C C C C C C Atoms

More information

AL BONDING AND MOLECULAR MOLECUL CHEMICAL CHEMIC TURE. Unit. I. Multiple Choice Questions (Type-I)

AL BONDING AND MOLECULAR MOLECUL CHEMICAL CHEMIC TURE. Unit. I. Multiple Choice Questions (Type-I) I. Multiple Choice Questions (Type-I) 1. Isostructural species are those which have the same shape and hybridisation. Among the given species identify the isostructural pairs. [NF 3 and BF 3 ] [BF 4 and

More information

Molecular Geometry. Bond length: the distance between two atoms held together by a chemical bond

Molecular Geometry. Bond length: the distance between two atoms held together by a chemical bond Molecular Geometry Bond length: the distance between two atoms held together by a chemical bond Bond length decreases as the number of bonds between two atoms increases. Single bond is the longest. Triple

More information

Chem C1403 Lecture 6. Lewis structures and the geometry of molecules with a central atom.

Chem C1403 Lecture 6. Lewis structures and the geometry of molecules with a central atom. Chem C1403 Lecture 6. Lewis structures and the geometry of molecules with a central atom. (1) Covalent bonding: sharing of electron pairs by atoms (2) Rules for writing valid Lewis structures (3) Multiple

More information

UNIT TEST Atomic & Molecular Structure. Name: Date:

UNIT TEST Atomic & Molecular Structure. Name: Date: SCH4U UNIT TEST Atomic & Molecular Structure Name: _ Date: Part A - Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Who postulated that electrons

More information

Chapter 9 Molecular Geometry and Bonding Theories

Chapter 9 Molecular Geometry and Bonding Theories Chapter 9 Molecular Geometry and Bonding Theories 1. or a molecule with the formula AB 2 the molecular shape is. (a). linear or trigonal planar (b). linear or bent (c). linear or T-shaped (d). T-shaped

More information

Chapter 3. Compounds Putting Particles Together

Chapter 3. Compounds Putting Particles Together Chapter 3 Compounds Putting Particles Together MODIFED BY Dr. Radu Outline 3.1 Electron Arrangements and the Octet Rule 3.2 In Search of an Octet, Part 1: Ion Formation 3.3 Ionic Compounds Electron Give

More information

CHAPTER 12: CHEMICAL BONDING

CHAPTER 12: CHEMICAL BONDING 12.1 THE CHEMICAL BOND CONCEPT CHAPTER 12: CHEMICAL BONDING octet rule: In forming compounds atoms lose, gain or share electrons to attain a noble gas configuration with 8 electrons in their outer shell.

More information

Chapters and 7.4 plus 8.1 and 8.3-5: Bonding, Solids, VSEPR, and Polarity

Chapters and 7.4 plus 8.1 and 8.3-5: Bonding, Solids, VSEPR, and Polarity Chapters 7.1-2 and 7.4 plus 8.1 and 8.3-5: Bonding, Solids, VSEPR, and Polarity Chemical Bonds and energy bond formation is always exothermic As bonds form, chemical potential energy is released as other

More information

Chapter 7 Chemical Bonding

Chapter 7 Chemical Bonding Chapter 7 Chemical Bonding 7.1 Ionic Bonding Octet rule: In forming compounds atoms lose, gain or share electrons to attain a noble gas configuration with 8 electrons in their outer shell (s 2 p 6 ), except

More information

Achieving Noble Gas Electron Configuration

Achieving Noble Gas Electron Configuration More on Ions Record into your notes Achieving Noble Gas Electron Configuration An ion forms when an atom loses electrons (OIL, oxidation) or gains electrons (RIG, reduction) to achieve noble gas electron

More information

Chapter 7. Comparing Ionic and Covalent Bonds. Ionic Bonds. Types of Bonds. Quick Review of Bond Types. Covalent Bonds

Chapter 7. Comparing Ionic and Covalent Bonds. Ionic Bonds. Types of Bonds. Quick Review of Bond Types. Covalent Bonds Comparing Ionic and Covalent Bonds Chapter 7 Covalent Bonds and Molecular Structure Intermolecular forces (much weaker than bonds) must be broken Ionic bonds must be broken 1 Ionic Bonds Covalent Bonds

More information

CHEMICAL BONDING AND MOLECULAR STRUCTURE

CHEMICAL BONDING AND MOLECULAR STRUCTURE CHEMICAL BONDING AND MOLECULAR STRUCTURE Long Answer Questions: 1) What is meant by Hybridisation? Explain different types of Hybridisation involving S and P orbitals? Ans. The process of mixing of suitable

More information

Chemistry Workbook 2: Problems For Exam 2

Chemistry Workbook 2: Problems For Exam 2 Chem 1A Dr. White Updated /5/1 1 Chemistry Workbook 2: Problems For Exam 2 Section 2-1: Covalent Bonding 1. On a potential energy diagram, the most stable state has the highest/lowest potential energy.

More information