Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Section 1 Real Numbers

Size: px
Start display at page:

Download "Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Section 1 Real Numbers"

Transcription

1 Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Please watch Section 1 of this DVD before working these problems. The DVD is located at: Page 1

2 Part 1: Real Numbers 1) Identify the real numbers below. 2) Identify the real numbers below. 3) Identify the real numbers below. Page 2

3 Part 2: Rational Numbers 4) Which of the following is a rational number? 5) Which of the following is a rational number? 6) Which of the following is a rational number? Page 3

4 Part 3: Irrational Numbers 7) Which of the following is an irrational number? 8) Which of the following is an irrational number? 10.10, 0.12, 18, π 9) Which of the following is an irrational number? 2, 30, , Page 4

5 Part 4: Integers 10) Which of the following is not an integer? 11) Which of the following is not an integer? 12) Which of the following is not an integer? Page 5

6 Part 5: Whole Numbers 13) Identify the whole number(s) below. 14) Identify the whole number(s) below. 15) Identify the whole number(s) below. Page 6

7 Part 6: Natural Numbers 16) Identify the natural number(s) below. 17) Identify the natural number(s) below. 18) Identify the natural number(s) below. Page 7

8 Part 7: Prime Numbers 19) Identify the prime number(s) below. 20) Identify the prime number(s) below. 21) Identify the prime number(s) below. Page 8

9 Part 8: Putting it all together For each of the numbers below, identify which group they belong to. (Real, Irrational, Rational, Integer, Whole, Natural and/or Prime number) Example: Is both a Real and a Rational number. 22) 23) 24) 25) Page 9

10 Question Answer 1) Identify the real numbers below. First, we need to remember the definition of a real number. This is any number that can be located on a number line. This excludes imaginary numbers. All of the numbers mentioned can be plotted onto a number line even if they are fractions or have numerous decimal places, they can still be plotted somewhere on a number line. All of them are real numbers Since all of the numbers meet the definition of a real number they are all by definition real numbers. Ans: All are considered real numbers Page 10

11 2) Identify the real numbers below. First, we need to remember the definition of a real number. This is any number that can be located on a number line. This excludes imaginary numbers. All of the numbers mentioned can be plotted onto a number line even if they are fractions or have numerous decimal places, they can still be plotted somewhere on a number line. All of them are real numbers Since all of these numbers meet the definition of a real number they are all by definition real numbers. Ans: All are considered real numbers Page 11

12 3) Identify the real numbers below. First, we need to remember the definition of a real number. This is any number that can be located on a number line. This excludes imaginary numbers. All of the numbers mentioned can be plotted onto a number line even if they are fractions or have numerous decimal places, they can still be plotted somewhere on a number line. All of them are real numbers Since all of these numbers meet the definition of a real number they are all by definition real numbers. Ans: All are considered real numbers Page 12

13 4) Which of the following is a rational number? First, we need to remember the definition of a rational number. This is any number that can be expressed as a fraction. We see as we express the numbers in fraction form that all but one can be expressed as a fraction. If we type the square root of two into a calculator we notice that the result is a non repeating decimal pattern. The rest of the numbers can be expressed as a fraction and therefore are rational numbers. Ans: Page 13

14 5) Which of the following is a rational number? First, we need to remember the definition of a rational number. This is any number that can be expressed as a fraction. We see as we express the numbers in fraction form that all but one can be expressed as a fraction. We notice right away that has a non repeating infinite pattern. Therefore, there is no way to express this number as a fraction. The rest of the numbers can be expressed as a fraction and therefore are rational numbers. Ans: Page 14

15 6) Which of the following is a rational number? First, we need to remember the definition of a rational number. This is any number that can be expressed as a fraction. We see as we express the numbers in fraction form that all but one can be expressed as a fraction. If we type into a calculator we notice that pi has a non repeating decimal pattern that goes on forever. Therefore, there is no way to express this number as a fraction. The rest of the numbers can be expressed as a fraction and therefore are rational numbers. Ans: Page 15

16 7) Which of the following is an irrational number? First, we need to remember the definition of an irrational number. This is any number that can t be expressed as a fraction. All of the numbers mentioned can be written as a fraction. Since all of these numbers can be expressed as fractions, none of these numbers are considered irrational Ans: None of the numbers listed are irrational numbers Page 16

17 8) Which of the following is an irrational number? 10.10, 0.12, 18, π First, we need to remember the definition of an irrational number. This is any number that can t be expressed as a fraction. The first three numbers mentioned can be written as a fraction. Since Pi = is an infinite non repeating decimal, it cannot be written as a fraction. π = Ans: Pi is an Irrational Number Page 17

18 9) Which of the following is an irrational number? 2, 30, , First, we need to remember the definition of an irrational number. This is any number that can t be expressed as a fraction. All of the numbers can be written as a fraction except for the infinite non repeating decimal. This is the only irrational number in our list Ans: is irrational Page 18

19 10) Which of the following is not an integer? First, we need to remember the definition of what an integer is. This is, any number that is positive, negative or zero, but has no decimal point.,-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5 Right away, we look at the list of numbers and notice that all but one falls under this definition. Ans: Page 19

20 11) Which of the following is not an integer? First, we need to remember the definition of what an integer is. This is, any number that is positive, negative or zero, but has no decimal place.,-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5 Right away, we look at the list of numbers and notice that all but one falls under this definition. The negative fraction will provide a result with a decimal place when we divide 15 by 16. Since the square root of 9 is exactly 3, this is an integer as well. Ans: Page 20

21 12) Which of the following is not an integer? First, we need to remember the definition of what an integer is. This is, any number that is positive, negative or zero, but has no decimal place.,-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5 Right away, we look at the list of numbers and notice that all but one falls under this definition. Ans: Page 21

22 13) Identify the whole number(s) below. First, we need to remember the definition of what makes a whole number. A whole number is any positive number including zero that does not have a decimal place. By simply applying the definition we see that the two negative numbers are not whole numbers. Zero and one hundred do fit the definition. Ans: Page 22

23 14) Identify the whole number(s) below. First, we need to remember the definition of what makes a whole number. A whole number is any positive number including zero that does not have a decimal place. First we see that the negative number does not meet our definition. Then we see that the fraction will give us a decimal place as well as the square root of 2. The number fifteen is the only whole number. Ans: Page 23

24 15) Identify the whole number(s) below. First, we need to remember the definition of what makes a whole number. A whole number is any positive number including zero that does not have a decimal place. We see that 640 is both positive and does not contain a decimal place. The negative 640 however does not meet our definition so it is not a whole number. The one half will give us a decimal place, 0.5 so it is not a whole number. The number 1.1 is positive but has a decimal place and therefore is not a whole number. The only whole number from the list is 640. Ans: Page 24

25 16) Identify the natural number(s) below. First, we need to remember the definition of what makes a natural number. This is any number that can be used to physically count something. This includes: 1,2,3,4,5,6,7,8,9.. Based on our definition, we see that the negative numbers are not natural numbers because I can t physically count something I don t have so the negative numbers are not natural numbers. The last number to consider from the list is zero. If I have zero of something I can t naturally count it so zero is not a natural number. None. Since none of the numbers meet our criteria of what makes a natural number none of these are natural numbers Ans: None Page 25

26 17) Identify the natural number(s) below. First, we need to remember the definition of what makes a natural number. This is any number that can be used to physically count something. This includes: 1,2,3,4,5,6,7,8,9.. Based on our definition, we see that the negative numbers are not natural numbers because I can t physically count something I don t have so the negative numbers are not natural numbers. The square root of 9 is the same as 3, so I can physically count something if I have 3 apples or 3 pencils so the square root of 9 is a natural number. The last number to consider from the list is 26. I can definitely physically have 26 of something and count it so 26 is a natural numbers. Ans: Are natural numbers Page 26

27 18) Identify the natural number(s) below. First, we need to remember the definition of what makes a natural number. This is any number that can be used to physically count something. This includes: 1,2,3,4,5,6,7,8,9.. Based on our definition, we see that the negative numbers are not natural numbers because I can t physically count something I don t have so the negative numbers are not natural numbers. We are left with 640 and 0. If I have zero of something I can t naturally count it so zero is not a natural number. The number 640 however can be used to physically count something like the 640 pennies in my piggy bank. Therefore the number 640 is a natural number. The only natural number is the number 640. Ans: Page 27

28 19) Identify the prime number(s) below. First, we need to remember the definition of a prime number. This is a whole number other than zero and 1, which can only be divided by 1 and itself. When we say divided only by 1 and itself, we mean that those are the only numbers that will not give you a decimal place when you divide. The first number we have is 32. It is by definition a whole number and it is not zero or 1. However, 1 and 32 are not the only numbers I can divide 32 by. I can divide it by 2, 4, 8, and 16. So therefore it is not a prime number. The number 2 is a whole number that is not zero or 1. And I can only divide it by 1 and 2, so it is a prime number. The number zero already violates our definition so it is not a prime number. The number 16 is a whole number that is not zero or 1. However 1 and 16 are not the only numbers I can divide 16 by. I can divide it by 2, 4 and 8. So it is not a prime number. Ans: Page 28

29 20) Identify the prime number(s) below. First, we need to remember the definition of a prime number. This is a whole number other than zero and 1, which can only be divided by 1 and itself. When we say divided only by 1 and itself, we mean that those are the only numbers that will not give you a decimal place when you divide. The number 10 by definition a whole number and it is not zero or 1. However, 1 and 10 are not the only numbers I can divide 10 by. I can divide it by 2 and 5. So therefore it is not a prime number. The number 17 is a whole number and it is not zero or 1. When we try to divide 17 by something other than 1 or 17, we find that we can t do it without ending up with a decimal place. Therefore 17 is a prime number. The number 3 as well as 17 can only be divided by 1 and itself therefore it is a prime number. The number 1 violates our definition so it is not a prime number. Ans: Page 29

30 21) Identify the prime number(s) below. First, we need to remember the definition of a prime number. This is a whole number other than zero and 1, which can only be divided by 1 and itself. When we say divided only by 1 and itself, we mean that those are the only numbers that will not give you a decimal place when you divide. As we look at the first two numbers, -2 and 0.8, we notice they are not whole numbers which violates our definition of a prime number and therefore are not considered prime numbers. The number 15 is a whole number and it is not zero or 1. However, 1 and 15 are not the only numbers I can divide 15 by. I can divide it by the number 5 and still end up with a natural number (no decimal or zero). So it is not a prime number. The number 22 is a whole number and it is not zero or 1. However, 1 and 22 are not the only numbers I can divide 22 by. I can divide it by 2, and 11. So it is not a prime number. None. None of the numbers meet our definition of a prime number. Ans: None. Page 30

31 22) First, we need to remember our definitions and how each type of number is related to the other types of numbers. Remember that Real numbers is at the top of the umbrella. Everything else falls under it. Then it breaks off into Irrational and Rational numbers. Then under Rational numbers are Integers, Whole numbers, Natural numbers and Prime numbers. If I know a number is Irrational, then by definition it is not Rational or anything that falls under a Rational number. This number is a real number. Next we see if it is irrational or rational. Since I can write it as a fraction, then it is a rational number. Since it is has a decimal place, it is not an integer, a whole number, natural number or a prime number. Ans: Real number, Rational Page 31

32 23) number First, we need to remember our definitions and how each type of number is related to the other types of numbers. Remember that Real numbers is at the top of the umbrella. Everything else falls under it. Then it breaks off into Irrational and Rational numbers. Then under Rational numbers are Integers, Whole numbers, Natural numbers and Prime numbers. If I know a number is Irrational, then by definition it is not Rational or anything that falls under a Rational number. This number is a Real number. Next we see if it is Irrational or Rational. Just by looking at it, we see that it is Rational since we can write it as 7 over 1. It has no decimal place and it is positive so it is an Integer, a Whole number and a Natural number. We find that I can only divide this number by 1 and itself so it is a Prime number. Ans: Real number, Rational Number, Integer, Whole number, Natural number, and Prime Page 32

33 24) number First, we need to remember our definitions and how each type of number is related to the other types of numbers. Remember that Real numbers is at the top of the umbrella. Everything else falls under it. Then it breaks off into Irrational and Rational numbers. Then under Rational numbers are Integers, Whole numbers, Natural numbers and Prime numbers. If I know a number is Irrational, then by definition it is not Rational or anything that falls under a Rational number. This number is a Real number. Next we see if it is Irrational or Rational. Just by looking at it, we see that it has decimal places that are non repeatable and infer to go on forever. This means we can t represent it as a fraction and therefore is an Irrational number. Since it is an Irrational number it is not Rational and not any of the other types of numbers. Ans: Real number, Irrational Number Page 33

34 25) First, we need to remember our definitions and how each type of number is related to the other types of numbers. Remember that Real numbers is at the top of the umbrella. Everything else falls under it. Then it breaks off into Irrational and Rational numbers. Then under Rational numbers are Integers, Whole numbers, Natural numbers and Prime numbers. If I know a number is Irrational, then by definition it is not Rational or anything that falls under a Rational number. This number is a Real number. Next we see if it is Irrational or Rational. Just by looking at it, we see that it is Rational since we can write it as -2 over 1. We also notice that it has a negative sign but no decimal place. This number is still considered an Integer, but not considered a Whole number. Since it is not considered a whole number it can t be a Natural number or a Prime number by definition. Ans: Real number, Rational Number, and an Integer Page 34

Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Section 8 Powers and Exponents

Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Section 8 Powers and Exponents Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Please watch Section 8 of this DVD before working these problems. The DVD is located at: http://www.mathtutordvd.com/products/item66.cfm

More information

Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Section 9 Order of Operations

Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Section 9 Order of Operations Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Please watch Section 9 of this DVD before working these problems. The DVD is located at: http://www.mathtutordvd.com/products/item66.cfm

More information

Rational and Irrational Numbers

Rational and Irrational Numbers Rational and Irrational Numbers Rational and irrational are words that you hear outside of mathematics. Discuss with a partner what you think when I say the words rational and irrational. Be prepared to

More information

First Degree Equations First degree equations contain variable terms to the first power and constants.

First Degree Equations First degree equations contain variable terms to the first power and constants. Section 4 7: Solving 2nd Degree Equations First Degree Equations First degree equations contain variable terms to the first power and constants. 2x 6 = 14 2x + 3 = 4x 15 First Degree Equations are solved

More information

Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Section 3 Greater Than, Less Than, Equal To

Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Section 3 Greater Than, Less Than, Equal To Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Please watch Section 3 of this DVD before working these problems. The DVD is located at: http://www.mathtutordvd.com/products/item66.cfm

More information

Lesson 4: The Number System

Lesson 4: The Number System Lesson 4: The Number System Introduction The next part of your course covers math skills. These lessons have been designed to provide an overview of some basic mathematical concepts. This part of your

More information

Example 1 Example 2 Example 3. The set of the ages of the children in my family { 27, 24, 21, 19 } The set of Counting Numbers

Example 1 Example 2 Example 3. The set of the ages of the children in my family { 27, 24, 21, 19 } The set of Counting Numbers Section 0 1A: The Real Number System We often look at a set as a collection of objects with a common connection. We use brackets like { } to show the set and we put the objects in the set inside the brackets

More information

Graphing Radicals STEM 7

Graphing Radicals STEM 7 Graphing Radicals STEM 7 Radical functions have the form: The most frequently used radical is the square root; since it is the most frequently used we assume the number 2 is used and the square root is

More information

Square Roots and Irrational Numbers

Square Roots and Irrational Numbers Square Roots and Irrational Numbers Grade 7 Pre-Algebra Copyright Ed2Net Learning, Inc. 1 Let s warm up : 1) Find the area of a trapezoid with Bases: 10 cm and 16 cm Height: 10 cm 2) Find the area of a

More information

The numbers that make up the set of Real Numbers can be classified as counting numbers whole numbers integers rational numbers irrational numbers

The numbers that make up the set of Real Numbers can be classified as counting numbers whole numbers integers rational numbers irrational numbers Section 1.8 The numbers that make up the set of Real Numbers can be classified as counting numbers whole numbers integers rational numbers irrational numbers Each is said to be a subset of the real numbers.

More information

Rational Numbers A rational number is any number that can be expressed in the fractional form b. a, where

Rational Numbers A rational number is any number that can be expressed in the fractional form b. a, where Rational Numbers A rational number is any number that can be expressed in the fractional form b a, where a and b are both integers and the denominator is not equal to zero. When a rational number is expressed

More information

Exponents, Radicals, and Scientific Notation

Exponents, Radicals, and Scientific Notation General Exponent Rules: Exponents, Radicals, and Scientific Notation x m x n = x m+n Example 1: x 5 x 2 = x 5+2 = x 7 (x m ) n = x mn Example 2: (x 5 ) 2 = x 5 2 = x 10 (x m y n ) p = x mp y np Example

More information

Math 10 Lesson 1-4 Irrational Numbers

Math 10 Lesson 1-4 Irrational Numbers I. Classifying numbers Math 0 Lesson - Irrational Numbers All numbers are classified into different groups or sets. There are natural numbers, whole numbers, integers, rational numbers, irrational numbers

More information

ELEMENTARY MATHEMATICS is concerned mainly with certain elements called numbers and with certain operations defined on them.

ELEMENTARY MATHEMATICS is concerned mainly with certain elements called numbers and with certain operations defined on them. ELEMENTARY MATHEMATICS is concerned mainly with certain elements called numbers and with certain operations defined on them. NUMERALS Arabic: 0, 1, 2, 3, 4 Roman: I, II. III. IV, X, L, C, D, M Numerical

More information

Algebra 1 Lesson 1-3. Real Numbers

Algebra 1 Lesson 1-3. Real Numbers Algebra 1 Lesson 1- Common Core Real Numbers and the Number Line Real Numbers Rational Numbers Integers Whole Numbers Irrational Numbers Natural Numbers 1 Natural Numbers what you see in nature counting

More information

5.1.1 Integers. The following illustration shows the natural numbers graphed on a number line.

5.1.1 Integers. The following illustration shows the natural numbers graphed on a number line. 5.1.1 Integers Learning Objective(s) 1 Locate integers on a number line. 2 Find the absolute value of a given number. 3 Find the opposite of a given number. Introduction You've worked with numbers on a

More information

When you find the square root of a perfect square there will not be a square root in the answer.

When you find the square root of a perfect square there will not be a square root in the answer. Section 7 A: Simplifying Radical Expressions When you find the square root of a perfect square there will not be a square root in the answer. 9 = 25 = 5 6 49 = 6 7 Most of the time the number under the

More information

LESSON 1 PRIME NUMBERS AND FACTORISATION

LESSON 1 PRIME NUMBERS AND FACTORISATION LESSON 1 PRIME NUMBERS AND FACTORISATION 1.1 FACTORS: The natural numbers are the numbers 1,, 3, 4,. The integers are the naturals numbers together with 0 and the negative integers. That is the integers

More information

Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Section 5 Subtracting Integers

Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Section 5 Subtracting Integers Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Please watch Section 5 of this DVD before working these problems. The DVD is located at: http://www.mathtutordvd.com/products/item66.cfm

More information

Mathematica - The Principles of Math 10. The Endless World of Irrational Numbers

Mathematica - The Principles of Math 10. The Endless World of Irrational Numbers Mathematics, English for Sek I and Sek II Mathematica - The Principles of Math 10. The Endless World of Irrational Numbers 09:55 minutes 00:23 (caption) Our world is vast, and space is virtually unending

More information

Chapter 2 Section 1 Lesson Kinds of Numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12...

Chapter 2 Section 1 Lesson Kinds of Numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12... Chapter Section Lesson Kinds of Numbers Introduction This lesson briefly reviews the real numbers and introduces variables. Digits Digits are the ten number symbols used to write any number. These are

More information

Algebra Revision Sheet Questions 2 and 3 of Paper 1

Algebra Revision Sheet Questions 2 and 3 of Paper 1 Algebra Revision Sheet Questions and of Paper Simple Equations Step Get rid of brackets or fractions Step Take the x s to one side of the equals sign and the numbers to the other (remember to change the

More information

2-8: Square Roots and Real Numbers. 2-8: Square Roots and Real Numbers

2-8: Square Roots and Real Numbers. 2-8: Square Roots and Real Numbers OBJECTIVE: You must be able to find a square root, classify numbers, and graph solution of inequalities on number lines. square root - one of two equal factors of a number A number that will multiply by

More information

N.RN.3: Use properties of rational and irrational numbers.

N.RN.3: Use properties of rational and irrational numbers. N.RN.3: Use properties of rational irrational numbers. NUMBERS, OPERATIONS, AND PROPERTIES N.RN.B.3: Use Properties of Rational Irrational Numbers B. Use properties of rational irrational numbers. 3. Explain

More information

COMPASS Numerical Skills/Pre-Algebra Preparation Guide. Introduction Operations with Integers Absolute Value of Numbers 13

COMPASS Numerical Skills/Pre-Algebra Preparation Guide. Introduction Operations with Integers Absolute Value of Numbers 13 COMPASS Numerical Skills/Pre-Algebra Preparation Guide Please note that the guide is for reference only and that it does not represent an exact match with the assessment content. The Assessment Centre

More information

DETAILED SOLUTIONS AND CONCEPTS INTRODUCTION TO IRRATIONAL AND IMAGINARY NUMBERS

DETAILED SOLUTIONS AND CONCEPTS INTRODUCTION TO IRRATIONAL AND IMAGINARY NUMBERS DETAILED SOLUTIONS AND CONCEPTS INTRODUCTION TO IRRATIONAL AND IMAGINARY NUMBERS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu.

More information

Chapter 1 Introductory Information and Review

Chapter 1 Introductory Information and Review SECTION 1.1 Numbers Chapter 1 Introductory Information and Review Section 1.1: Numbers Types of Numbers Order on a Number Line Types of Numbers Natural Numbers: MATH 1300 Fundamentals of Mathematics 1

More information

Little Subset Topic: The Number System (4 th 9 th grade)

Little Subset Topic: The Number System (4 th 9 th grade) Little Subset Topic: The Number System (4 th 9 th grade) by Lodge Little Subset Give me a number that s rational Like any fraction that hurts Accepting positive or negative Are you ready for two thirds?

More information

Common and Uncommon Standard Number Sets

Common and Uncommon Standard Number Sets Common and Uncommon Standard Number Sets W. Blaine Dowler July 8, 2010 Abstract There are a number of important (and interesting unimportant) sets in mathematics. Sixteen of those sets are detailed here.

More information

Topic 7: Venn Diagrams, Sets, and Set Notation

Topic 7: Venn Diagrams, Sets, and Set Notation Topic 7: Venn Diagrams, Sets, and Set Notation for use after What Do You Expect? Investigation 1 set is a collection of objects. These objects might be physical things, like desks in a classroom, or ideas,

More information

Exponents, Radicals, and Scientific Notation

Exponents, Radicals, and Scientific Notation General Exponent Rules: Exponents, Radicals, and Scientific Notation x m x n = x m+n Example 1: x 5 x = x 5+ = x 7 (x m ) n = x mn Example : (x 5 ) = x 5 = x 10 (x m y n ) p = x mp y np Example : (x) =

More information

8th Grade Common Core Math

8th Grade Common Core Math 8th Grade Common Core Math Booklet 1 The Number System Main Idea of the Number System: Know that there are numbers that are not rational, and approximate them by rational numbers. What this means: There

More information

Lesson 1-5. Algebra Slide Show: Teaching Made Easy As Pi, by James Wenk = 6 positive. negative. root. root. negative root. root. root.

Lesson 1-5. Algebra Slide Show: Teaching Made Easy As Pi, by James Wenk = 6 positive. negative. root. root. negative root. root. root. Lesson - Objective - To find the square of a given number. Square Root - An operation that yields a number which, when multiplied by itself, produces the given number, because. If a and a b, then a is

More information

Chapter 1. Real Numbers Operations

Chapter 1. Real Numbers Operations www.ck1.org Chapter 1. Real Numbers Operations Review Answers 1 1. (a) 101 (b) 8 (c) 1 1 (d) 1 7 (e) xy z. (a) 10 (b) 14 (c) 5 66 (d) 1 (e) 7x 10 (f) y x (g) 5 (h) (i) 44 x. At 48 square feet per pint

More information

Irrational Numbers. A. Rational Numbers 1. Before we discuss irrational numbers, it would probably be a good idea to define rational numbers.

Irrational Numbers. A. Rational Numbers 1. Before we discuss irrational numbers, it would probably be a good idea to define rational numbers. Irrational Numbers A. Rational Numbers 1. Before we discuss irrational numbers, it would probably be a good idea to define rational numbers. Definition: Rational Number A rational number is a number that

More information

Integration Unit 5 Quadratic Toolbox 1: Working with Square Roots. Using your examples above, answer the following:

Integration Unit 5 Quadratic Toolbox 1: Working with Square Roots. Using your examples above, answer the following: Integration Unit 5 Quadratic Toolbox 1: Working with Square Roots Name Period Objective 1: Understanding Square roots Defining a SQUARE ROOT: Square roots are like a division problem but both factors must

More information

Simplifying Radical Expressions

Simplifying Radical Expressions Section 9 2A: Simplifying Radical Expressions Rational Numbers A Rational Number is any number that that expressed as a whole number a fraction a decimal that ends a decimal that repeats 3 2 1.2 1.333

More information

GRADE 7 MATH LEARNING GUIDE

GRADE 7 MATH LEARNING GUIDE GRADE 7 MATH LESSON 12: SUBSETS OF REAL NUMBERS Time: 1.5 hours Prerequisite Concepts: whole numbers and operations, set of integers, rational numbers, irrational numbers, sets and set operations, Venn

More information

Lesson 4.2 Irrational Numbers Exercises (pages )

Lesson 4.2 Irrational Numbers Exercises (pages ) Lesson. Irrational Numbers Exercises (pages 11 1) A. a) 1 is irrational because 1 is not a perfect square. The decimal form of 1 neither terminates nor repeats. b) c) d) 16 is rational because 16 is a

More information

We could also take square roots of certain decimals nicely. For example, 0.36=0.6 or 0.09=0.3. However, we will limit ourselves to integers for now.

We could also take square roots of certain decimals nicely. For example, 0.36=0.6 or 0.09=0.3. However, we will limit ourselves to integers for now. 7.3 Evaluation of Roots Previously we used the square root to help us approximate irrational numbers. Now we will expand beyond just square roots and talk about cube roots as well. For both we will be

More information

You will be turning in and making new INBs today. (Make sure you have your INB or a notebook) Monday Tuesday Wednesday Thursday Friday.

You will be turning in and making new INBs today. (Make sure you have your INB or a notebook) Monday Tuesday Wednesday Thursday Friday. 37 New INB & Classifying Numbers (1).notebook Happy Monday! You will be turning in and making new INBs today. (Make sure you have your INB or a notebook) 11/2 11/3 11/4 11/5 11/6 Monday Tuesday Wednesday

More information

Topics: Skills X. Exercise Book. Factors. Divisibility rules. Multiplication of fractions by decimals. Division of fractions by decimals

Topics: Skills X. Exercise Book. Factors. Divisibility rules. Multiplication of fractions by decimals. Division of fractions by decimals Skills X Eercise Book Topics: Factors Divisibility rules Multiplication of fractions by decimals Division of fractions by decimals Eponents and square roots Prime factorization Integers and order of operations

More information

LESSON SUMMARY. Understanding the Number System

LESSON SUMMARY. Understanding the Number System LESSON SUMMARY CXC CSEC MATHEMATICS UNIT ONE: NUMBER THEORY Lesson 1 Understanding the Number System Textbook: Mathematics, A complete course, Volume One. (Some helpful exercises and page numbers are given

More information

Unit 7: Quadratics Principles of Math 9

Unit 7: Quadratics Principles of Math 9 Unit 7: Quadratics Principles of Math 9 Lesson Topic Assignment 1 Solving by Square Roots Day #1 2 Solving by Factoring (Part 1) Day #2 3 Solving by Factoring (Part 2) Day #3 4 All Types of Factoring Day

More information

1.2 THE REAL NUMBERS. section. The Rational Numbers

1.2 THE REAL NUMBERS. section. The Rational Numbers .2 The Real Numbers (-7) 7 57. E F 58. E F, 2, 3,, 5, 6, 8 2, 59. (D E ) F 60. (D F) E 2, 3,, 5 2, 6. D (E F) 62. D (F E) 2, 3,, 5, 7 2, 3,, 5, 7 63. (D F) (E F) 6. (D E ) (F E) 2, 3,, 5 2, 65. (D E) (D

More information

Supplemental Worksheet Problems To Accompany: The Algebra 2 Tutor Section 15 The Quadratic Formula

Supplemental Worksheet Problems To Accompany: The Algebra 2 Tutor Section 15 The Quadratic Formula 008 Jason Gibson / MathTutorDVD.com The Algebra Tutor Supplemental Worksheet Problems To Accompany: The Algebra Tutor Please watch Section 15 of this DVD before working these problems. The DVD is located

More information

Square Roots. Learning Objectives. Pre-Activity

Square Roots. Learning Objectives. Pre-Activity Section 1. Pre-Activity Preparation Square Roots Our number system has two important sets of numbers: rational and irrational. The most common irrational numbers result from taking the square root of non-perfect

More information

Real World Examples for Rational Numbers for Kids

Real World Examples for Rational Numbers for Kids Real World Examples for Rational Numbers for Kids http://explainingmath.blogspot.com/ Rational numbers represent just a different quantity, different than integers. Let s don t forget, they are not new

More information

Expressing Rational Numbers as Decimals

Expressing Rational Numbers as Decimals 8.NS.1 Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually,

More information

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P. MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called

More information

Pre-Algebra Class 3 - Fractions I

Pre-Algebra Class 3 - Fractions I Pre-Algebra Class 3 - Fractions I Contents 1 What is a fraction? 1 1.1 Fractions as division............................... 2 2 Representations of fractions 3 2.1 Improper fractions................................

More information

Mathematics 10C. Student Workbook. Lesson 1: Number Sets Approximate Completion Time: 1 Day

Mathematics 10C. Student Workbook. Lesson 1: Number Sets Approximate Completion Time: 1 Day Mathematics 10C R I Q W N Q Student Workbook Lesson 1: Number Sets Approximate Completion Time: 1 Day Unit 2 12 4 3 2 2 12 = 2 2 3 Lesson 2: Primes, LCM, and GCF Approximate Completion Time: 2 Days 5 2

More information

Number Theory Vocabulary (For Middle School Teachers)

Number Theory Vocabulary (For Middle School Teachers) Number Theory Vocabulary (For Middle School Teachers) A Absolute value the absolute value of a real number is its distance from zero on the number line. The absolute value of any real number, a, written

More information

Decimal and Fraction Review Sheet

Decimal and Fraction Review Sheet Decimal and Fraction Review Sheet Decimals -Addition To add 2 decimals, such as 3.25946 and 3.514253 we write them one over the other with the decimal point lined up like this 3.25946 +3.514253 If one

More information

GRADE 7 MATH TEACHING GUIDE

GRADE 7 MATH TEACHING GUIDE GRADE 7 MATH Lesson 12: SUBSETS OF REAL NUMBERS Time: 1.5 hours Prerequisite Concepts: whole numbers and operations, set of integers, rational numbers, irrational numbers, sets and set operations, Venn

More information

1.1 THE REAL NUMBERS. section. The Integers. The Rational Numbers

1.1 THE REAL NUMBERS. section. The Integers. The Rational Numbers 2 (1 2) Chapter 1 Real Numbers and Their Properties 1.1 THE REAL NUMBERS In this section In arithmetic we use only positive numbers and zero, but in algebra we use negative numbers also. The numbers that

More information

STRAND B: Number Theory. UNIT B2 Number Classification and Bases: Text * * * * * Contents. Section. B2.1 Number Classification. B2.

STRAND B: Number Theory. UNIT B2 Number Classification and Bases: Text * * * * * Contents. Section. B2.1 Number Classification. B2. STRAND B: Number Theory B2 Number Classification and Bases Text Contents * * * * * Section B2. Number Classification B2.2 Binary Numbers B2.3 Adding and Subtracting Binary Numbers B2.4 Multiplying Binary

More information

Sect 10.1 Real Numbers and the Real Number Line

Sect 10.1 Real Numbers and the Real Number Line Sect 10.1 Real Numbers and the Real Number Line 130 Objective a: Integers In this chapter, we will significantly expand the number system that we have discussed thus far in the textbook. There are certain

More information

FRACTIONS, DECIMALS, PERIODS, (IR)RATIONALS

FRACTIONS, DECIMALS, PERIODS, (IR)RATIONALS FRACTIONS, DECIMALS, PERIODS, (IR)RATIONALS MATH CIRCLE (BEGINNERS) 10/09/2011 (1) Here is a slightly different way to do long division and convert a fraction to a decimal. Let s try it with 3/7. First,

More information

Table of Contents. Letter to the Student... 5 Test-Taking Checklist... 6 Florida Mathematics Standards Correlation Chart... 7

Table of Contents. Letter to the Student... 5 Test-Taking Checklist... 6 Florida Mathematics Standards Correlation Chart... 7 Table of Contents Letter to the Student......................................... 5 Test-Taking Checklist......................................... 6 Florida Mathematics Standards Correlation Chart.................

More information

UNIT 1 VOCABULARY: RATIONAL AND IRRATIONAL NUMBERS

UNIT 1 VOCABULARY: RATIONAL AND IRRATIONAL NUMBERS UNIT VOCABULARY: RATIONAL AND IRRATIONAL NUMBERS 0. How to read fractions? REMEMBER! TERMS OF A FRACTION Fractions are written in the form number b is not 0. The number a is called the numerator, and tells

More information

Rational Numbers Comparing Rational Numbers ~ Lesson Plan

Rational Numbers Comparing Rational Numbers ~ Lesson Plan Rational Numbers Comparing Rational Numbers ~ Lesson Plan I. Topic: Comparing Rational Numbers II. III. Goals and Objectives: A. The students will demonstrate an understanding of rational numbers. B. The

More information

4 th ESO. Unit 3: Equations. Systems of equations

4 th ESO. Unit 3: Equations. Systems of equations 4 th ESO Unit 3: Equations. Systems of equations 1. Polynomial equations Polynomial Equation is simply a polynomial that has been set equal to zero in an equation. Linear Polynomials (Degree 1) aa + b

More information

Math Released Set 2015. Algebra 1 PBA Item #13 Two Real Numbers Defined M44105

Math Released Set 2015. Algebra 1 PBA Item #13 Two Real Numbers Defined M44105 Math Released Set 2015 Algebra 1 PBA Item #13 Two Real Numbers Defined M44105 Prompt Rubric Task is worth a total of 3 points. M44105 Rubric Score Description 3 Student response includes the following

More information

Lesson List. Unit and Lesson Number Lesson Title Notes

Lesson List. Unit and Lesson Number Lesson Title Notes Middle School Pre-Algebra Common Core Appendix Information K 12 has revised Middle School Pre-Algebra to align the course with Common Core State Standards (CCSS). To do this, we created an appendix of

More information

UNIT I: Rational Numbers and Exponents

UNIT I: Rational Numbers and Exponents UNIT I: Rational Numbers and Exponents *Topic 1- Adding and Subtracting Rational Numbers* Lesson 1-1 Rational Numbers, Opposites, and Absolute Value Lesson 1-2 Adding Integers Lesson 1-3 Adding Rational

More information

Session 1 What Is a Number System?

Session 1 What Is a Number System? Session 1 What Is a Number System? Key Terms in This Session New in This Session algebraic numbers closed set complex numbers counting numbers dense set e even numbers identity element integers inverse

More information

Q N R. Sep 5 7:55 AM THE NUMBER SYSTEM

Q N R. Sep 5 7:55 AM THE NUMBER SYSTEM Q W I TITLE: Q N R Sep 5 7:55 AM THE NUMBER SYSTEM N NATURAL NUMBERS All positive non zero numbers; in other words, all positive numbers. This does not include zero. These are the numbers we use to count.

More information

Grade 9 Mathematics Unit #1 Number Sense Sub-Unit #1 Rational Numbers. with Integers Divide Integers

Grade 9 Mathematics Unit #1 Number Sense Sub-Unit #1 Rational Numbers. with Integers Divide Integers Page1 Grade 9 Mathematics Unit #1 Number Sense Sub-Unit #1 Rational Numbers Lesson Topic I Can 1 Ordering & Adding Create a number line to order integers Integers Identify integers Add integers 2 Subtracting

More information

Sec 2.5 Infinite Sets & Their Cardinalities

Sec 2.5 Infinite Sets & Their Cardinalities Sec. Infinite Sets & Their Cardinalities Cardinal Number or Cardinality: of a finite set is the number of elements that it contains. One to one ( ) Correspondence: the elements in two sets can be matched

More information

Grade 7 - Chapter 1 -Recall Prior Knowledge

Grade 7 - Chapter 1 -Recall Prior Knowledge MATH IN FOCUS Grade 7 - Chapter 1 -Recall Prior Knowledge REFRESH YOUR MEMORY! CHAPTER 1 Recall Prior Knowledge In order to be successful with the new information in Chapter 1, it is necessary to remember

More information

Radicals - Complex Numbers

Radicals - Complex Numbers 8.8 Radicals - Complex Numbers Objective: Add, subtract, multiply, rationalize, and simplify expressions using complex numbers. World View Note: When mathematics was first used, the primary purpose was

More information

HOSPITALITY Math Assessment Preparation Guide. Introduction Operations with Whole Numbers Operations with Integers 9

HOSPITALITY Math Assessment Preparation Guide. Introduction Operations with Whole Numbers Operations with Integers 9 HOSPITALITY Math Assessment Preparation Guide Please note that the guide is for reference only and that it does not represent an exact match with the assessment content. The Assessment Centre at George

More information

To write a whole number as a fraction, write the whole number over 1. So, 12 =.

To write a whole number as a fraction, write the whole number over 1. So, 12 =. 11. Write each number as a fraction. To write a mixed number as a fraction, multiply the whole number by the denominator and then add the numerator. Write the result over the denominator. 12. 12 To write

More information

The Real Number System

The Real Number System The Real Number System Pi is probably one of the most famous numbers in all of history. As a decimal, it goes on and on forever without repeating. Mathematicians have already calculated trillions of the

More information

A. Factoring Method - Some, but not all quadratic equations can be solved by factoring.

A. Factoring Method - Some, but not all quadratic equations can be solved by factoring. DETAILED SOLUTIONS AND CONCEPTS - QUADRATIC EQUATIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE

More information

DECIMALS are special fractions whose denominators are powers of 10.

DECIMALS are special fractions whose denominators are powers of 10. DECIMALS DECIMALS are special fractions whose denominators are powers of 10. Since decimals are special fractions, then all the rules we have already learned for fractions should work for decimals. The

More information

5.1 to 5.3 P2.ink. Carnegie Unit 3 Examples & Class Notes

5.1 to 5.3 P2.ink. Carnegie Unit 3 Examples & Class Notes Carnegie Unit 3 Examples & Class Notes 1 2 3 This number is called the index. 1 Only multiply the numbers inside radical symbols, if and only if, they have the same index. 4 1 Use the times tables & prime

More information

Class IX Math NCERT Solutions For Real Numbers. Exercise 1.1

Class IX Math NCERT Solutions For Real Numbers. Exercise 1.1 Class IX Math NCERT Solutions For Real Numbers Exercise.. Is zero a rational number? Can you write it in the form p q, where p and q are integers and q 0? Yes, zero is a rational number. We can write it

More information

Roots of Real Numbers

Roots of Real Numbers Roots of Real Numbers Math 97 Supplement LEARNING OBJECTIVES. Calculate the exact and approximate value of the square root of a real number.. Calculate the exact and approximate value of the cube root

More information

RATIONAL NUMBER ADDITION AND SUBTRACTION

RATIONAL NUMBER ADDITION AND SUBTRACTION 7 RATIONAL NUMBER ADDITION AND SUBTRACTION INSTRUCTIONAL ACTIVITY Lesson 2 LEARNING GOAL Students will review the number line and its symmetry, plot values on the number line, and answer questions pertaining

More information

Find the Square Root

Find the Square Root verview Math Concepts Materials Students who understand the basic concept of square roots learn how to evaluate expressions and equations that have expressions and equations TI-30XS MultiView rational

More information

Key. Welcome to Topic 3: Understanding Numbers. Better Math Topic 1: Understanding Numbers Topic 1.3 Types of Numbers.

Key. Welcome to Topic 3: Understanding Numbers. Better Math Topic 1: Understanding Numbers Topic 1.3 Types of Numbers. Key On screen content Narration voice-over Web links Welcome to Topic 3: Understanding Numbers To help our understanding of numbers it is very useful to be aware of the many types of numbers that exist.

More information

Roots of Real Numbers

Roots of Real Numbers Roots of Real Numbers Math 97 Supplement LEARNING OBJECTIVES. Calculate the exact and approximate value of the square root of a real number.. Calculate the exact and approximate value of the cube root

More information

We can use the Pythagorean Theorem to determine the length of the diagonal.

We can use the Pythagorean Theorem to determine the length of the diagonal. Student Outcomes Students know that for most integers n, n is not a perfect square, and they understand the square root symbol,. Students find the square root of small perfect squares. Students approximate

More information

Zeros of Polynomial Functions

Zeros of Polynomial Functions Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction

More information

Percents and Applications

Percents and Applications Percents and Applications Meaning of Percents Percent means per hundred or parts of one hundred. For example, percent means fifteen parts out of a hundred or, and percent can be written 00 %. Examples

More information

Chapter Sets. Section 2 Sets. Set Properties and Set Notation (continued) Set Properties and Set Notation

Chapter Sets. Section 2 Sets. Set Properties and Set Notation (continued) Set Properties and Set Notation Chapter 7 Logic, Sets, and Counting 7.2 Sets This section will discuss the symbolism and concepts of set theory. Section 2 Sets 2 Set Properties and Set Notation Set Properties and Set Notation Definition:

More information

Unit 1 Review Part 1 3 combined Handout KEY.notebook. September 26, 2013

Unit 1 Review Part 1 3 combined Handout KEY.notebook. September 26, 2013 Math 10c Unit 1 Factors, Powers and Radicals Key Concepts 1.1 Determine the prime factors of a whole number. 650 3910 1.2 Explain why the numbers 0 and 1 have no prime factors. 0 and 1 have no prime factors

More information

CHAPTER 1 NUMBER SYSTEMS POINTS TO REMEMBER

CHAPTER 1 NUMBER SYSTEMS POINTS TO REMEMBER CHAPTER NUMBER SYSTEMS POINTS TO REMEMBER. Definition of a rational number. A number r is called a rational number, if it can be written in the form p, where p and q are integers and q 0. q Note. We visit

More information

1.1. Basic Concepts. Write sets using set notation. Write sets using set notation. Write sets using set notation. Write sets using set notation.

1.1. Basic Concepts. Write sets using set notation. Write sets using set notation. Write sets using set notation. Write sets using set notation. 1.1 Basic Concepts Write sets using set notation. Objectives A set is a collection of objects called the elements or members of the set. 1 2 3 4 5 6 7 Write sets using set notation. Use number lines. Know

More information

MOVING WITH MATH EXTENSIONS GRADE 8

MOVING WITH MATH EXTENSIONS GRADE 8 CORRELATION OF COLORADO MODEL CONTENT STANDARDS TO MOVING WITH MATH EXTENSIONS GRADE 8 STANDARD 1 1. Students develop number sense and use numbers and number relationships in problem-solving situations

More information

What are the place values to the left of the decimal point and their associated powers of ten?

What are the place values to the left of the decimal point and their associated powers of ten? The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything

More information

2.1 Chapter 9 Concept 9.3: Zero, Negative,

2.1 Chapter 9 Concept 9.3: Zero, Negative, 2.. Chapter 9 Concept 9.: Zero, Negative, and Fractional Exponents Lesson) www.ck2.org 2. Chapter 9 Concept 9.: Zero, Negative, and Fractional Exponents Lesson) Simplify expressions with zero exponents.

More information

Number Systems. 5 th Year Maths Ordinary Level David Lewis

Number Systems. 5 th Year Maths Ordinary Level David Lewis 5 th Year Maths Ordinary Level David Lewis Number Systems Anticipating problems and figuring out how to solve them is actually the opposite of worrying: it s productive. Chris Hadfield Astronaut No part

More information

counting infinite sets

counting infinite sets There are three kinds of people in the world: those who can count and those who can t. counting infinite sets Peter Trapa March 2, 2005 Everyone knows what infinity is: it s something that goes on and

More information

Algebra 2. Systems of Equations Unit 3. Name:

Algebra 2. Systems of Equations Unit 3. Name: Algebra 2 Systems of Equations Unit 3 Name: 1 Notes Section 4.1 Date Graphing Systems By the end of this section, you should be able to: - Determine by graphing if a system of equations has a unique solution,

More information

March 29, 2011. 171S4.4 Theorems about Zeros of Polynomial Functions

March 29, 2011. 171S4.4 Theorems about Zeros of Polynomial Functions MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 4: Polynomial and Rational Functions 4.1 Polynomial Functions and Models 4.2 Graphing Polynomial Functions 4.3 Polynomial

More information

WSMA Decimal Numbers Lesson 5

WSMA Decimal Numbers Lesson 5 To multiply and divide decimal numbers, you multiply as if they were whole numbers. After that, the only question is: Where do you put the decimal point?! Decimal Numbers Multiplication: Whole Number and

More information

(i) Every natural number is a whole number. True, since the collection of whole numbers contains all natural numbers.

(i) Every natural number is a whole number. True, since the collection of whole numbers contains all natural numbers. Exercise 1.1 1. Is zero a rational number? Can you write it in the form p/q, where p and q are integers and q 0? Yes. Zero is a rational number as it can be represented as 0/1 or 0/2. 2. Find six rational

More information