The Joy of Sets. Joshua Knowles. Introduction to Maths for Computer Science, School of Computer Science University of Birmingham


 Clarence Cole
 1 years ago
 Views:
Transcription
1 School of Computer Science University of Birmingham Introduction to Maths for Computer Science, 2015
2 Definition of a Set A set is a collection of distinct things. We generally use upper case letters to denote a set. To indicate the members of a set, we can list them explicitly within { }, e.g. A = {1, 2, 3, 4, 5} B = {a, b, c, z} C = {man, house, cat, } Notice: The following is not a set as its members are not distinct. {1, 1, 1, 1, 2, 2, 2, 2} These kinds of collection are called multisets, but we will not deal further with them here.
3 Elements, membership and cardinality The members of a set are called members or elements. Given the set A = {1, 2, 3, 4, 5} we write 1 A, which is read as 1 is an element of A. Similarly we write 7 A. The cardinality of a set C is the number of elements it has, and is denoted as C. For the above set A, we can see that A = 5.
4 Defining sets by the properties of their elements Another way to define a particular set is to specify the properties that the members of the set have. This is obviously useful for large sets or sets with infinite members. Here is an example of such a definition: B = {x is a natural number x > 5, x/2 is a natural number}. The first part tells us what larger set our elements are drawn from (here the natural numbers), also called the universal set U. The symbol is read as such that, and then a list of properties are given separated by commas or by logical connectives (and, or) to define the subset of U that B is. What set does B denote above?
5 Some Useful Sets We give the important sets their own special (reserved) symbols. Here are some of the most useful ones. is the empty set, U or U is the universal set, A is the complement of A. That is, everything in the universal set not in A, N is the set of natural numbers, Z is the set of integers, Q is the set of rational numbers and R is the set of real numbers. Exercise: Using these symbols, define the set of positive irrational numbers less than 100.
6 Subsets and Supersets Consider two sets A = {3, 4, 5, 6, 7} and B = {4, 5, 6}. Then it is true that B A, and B A. (B is a proper subset of A, and B is a subset of A). It is also the case that A B, and A B. (A is a proper superset of B, and A is a superset of B).
7 The Power Set The power set of a set is very useful. It is the set of all subsets of a set, and is usually denoted by P. If then A = {1, 2, 3} P(A) = {{ }, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. You will notice that P(A) = 2 A.
8 Logical and existential symbols It is useful in defining sets to be able to call on some logical symbols. x is read as for all x. x is read as there exists an x such that... stands for logical AND. For example: x > 2 x odd. stands for OR. max(a) is the greatest element of A, assuming A is an ordered set. min(a) is the minimum element of A, assuming A is an ordered set.
9 Exercises Use symbols from the previous page to define these. (i) The natural numbers coprime with 2 and 5. (ii) Given a set B of natural numbers, the set A of numbers such that for every element x of B, there is a corresponding element y of A where y = x + 5, and no others. (Is this welldefined?) (iii) The natural numbers except for the range
10 Intersection and Union A B means the set consisting of elements in A or B, where the or is inclusive (i.e. the elements can be in both A and B.) This is read as A union B. Similarly, A B means the set consisting of elements in A and B (i.e. the elements must be in both A and B.) This is read as A intersection B. Show that (A B) (A B) A B.
11 Relationships between the numbers Complete the following N R =? N Q =? P(R) =? N Z =? (the star denotes nonnegative) {log 1 0(y), y {1, 5, 10, 50, 100, 500, 1000,...}} =?
12 Venn Diagrams Notice that by drawing the two sets with an intersection, the most general relationship has been shown. (The intersection may be empty or not.)
13 Venn Diagrams A general representation of three sets (subsets of a Universal set). Any of the subregions may be empty.
14 Men Venn Diagram
15 Tuples Sometimes we want to reason about complex objects. Let us say we want to talk about the students taking this maths class. We could describe each of them by the following tuple: (name, number, birthday, gender). Call the set of all such tuples, T. The set, this maths class, could be defined as C = {x T x refers to a person who comes to Intro2Maths}. How could we describe the set of names of members of this class who are older than 20?
16 Answer: V = {x C x.birthday prior to 9 November 1995} assuming that all individuals in the class are unique when described by the tuple: (name, number, birthday, gender). If they are not, potentially our set V could be smaller than the real set of people older than 20 in the class! Why?
17 More on Venn Diagrams Try drawing the following relationships A B (Don t forget the Universal set) A B (A B) C A B
18 Laws The following laws apply to sets. These are similar to the laws governing multiplication and addition in arithmetic. Let A, B, C be subsets of a Universal set U. 1. (A B) C = A (B C) 2. (A B) C = A (B C) 1. & 2. are the associative laws. 3. A B = B A 4. A B = B A 3. and 4. are the commutative laws. 5. A (B C) = (A B) (A C) 6. A (B C) = (A B) (A C) 5. and 6. are the distributive laws. Slide based on material from p.63, K. Devlin (2004) Sets, Functions and Logic, 3rd Ed.
19 Laws (continued) Let A, B, C be subsets of a Universal set U. 7. (A B) = A B 8. (A B) = A B 7. and 8. are called the De Morgan laws. 9. A A = U 10. A A = 9. and 10. are called the complementation laws. 11. (A ) = A 11. is the selfinverse. How would you prove laws 1 to 11? Slide based on material from p.63, K. Devlin (2004) Sets, Functions and Logic, 3rd Ed.
20 Proof of the distributive law (6) We need to prove A (B C) = (A B) (A C). Define the left hand side L = A (B C) and the right hand side R = (A B) (A C). First prove that L R. We do this by considering an element x L and proving it is necessarily in R too. (Do this yourself) We then do the analogous proof for L R. We consider an element x R and prove it is necessarily in L too. (Do this yourself) Having established the two results L R and R L, we have shown L = R and the proof is complete. Slide based on material from p.65, K. Devlin (2004) Sets, Functions and Logic, 3rd Ed.
21 Proving the SelfInverse Law (11) We need to show that (A ) = A. We can prove this by rewriting this in terms of the difference of sets. A is everything in U not in A, which can be written as U A. The complement of A is everything in U not in A. This can be written as U A. So, now we can rewrite our original statement as U A = U (U A). The right hand side is A (from the correspondence between set difference and normal arithmetic difference).
MATH 140 Lab 4: Probability and the Standard Normal Distribution
MATH 140 Lab 4: Probability and the Standard Normal Distribution Problem 1. Flipping a Coin Problem In this problem, we want to simualte the process of flipping a fair coin 1000 times. Note that the outcomes
More informationMathematical Induction
Mathematical Induction (Handout March 8, 01) The Principle of Mathematical Induction provides a means to prove infinitely many statements all at once The principle is logical rather than strictly mathematical,
More informationMath 3000 Section 003 Intro to Abstract Math Homework 2
Math 3000 Section 003 Intro to Abstract Math Homework 2 Department of Mathematical and Statistical Sciences University of Colorado Denver, Spring 2012 Solutions (February 13, 2012) Please note that these
More informationINTRODUCTORY SET THEORY
M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H1088 Budapest, Múzeum krt. 68. CONTENTS 1. SETS Set, equal sets, subset,
More informationMath/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability
Math/Stats 425 Introduction to Probability 1. Uncertainty and the axioms of probability Processes in the real world are random if outcomes cannot be predicted with certainty. Example: coin tossing, stock
More information3.1. RATIONAL EXPRESSIONS
3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers
More informationMATHEMATICAL INDUCTION. Mathematical Induction. This is a powerful method to prove properties of positive integers.
MATHEMATICAL INDUCTION MIGUEL A LERMA (Last updated: February 8, 003) Mathematical Induction This is a powerful method to prove properties of positive integers Principle of Mathematical Induction Let P
More informationSupplemental Worksheet Problems To Accompany: The PreAlgebra Tutor: Volume 1 Section 1 Real Numbers
Supplemental Worksheet Problems To Accompany: The PreAlgebra Tutor: Volume 1 Please watch Section 1 of this DVD before working these problems. The DVD is located at: http://www.mathtutordvd.com/products/item66.cfm
More informationMathematics Review for MS Finance Students
Mathematics Review for MS Finance Students Anthony M. Marino Department of Finance and Business Economics Marshall School of Business Lecture 1: Introductory Material Sets The Real Number System Functions,
More informationAutomata and Formal Languages
Automata and Formal Languages Winter 20092010 Yacov HelOr 1 What this course is all about This course is about mathematical models of computation We ll study different machine models (finite automata,
More informationMathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson
Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement
More informationTHE NUMBER OF REPRESENTATIONS OF n OF THE FORM n = x 2 2 y, x > 0, y 0
THE NUMBER OF REPRESENTATIONS OF n OF THE FORM n = x 2 2 y, x > 0, y 0 RICHARD J. MATHAR Abstract. We count solutions to the RamanujanNagell equation 2 y +n = x 2 for fixed positive n. The computational
More informationProbability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom
Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Know the definitions of sample space, event and probability function. 2. Be able to
More information26 Integers: Multiplication, Division, and Order
26 Integers: Multiplication, Division, and Order Integer multiplication and division are extensions of whole number multiplication and division. In multiplying and dividing integers, the one new issue
More informationBinary Numbers. Binary Octal Hexadecimal
Binary Numbers Binary Octal Hexadecimal Binary Numbers COUNTING SYSTEMS UNLIMITED... Since you have been using the 10 different digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 all your life, you may wonder how
More informationCubes and Cube Roots
CUBES AND CUBE ROOTS 109 Cubes and Cube Roots CHAPTER 7 7.1 Introduction This is a story about one of India s great mathematical geniuses, S. Ramanujan. Once another famous mathematician Prof. G.H. Hardy
More informationMATH 289 PROBLEM SET 4: NUMBER THEORY
MATH 289 PROBLEM SET 4: NUMBER THEORY 1. The greatest common divisor If d and n are integers, then we say that d divides n if and only if there exists an integer q such that n = qd. Notice that if d divides
More informationAutomata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi
Automata Theory Automata theory is the study of abstract computing devices. A. M. Turing studied an abstract machine that had all the capabilities of today s computers. Turing s goal was to describe the
More informationDiscrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 Proofs Intuitively, the concept of proof should already be familiar We all like to assert things, and few of us
More informationMathematical Conventions. for the Quantitative Reasoning Measure of the GRE revised General Test
Mathematical Conventions for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview The mathematical symbols and terminology used in the Quantitative Reasoning measure
More informationMath 166  Week in Review #4. A proposition, or statement, is a declarative sentence that can be classified as either true or false, but not both.
Math 166 Spring 2007 c Heather Ramsey Page 1 Math 166  Week in Review #4 Sections A.1 and A.2  Propositions, Connectives, and Truth Tables A proposition, or statement, is a declarative sentence that
More information3. Mathematical Induction
3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)
More informationSection 1.1 Real Numbers
. Natural numbers (N):. Integer numbers (Z): Section. Real Numbers Types of Real Numbers,, 3, 4,,... 0, ±, ±, ±3, ±4, ±,... REMARK: Any natural number is an integer number, but not any integer number is
More informationThe last three chapters introduced three major proof techniques: direct,
CHAPTER 7 Proving NonConditional Statements The last three chapters introduced three major proof techniques: direct, contrapositive and contradiction. These three techniques are used to prove statements
More informationSample Induction Proofs
Math 3 Worksheet: Induction Proofs III, Sample Proofs A.J. Hildebrand Sample Induction Proofs Below are model solutions to some of the practice problems on the induction worksheets. The solutions given
More informationSolutions for Practice problems on proofs
Solutions for Practice problems on proofs Definition: (even) An integer n Z is even if and only if n = 2m for some number m Z. Definition: (odd) An integer n Z is odd if and only if n = 2m + 1 for some
More informationLAMC Beginners Circle: Parity of a Permutation Problems from Handout by Oleg Gleizer Solutions by James Newton
LAMC Beginners Circle: Parity of a Permutation Problems from Handout by Oleg Gleizer Solutions by James Newton 1. Take a twodigit number and write it down three times to form a sixdigit number. For example,
More informationSAT Math Facts & Formulas Review Quiz
Test your knowledge of SAT math facts, formulas, and vocabulary with the following quiz. Some questions are more challenging, just like a few of the questions that you ll encounter on the SAT; these questions
More informationIncenter Circumcenter
TRIANGLE: Centers: Incenter Incenter is the center of the inscribed circle (incircle) of the triangle, it is the point of intersection of the angle bisectors of the triangle. The radius of incircle is
More informationThis chapter is all about cardinality of sets. At first this looks like a
CHAPTER Cardinality of Sets This chapter is all about cardinality of sets At first this looks like a very simple concept To find the cardinality of a set, just count its elements If A = { a, b, c, d },
More informationk, then n = p2α 1 1 pα k
Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square
More informationSOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties
SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A Part 3 Fall 2008 III. Spaces with special properties III.1 : Compact spaces I Problems from Munkres, 26, pp. 170 172 3. Show that a finite union of compact subspaces
More informationSOLUTIONS TO ASSIGNMENT 1 MATH 576
SOLUTIONS TO ASSIGNMENT 1 MATH 576 SOLUTIONS BY OLIVIER MARTIN 13 #5. Let T be the topology generated by A on X. We want to show T = J B J where B is the set of all topologies J on X with A J. This amounts
More informationPreviously, you learned the names of the parts of a multiplication problem. 1. a. 6 2 = 12 6 and 2 are the. b. 12 is the
Tallahassee Community College 13 PRIME NUMBERS AND FACTORING (Use your math book with this lab) I. Divisors and Factors of a Number Previously, you learned the names of the parts of a multiplication problem.
More informationPatterns in Pascal s Triangle
Pascal s Triangle Pascal s Triangle is an infinite triangular array of numbers beginning with a at the top. Pascal s Triangle can be constructed starting with just the on the top by following one easy
More informationSolutions to Homework 6 Mathematics 503 Foundations of Mathematics Spring 2014
Solutions to Homework 6 Mathematics 503 Foundations of Mathematics Spring 2014 3.4: 1. If m is any integer, then m(m + 1) = m 2 + m is the product of m and its successor. That it to say, m 2 + m is the
More informationBasic Proof Techniques
Basic Proof Techniques David Ferry dsf43@truman.edu September 13, 010 1 Four Fundamental Proof Techniques When one wishes to prove the statement P Q there are four fundamental approaches. This document
More informationE3: PROBABILITY AND STATISTICS lecture notes
E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................
More informationPrime Factorization 0.1. Overcoming Math Anxiety
0.1 Prime Factorization 0.1 OBJECTIVES 1. Find the factors of a natural number 2. Determine whether a number is prime, composite, or neither 3. Find the prime factorization for a number 4. Find the GCF
More informationA Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions
A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions Marcel B. Finan Arkansas Tech University c All Rights Reserved First Draft February 8, 2006 1 Contents 25
More informationBinary Adders: Half Adders and Full Adders
Binary Adders: Half Adders and Full Adders In this set of slides, we present the two basic types of adders: 1. Half adders, and 2. Full adders. Each type of adder functions to add two binary bits. In order
More information(Refer Slide Time: 00:01:16 min)
Digital Computer Organization Prof. P. K. Biswas Department of Electronic & Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture No. # 04 CPU Design: Tirning & Control
More informationINCIDENCEBETWEENNESS GEOMETRY
INCIDENCEBETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full
More informationProblem of the Month: Perfect Pair
Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:
More information15 Prime and Composite Numbers
15 Prime and Composite Numbers Divides, Divisors, Factors, Multiples In section 13, we considered the division algorithm: If a and b are whole numbers with b 0 then there exist unique numbers q and r such
More informationDiscrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 10
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 10 Introduction to Discrete Probability Probability theory has its origins in gambling analyzing card games, dice,
More informationLinear Algebra I. Ronald van Luijk, 2012
Linear Algebra I Ronald van Luijk, 2012 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents 1. Vector spaces 3 1.1. Examples 3 1.2. Fields 4 1.3. The field of complex numbers. 6 1.4.
More informationLINEAR INEQUALITIES. Mathematics is the art of saying many things in many different ways. MAXWELL
Chapter 6 LINEAR INEQUALITIES 6.1 Introduction Mathematics is the art of saying many things in many different ways. MAXWELL In earlier classes, we have studied equations in one variable and two variables
More informationRegular Languages and Finite Automata
Regular Languages and Finite Automata 1 Introduction Hing Leung Department of Computer Science New Mexico State University Sep 16, 2010 In 1943, McCulloch and Pitts [4] published a pioneering work on a
More informationCOUNTING SUBSETS OF A SET: COMBINATIONS
COUNTING SUBSETS OF A SET: COMBINATIONS DEFINITION 1: Let n, r be nonnegative integers with r n. An rcombination of a set of n elements is a subset of r of the n elements. EXAMPLE 1: Let S {a, b, c, d}.
More informationScientific Notation. Section 71 Part 2
Scientific Notation Section 71 Part 2 Goals Goal To write numbers in scientific notation and standard form. To compare and order numbers using scientific notation. Vocabulary Scientific Notation Powers
More informationMath 223 Abstract Algebra Lecture Notes
Math 223 Abstract Algebra Lecture Notes Steven Tschantz Spring 2001 (Apr. 23 version) Preamble These notes are intended to supplement the lectures and make up for the lack of a textbook for the course
More informationAll the examples in this worksheet and all the answers to questions are available as answer sheets or videos.
BIRKBECK MATHS SUPPORT www.mathsupport.wordpress.com Numbers 3 In this section we will look at  improper fractions and mixed fractions  multiplying and dividing fractions  what decimals mean and exponents
More informationCORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREERREADY FOUNDATIONS IN ALGEBRA
We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREERREADY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical
More informationProbability. a number between 0 and 1 that indicates how likely it is that a specific event or set of events will occur.
Probability Probability Simple experiment Sample space Sample point, or elementary event Event, or event class Mutually exclusive outcomes Independent events a number between 0 and 1 that indicates how
More information47 Numerator Denominator
JH WEEKLIES ISSUE #22 20122013 Mathematics Fractions Mathematicians often have to deal with numbers that are not whole numbers (1, 2, 3 etc.). The preferred way to represent these partial numbers (rational
More informationPOLYNOMIAL FUNCTIONS
POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a
More informationBasic Components of an LP:
1 Linear Programming Optimization is an important and fascinating area of management science and operations research. It helps to do less work, but gain more. Linear programming (LP) is a central topic
More informationMath 181 Handout 16. Rich Schwartz. March 9, 2010
Math 8 Handout 6 Rich Schwartz March 9, 200 The purpose of this handout is to describe continued fractions and their connection to hyperbolic geometry. The Gauss Map Given any x (0, ) we define γ(x) =
More informationArithmetic and Algebra of Matrices
Arithmetic and Algebra of Matrices Math 572: Algebra for Middle School Teachers The University of Montana 1 The Real Numbers 2 Classroom Connection: Systems of Linear Equations 3 Rational Numbers 4 Irrational
More informationSTAT 319 Probability and Statistics For Engineers PROBABILITY. Engineering College, Hail University, Saudi Arabia
STAT 319 robability and Statistics For Engineers LECTURE 03 ROAILITY Engineering College, Hail University, Saudi Arabia Overview robability is the study of random events. The probability, or chance, that
More informationKenken For Teachers. Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles June 27, 2010. Abstract
Kenken For Teachers Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles June 7, 00 Abstract Kenken is a puzzle whose solution requires a combination of logic and simple arithmetic skills.
More informationConditional Probability, Hypothesis Testing, and the Monty Hall Problem
Conditional Probability, Hypothesis Testing, and the Monty Hall Problem Ernie Croot September 17, 2008 On more than one occasion I have heard the comment Probability does not exist in the real world, and
More informationUNDERSTANDING ALGEBRA JAMES BRENNAN. Copyright 2002, All Rights Reserved
UNDERSTANDING ALGEBRA JAMES BRENNAN Copyright 00, All Rights Reserved CONTENTS CHAPTER 1: THE NUMBERS OF ARITHMETIC 1 THE REAL NUMBER SYSTEM 1 ADDITION AND SUBTRACTION OF REAL NUMBERS 8 MULTIPLICATION
More informationPowerScore Test Preparation (800) 5451750
Question 1 Test 1, Second QR Section (version 1) List A: 0, 5,, 15, 20... QA: Standard deviation of list A QB: Standard deviation of list B Statistics: Standard Deviation Answer: The two quantities are
More informationFundamentals of Probability
Fundamentals of Probability Introduction Probability is the likelihood that an event will occur under a set of given conditions. The probability of an event occurring has a value between 0 and 1. An impossible
More information23. RATIONAL EXPONENTS
23. RATIONAL EXPONENTS renaming radicals rational numbers writing radicals with rational exponents When serious work needs to be done with radicals, they are usually changed to a name that uses exponents,
More information5.1 Radical Notation and Rational Exponents
Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots
More informationPredicate Logic. Example: All men are mortal. Socrates is a man. Socrates is mortal.
Predicate Logic Example: All men are mortal. Socrates is a man. Socrates is mortal. Note: We need logic laws that work for statements involving quantities like some and all. In English, the predicate is
More informationAbsolute Value Equations and Inequalities
Key Concepts: Compound Inequalities Absolute Value Equations and Inequalities Intersections and unions Suppose that A and B are two sets of numbers. The intersection of A and B is the set of all numbers
More informationx 41 = (x²)²  (1)² = (x² + 1) (x²  1) = (x² + 1) (x  1) (x + 1)
Factoring Polynomials EXAMPLES STEP 1 : Greatest Common Factor GCF Factor out the greatest common factor. 6x³ + 12x²y = 6x² (x + 2y) 5x  5 = 5 (x  1) 7x² + 2y² = 1 (7x² + 2y²) 2x (x  3)  (x  3) =
More informationThe Set Data Model CHAPTER 7. 7.1 What This Chapter Is About
CHAPTER 7 The Set Data Model The set is the most fundamental data model of mathematics. Every concept in mathematics, from trees to real numbers, is expressible as a special kind of set. In this book,
More informationMidterm Practice Problems
6.042/8.062J Mathematics for Computer Science October 2, 200 Tom Leighton, Marten van Dijk, and Brooke Cowan Midterm Practice Problems Problem. [0 points] In problem set you showed that the nand operator
More informationMathematical Induction. Lecture 1011
Mathematical Induction Lecture 1011 Menu Mathematical Induction Strong Induction Recursive Definitions Structural Induction Climbing an Infinite Ladder Suppose we have an infinite ladder: 1. We can reach
More informationLecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University
Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University 1 Chapter 1 Probability 1.1 Basic Concepts In the study of statistics, we consider experiments
More informationMA651 Topology. Lecture 6. Separation Axioms.
MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples
More informationChapter 3. Data Analysis and Diagramming
Chapter 3 Data Analysis and Diagramming Introduction This chapter introduces data analysis and data diagramming. These make one of core skills taught in this course. A big part of any skill is practical
More informationStatistics 100A Homework 1 Solutions
Chapter 1 tatistics 100A Homework 1 olutions Ryan Rosario 1. (a) How many different 7place license plates are possible if the first 2 places are for letters and the other 5 for numbers? The first two
More informationThe Relational Data Model: Structure
The Relational Data Model: Structure 1 Overview By far the most likely data model in which you ll implement a database application today. Of historical interest: the relational model is not the first implementation
More informationCOURSE SYLLABUS 
Last Reviewed by: Leslie Wurst Date Approved: Date Revised: Fall 2012 COURSE SYLLABUS Syllabus for: MATH 1010 Math for General Studies Former Course and Title: Former Quarter Course(s): Mat 1260 Contemporary
More informationHow to use network marketing via the social network
How to use network marketing via the social network In this session we are going to look at: What Linked In is How to set up your profile How to build your networks How to use your network How to target
More informationIf n is odd, then 3n + 7 is even.
Proof: Proof: We suppose... that 3n + 7 is even. that 3n + 7 is even. Since n is odd, there exists an integer k so that n = 2k + 1. that 3n + 7 is even. Since n is odd, there exists an integer k so that
More informationRepresentation of functions as power series
Representation of functions as power series Dr. Philippe B. Laval Kennesaw State University November 9, 008 Abstract This document is a summary of the theory and techniques used to represent functions
More informationAutomata and Computability. Solutions to Exercises
Automata and Computability Solutions to Exercises Fall 25 Alexis Maciel Department of Computer Science Clarkson University Copyright c 25 Alexis Maciel ii Contents Preface vii Introduction 2 Finite Automata
More information6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010. Class 4 Nancy Lynch
6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010 Class 4 Nancy Lynch Today Two more models of computation: Nondeterministic Finite Automata (NFAs)
More informationBasic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011
Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely
More informationTesting LTL Formula Translation into Büchi Automata
Testing LTL Formula Translation into Büchi Automata Heikki Tauriainen and Keijo Heljanko Helsinki University of Technology, Laboratory for Theoretical Computer Science, P. O. Box 5400, FIN02015 HUT, Finland
More informationAll of mathematics can be described with sets. This becomes more and
CHAPTER 1 Sets All of mathematics can be described with sets. This becomes more and more apparent the deeper into mathematics you go. It will be apparent in most of your upper level courses, and certainly
More informationSAT Subject Math Level 2 Facts & Formulas
Numbers, Sequences, Factors Integers:..., 3, 2, 1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Arithmetic Sequences: PEMDAS (Parentheses
More informationFacebook. GMAT Club CAT Tests. GMAT Toolkit ipad App. gmatclub.com/iphone. gmatclub.com/tests. The Verbal Initiative. gmatclub.
For the latest version of the GMAT ok, please visit: http://gmatclub.com/ GMAT Club s Other Resources: GMAT Club CAT Tests gmatclub.com/tests GMAT Toolkit ipad App gmatclub.com/iphone The Verbal Initiative
More informationNote on growth and growth accounting
CHAPTER 0 Note on growth and growth accounting 1. Growth and the growth rate In this section aspects of the mathematical concept of the rate of growth used in growth models and in the empirical analysis
More informationAdapted from activities and information found at University of Surrey Website http://www.mcs.surrey.ac.uk/personal/r.knott/fibonacci/fibnat.
12: Finding Fibonacci patterns in nature Adapted from activities and information found at University of Surrey Website http://www.mcs.surrey.ac.uk/personal/r.knott/fibonacci/fibnat.html Curriculum connections
More informationZero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.
MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called
More informationPolynomial Operations and Factoring
Algebra 1, Quarter 4, Unit 4.1 Polynomial Operations and Factoring Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned Identify terms, coefficients, and degree of polynomials.
More informationMathematical Induction
Mathematical Induction In logic, we often want to prove that every member of an infinite set has some feature. E.g., we would like to show: N 1 : is a number 1 : has the feature Φ ( x)(n 1 x! 1 x) How
More information**Unedited Draft** Arithmetic Revisited Lesson 4: Part 3: Multiplying Mixed Numbers
. Introduction: **Unedited Draft** Arithmetic Revisited Lesson : Part 3: Multiplying Mixed Numbers As we mentioned in a note on the section on adding mixed numbers, because the plus sign is missing, it
More informationTheorem3.1.1 Thedivisionalgorithm;theorem2.2.1insection2.2 If m, n Z and n is a positive
Chapter 3 Number Theory 159 3.1 Prime Numbers Prime numbers serve as the basic building blocs in the multiplicative structure of the integers. As you may recall, an integer n greater than one is prime
More informationUnit 2 Module 3: Generating Examples and Nonexamples
Unit 2 Module 3: Generating Examples and Nonexamples Section 1 Slide 1 Title Slide Welcome to the third module in the Vocabulary Instructional Routines unit, Generating Examples and Nonexamples. Slide
More informationEnforcing Security Policies. Rahul Gera
Enforcing Security Policies Rahul Gera Brief overview Security policies and Execution Monitoring. Policies that can be enforced using EM. An automata based formalism for specifying those security policies.
More informationACTUARIAL NOTATION. i k 1 i k. , (ii) i k 1 d k
ACTUARIAL NOTATION 1) v s, t discount function  this is a function that takes an amount payable at time t and reexpresses it in terms of its implied value at time s. Why would its implied value be different?
More information