Supplemental Worksheet Problems To Accompany: The PreAlgebra Tutor: Volume 1 Section 1 Real Numbers


 Mark Clark
 7 years ago
 Views:
Transcription
1 Supplemental Worksheet Problems To Accompany: The PreAlgebra Tutor: Volume 1 Please watch Section 1 of this DVD before working these problems. The DVD is located at: Page 1
2 Part 1: Real Numbers 1) Identify the real numbers below. 2) Identify the real numbers below. 3) Identify the real numbers below. Page 2
3 Part 2: Rational Numbers 4) Which of the following is a rational number? 5) Which of the following is a rational number? 6) Which of the following is a rational number? Page 3
4 Part 3: Irrational Numbers 7) Which of the following is an irrational number? 8) Which of the following is an irrational number? 10.10, 0.12, 18, π 9) Which of the following is an irrational number? 2, 30, , Page 4
5 Part 4: Integers 10) Which of the following is not an integer? 11) Which of the following is not an integer? 12) Which of the following is not an integer? Page 5
6 Part 5: Whole Numbers 13) Identify the whole number(s) below. 14) Identify the whole number(s) below. 15) Identify the whole number(s) below. Page 6
7 Part 6: Natural Numbers 16) Identify the natural number(s) below. 17) Identify the natural number(s) below. 18) Identify the natural number(s) below. Page 7
8 Part 7: Prime Numbers 19) Identify the prime number(s) below. 20) Identify the prime number(s) below. 21) Identify the prime number(s) below. Page 8
9 Part 8: Putting it all together For each of the numbers below, identify which group they belong to. (Real, Irrational, Rational, Integer, Whole, Natural and/or Prime number) Example: Is both a Real and a Rational number. 22) 23) 24) 25) Page 9
10 Question Answer 1) Identify the real numbers below. First, we need to remember the definition of a real number. This is any number that can be located on a number line. This excludes imaginary numbers. All of the numbers mentioned can be plotted onto a number line even if they are fractions or have numerous decimal places, they can still be plotted somewhere on a number line. All of them are real numbers Since all of the numbers meet the definition of a real number they are all by definition real numbers. Ans: All are considered real numbers Page 10
11 2) Identify the real numbers below. First, we need to remember the definition of a real number. This is any number that can be located on a number line. This excludes imaginary numbers. All of the numbers mentioned can be plotted onto a number line even if they are fractions or have numerous decimal places, they can still be plotted somewhere on a number line. All of them are real numbers Since all of these numbers meet the definition of a real number they are all by definition real numbers. Ans: All are considered real numbers Page 11
12 3) Identify the real numbers below. First, we need to remember the definition of a real number. This is any number that can be located on a number line. This excludes imaginary numbers. All of the numbers mentioned can be plotted onto a number line even if they are fractions or have numerous decimal places, they can still be plotted somewhere on a number line. All of them are real numbers Since all of these numbers meet the definition of a real number they are all by definition real numbers. Ans: All are considered real numbers Page 12
13 4) Which of the following is a rational number? First, we need to remember the definition of a rational number. This is any number that can be expressed as a fraction. We see as we express the numbers in fraction form that all but one can be expressed as a fraction. If we type the square root of two into a calculator we notice that the result is a non repeating decimal pattern. The rest of the numbers can be expressed as a fraction and therefore are rational numbers. Ans: Page 13
14 5) Which of the following is a rational number? First, we need to remember the definition of a rational number. This is any number that can be expressed as a fraction. We see as we express the numbers in fraction form that all but one can be expressed as a fraction. We notice right away that has a non repeating infinite pattern. Therefore, there is no way to express this number as a fraction. The rest of the numbers can be expressed as a fraction and therefore are rational numbers. Ans: Page 14
15 6) Which of the following is a rational number? First, we need to remember the definition of a rational number. This is any number that can be expressed as a fraction. We see as we express the numbers in fraction form that all but one can be expressed as a fraction. If we type into a calculator we notice that pi has a non repeating decimal pattern that goes on forever. Therefore, there is no way to express this number as a fraction. The rest of the numbers can be expressed as a fraction and therefore are rational numbers. Ans: Page 15
16 7) Which of the following is an irrational number? First, we need to remember the definition of an irrational number. This is any number that can t be expressed as a fraction. All of the numbers mentioned can be written as a fraction. Since all of these numbers can be expressed as fractions, none of these numbers are considered irrational Ans: None of the numbers listed are irrational numbers Page 16
17 8) Which of the following is an irrational number? 10.10, 0.12, 18, π First, we need to remember the definition of an irrational number. This is any number that can t be expressed as a fraction. The first three numbers mentioned can be written as a fraction. Since Pi = is an infinite non repeating decimal, it cannot be written as a fraction. π = Ans: Pi is an Irrational Number Page 17
18 9) Which of the following is an irrational number? 2, 30, , First, we need to remember the definition of an irrational number. This is any number that can t be expressed as a fraction. All of the numbers can be written as a fraction except for the infinite non repeating decimal. This is the only irrational number in our list Ans: is irrational Page 18
19 10) Which of the following is not an integer? First, we need to remember the definition of what an integer is. This is, any number that is positive, negative or zero, but has no decimal point.,5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5 Right away, we look at the list of numbers and notice that all but one falls under this definition. Ans: Page 19
20 11) Which of the following is not an integer? First, we need to remember the definition of what an integer is. This is, any number that is positive, negative or zero, but has no decimal place.,5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5 Right away, we look at the list of numbers and notice that all but one falls under this definition. The negative fraction will provide a result with a decimal place when we divide 15 by 16. Since the square root of 9 is exactly 3, this is an integer as well. Ans: Page 20
21 12) Which of the following is not an integer? First, we need to remember the definition of what an integer is. This is, any number that is positive, negative or zero, but has no decimal place.,5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5 Right away, we look at the list of numbers and notice that all but one falls under this definition. Ans: Page 21
22 13) Identify the whole number(s) below. First, we need to remember the definition of what makes a whole number. A whole number is any positive number including zero that does not have a decimal place. By simply applying the definition we see that the two negative numbers are not whole numbers. Zero and one hundred do fit the definition. Ans: Page 22
23 14) Identify the whole number(s) below. First, we need to remember the definition of what makes a whole number. A whole number is any positive number including zero that does not have a decimal place. First we see that the negative number does not meet our definition. Then we see that the fraction will give us a decimal place as well as the square root of 2. The number fifteen is the only whole number. Ans: Page 23
24 15) Identify the whole number(s) below. First, we need to remember the definition of what makes a whole number. A whole number is any positive number including zero that does not have a decimal place. We see that 640 is both positive and does not contain a decimal place. The negative 640 however does not meet our definition so it is not a whole number. The one half will give us a decimal place, 0.5 so it is not a whole number. The number 1.1 is positive but has a decimal place and therefore is not a whole number. The only whole number from the list is 640. Ans: Page 24
25 16) Identify the natural number(s) below. First, we need to remember the definition of what makes a natural number. This is any number that can be used to physically count something. This includes: 1,2,3,4,5,6,7,8,9.. Based on our definition, we see that the negative numbers are not natural numbers because I can t physically count something I don t have so the negative numbers are not natural numbers. The last number to consider from the list is zero. If I have zero of something I can t naturally count it so zero is not a natural number. None. Since none of the numbers meet our criteria of what makes a natural number none of these are natural numbers Ans: None Page 25
26 17) Identify the natural number(s) below. First, we need to remember the definition of what makes a natural number. This is any number that can be used to physically count something. This includes: 1,2,3,4,5,6,7,8,9.. Based on our definition, we see that the negative numbers are not natural numbers because I can t physically count something I don t have so the negative numbers are not natural numbers. The square root of 9 is the same as 3, so I can physically count something if I have 3 apples or 3 pencils so the square root of 9 is a natural number. The last number to consider from the list is 26. I can definitely physically have 26 of something and count it so 26 is a natural numbers. Ans: Are natural numbers Page 26
27 18) Identify the natural number(s) below. First, we need to remember the definition of what makes a natural number. This is any number that can be used to physically count something. This includes: 1,2,3,4,5,6,7,8,9.. Based on our definition, we see that the negative numbers are not natural numbers because I can t physically count something I don t have so the negative numbers are not natural numbers. We are left with 640 and 0. If I have zero of something I can t naturally count it so zero is not a natural number. The number 640 however can be used to physically count something like the 640 pennies in my piggy bank. Therefore the number 640 is a natural number. The only natural number is the number 640. Ans: Page 27
28 19) Identify the prime number(s) below. First, we need to remember the definition of a prime number. This is a whole number other than zero and 1, which can only be divided by 1 and itself. When we say divided only by 1 and itself, we mean that those are the only numbers that will not give you a decimal place when you divide. The first number we have is 32. It is by definition a whole number and it is not zero or 1. However, 1 and 32 are not the only numbers I can divide 32 by. I can divide it by 2, 4, 8, and 16. So therefore it is not a prime number. The number 2 is a whole number that is not zero or 1. And I can only divide it by 1 and 2, so it is a prime number. The number zero already violates our definition so it is not a prime number. The number 16 is a whole number that is not zero or 1. However 1 and 16 are not the only numbers I can divide 16 by. I can divide it by 2, 4 and 8. So it is not a prime number. Ans: Page 28
29 20) Identify the prime number(s) below. First, we need to remember the definition of a prime number. This is a whole number other than zero and 1, which can only be divided by 1 and itself. When we say divided only by 1 and itself, we mean that those are the only numbers that will not give you a decimal place when you divide. The number 10 by definition a whole number and it is not zero or 1. However, 1 and 10 are not the only numbers I can divide 10 by. I can divide it by 2 and 5. So therefore it is not a prime number. The number 17 is a whole number and it is not zero or 1. When we try to divide 17 by something other than 1 or 17, we find that we can t do it without ending up with a decimal place. Therefore 17 is a prime number. The number 3 as well as 17 can only be divided by 1 and itself therefore it is a prime number. The number 1 violates our definition so it is not a prime number. Ans: Page 29
30 21) Identify the prime number(s) below. First, we need to remember the definition of a prime number. This is a whole number other than zero and 1, which can only be divided by 1 and itself. When we say divided only by 1 and itself, we mean that those are the only numbers that will not give you a decimal place when you divide. As we look at the first two numbers, 2 and 0.8, we notice they are not whole numbers which violates our definition of a prime number and therefore are not considered prime numbers. The number 15 is a whole number and it is not zero or 1. However, 1 and 15 are not the only numbers I can divide 15 by. I can divide it by the number 5 and still end up with a natural number (no decimal or zero). So it is not a prime number. The number 22 is a whole number and it is not zero or 1. However, 1 and 22 are not the only numbers I can divide 22 by. I can divide it by 2, and 11. So it is not a prime number. None. None of the numbers meet our definition of a prime number. Ans: None. Page 30
31 22) First, we need to remember our definitions and how each type of number is related to the other types of numbers. Remember that Real numbers is at the top of the umbrella. Everything else falls under it. Then it breaks off into Irrational and Rational numbers. Then under Rational numbers are Integers, Whole numbers, Natural numbers and Prime numbers. If I know a number is Irrational, then by definition it is not Rational or anything that falls under a Rational number. This number is a real number. Next we see if it is irrational or rational. Since I can write it as a fraction, then it is a rational number. Since it is has a decimal place, it is not an integer, a whole number, natural number or a prime number. Ans: Real number, Rational Page 31
32 23) number First, we need to remember our definitions and how each type of number is related to the other types of numbers. Remember that Real numbers is at the top of the umbrella. Everything else falls under it. Then it breaks off into Irrational and Rational numbers. Then under Rational numbers are Integers, Whole numbers, Natural numbers and Prime numbers. If I know a number is Irrational, then by definition it is not Rational or anything that falls under a Rational number. This number is a Real number. Next we see if it is Irrational or Rational. Just by looking at it, we see that it is Rational since we can write it as 7 over 1. It has no decimal place and it is positive so it is an Integer, a Whole number and a Natural number. We find that I can only divide this number by 1 and itself so it is a Prime number. Ans: Real number, Rational Number, Integer, Whole number, Natural number, and Prime Page 32
33 24) number First, we need to remember our definitions and how each type of number is related to the other types of numbers. Remember that Real numbers is at the top of the umbrella. Everything else falls under it. Then it breaks off into Irrational and Rational numbers. Then under Rational numbers are Integers, Whole numbers, Natural numbers and Prime numbers. If I know a number is Irrational, then by definition it is not Rational or anything that falls under a Rational number. This number is a Real number. Next we see if it is Irrational or Rational. Just by looking at it, we see that it has decimal places that are non repeatable and infer to go on forever. This means we can t represent it as a fraction and therefore is an Irrational number. Since it is an Irrational number it is not Rational and not any of the other types of numbers. Ans: Real number, Irrational Number Page 33
34 25) First, we need to remember our definitions and how each type of number is related to the other types of numbers. Remember that Real numbers is at the top of the umbrella. Everything else falls under it. Then it breaks off into Irrational and Rational numbers. Then under Rational numbers are Integers, Whole numbers, Natural numbers and Prime numbers. If I know a number is Irrational, then by definition it is not Rational or anything that falls under a Rational number. This number is a Real number. Next we see if it is Irrational or Rational. Just by looking at it, we see that it is Rational since we can write it as 2 over 1. We also notice that it has a negative sign but no decimal place. This number is still considered an Integer, but not considered a Whole number. Since it is not considered a whole number it can t be a Natural number or a Prime number by definition. Ans: Real number, Rational Number, and an Integer Page 34
Supplemental Worksheet Problems To Accompany: The PreAlgebra Tutor: Volume 1 Section 9 Order of Operations
Supplemental Worksheet Problems To Accompany: The PreAlgebra Tutor: Volume 1 Please watch Section 9 of this DVD before working these problems. The DVD is located at: http://www.mathtutordvd.com/products/item66.cfm
More informationExponents, Radicals, and Scientific Notation
General Exponent Rules: Exponents, Radicals, and Scientific Notation x m x n = x m+n Example 1: x 5 x = x 5+ = x 7 (x m ) n = x mn Example : (x 5 ) = x 5 = x 10 (x m y n ) p = x mp y np Example : (x) =
More informationZero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.
MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called
More informationIrrational Numbers. A. Rational Numbers 1. Before we discuss irrational numbers, it would probably be a good idea to define rational numbers.
Irrational Numbers A. Rational Numbers 1. Before we discuss irrational numbers, it would probably be a good idea to define rational numbers. Definition: Rational Number A rational number is a number that
More information3.1. RATIONAL EXPRESSIONS
3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers
More informationFind the Square Root
verview Math Concepts Materials Students who understand the basic concept of square roots learn how to evaluate expressions and equations that have expressions and equations TI30XS MultiView rational
More information0.8 Rational Expressions and Equations
96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions  that is, algebraic fractions  and equations which contain them. The reader is encouraged to
More informationHow do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.
The verbal answers to all of the following questions should be memorized before completion of prealgebra. Answers that are not memorized will hinder your ability to succeed in algebra 1. Number Basics
More informationFractions to decimals
Worksheet.4 Fractions and Decimals Section Fractions to decimals The most common method of converting fractions to decimals is to use a calculator. A fraction represents a division so is another way of
More information2.5 Zeros of a Polynomial Functions
.5 Zeros of a Polynomial Functions Section.5 Notes Page 1 The first rule we will talk about is Descartes Rule of Signs, which can be used to determine the possible times a graph crosses the xaxis and
More informationSimplifying SquareRoot Radicals Containing Perfect Square Factors
DETAILED SOLUTIONS AND CONCEPTS  OPERATIONS ON IRRATIONAL NUMBERS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!
More informationSIMPLIFYING SQUARE ROOTS
40 (88) Chapter 8 Powers and Roots 8. SIMPLIFYING SQUARE ROOTS In this section Using the Product Rule Rationalizing the Denominator Simplified Form of a Square Root In Section 8. you learned to simplify
More information5.1 Radical Notation and Rational Exponents
Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots
More informationSet Theory Basic Concepts and Definitions
Set Theory Basic Concepts and Definitions The Importance of Set Theory One striking feature of humans is their inherent need and ability to group objects according to specific criteria. Our prehistoric
More information6.1. The Exponential Function. Introduction. Prerequisites. Learning Outcomes. Learning Style
The Exponential Function 6.1 Introduction In this block we revisit the use of exponents. We consider how the expression a x is defined when a is a positive number and x is irrational. Previously we have
More informationWelcome to Basic Math Skills!
Basic Math Skills Welcome to Basic Math Skills! Most students find the math sections to be the most difficult. Basic Math Skills was designed to give you a refresher on the basics of math. There are lots
More informationPreviously, you learned the names of the parts of a multiplication problem. 1. a. 6 2 = 12 6 and 2 are the. b. 12 is the
Tallahassee Community College 13 PRIME NUMBERS AND FACTORING (Use your math book with this lab) I. Divisors and Factors of a Number Previously, you learned the names of the parts of a multiplication problem.
More informationSolving Quadratic Equations
9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation
More informationIndices and Surds. The Laws on Indices. 1. Multiplication: Mgr. ubomíra Tomková
Indices and Surds The term indices refers to the power to which a number is raised. Thus x is a number with an index of. People prefer the phrase "x to the power of ". Term surds is not often used, instead
More informationExponents. Exponents tell us how many times to multiply a base number by itself.
Exponents Exponents tell us how many times to multiply a base number by itself. Exponential form: 5 4 exponent base number Expanded form: 5 5 5 5 25 5 5 125 5 625 To use a calculator: put in the base number,
More informationChapter 4  Decimals
Chapter 4  Decimals $34.99 decimal notation ex. The cost of an object. ex. The balance of your bank account ex The amount owed ex. The tax on a purchase. Just like Whole Numbers Place Value  1.23456789
More informationZeros of a Polynomial Function
Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we
More informationCommon Core Standards for Fantasy Sports Worksheets. Page 1
Scoring Systems Concept(s) Integers adding and subtracting integers; multiplying integers Fractions adding and subtracting fractions; multiplying fractions with whole numbers Decimals adding and subtracting
More informationBinary Adders: Half Adders and Full Adders
Binary Adders: Half Adders and Full Adders In this set of slides, we present the two basic types of adders: 1. Half adders, and 2. Full adders. Each type of adder functions to add two binary bits. In order
More informationZeros of Polynomial Functions
Review: Synthetic Division Find (x 25x  5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 35x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 35x 2 + x + 2. Zeros of Polynomial Functions Introduction
More informationPolynomial and Rational Functions
Polynomial and Rational Functions Quadratic Functions Overview of Objectives, students should be able to: 1. Recognize the characteristics of parabolas. 2. Find the intercepts a. x intercepts by solving
More informationMarch 29, 2011. 171S4.4 Theorems about Zeros of Polynomial Functions
MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 4: Polynomial and Rational Functions 4.1 Polynomial Functions and Models 4.2 Graphing Polynomial Functions 4.3 Polynomial
More information47 Numerator Denominator
JH WEEKLIES ISSUE #22 20122013 Mathematics Fractions Mathematicians often have to deal with numbers that are not whole numbers (1, 2, 3 etc.). The preferred way to represent these partial numbers (rational
More informationActivity 1: Using base ten blocks to model operations on decimals
Rational Numbers 9: Decimal Form of Rational Numbers Objectives To use base ten blocks to model operations on decimal numbers To review the algorithms for addition, subtraction, multiplication and division
More informationStanford Math Circle: Sunday, May 9, 2010 SquareTriangular Numbers, Pell s Equation, and Continued Fractions
Stanford Math Circle: Sunday, May 9, 00 SquareTriangular Numbers, Pell s Equation, and Continued Fractions Recall that triangular numbers are numbers of the form T m = numbers that can be arranged in
More informationMath Released Set 2015. Algebra 1 PBA Item #13 Two Real Numbers Defined M44105
Math Released Set 2015 Algebra 1 PBA Item #13 Two Real Numbers Defined M44105 Prompt Rubric Task is worth a total of 3 points. M44105 Rubric Score Description 3 Student response includes the following
More informationSession 7 Fractions and Decimals
Key Terms in This Session Session 7 Fractions and Decimals Previously Introduced prime number rational numbers New in This Session period repeating decimal terminating decimal Introduction In this session,
More informationAll the examples in this worksheet and all the answers to questions are available as answer sheets or videos.
BIRKBECK MATHS SUPPORT www.mathsupport.wordpress.com Numbers 3 In this section we will look at  improper fractions and mixed fractions  multiplying and dividing fractions  what decimals mean and exponents
More informationMANCHESTER COLLEGE Department of Education. Length: 25 minutes Grade Intended: PreAlgebra (7 th )
LESSON PLAN by: Kyler Kearby Lesson: Multiplying and dividing integers MANCHESTER COLLEGE Department of Education Length: 25 minutes Grade Intended: PreAlgebra (7 th ) Academic Standard: 7.2.1: Solve
More informationWhat are the place values to the left of the decimal point and their associated powers of ten?
The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything
More informationCalculate Highest Common Factors(HCFs) & Least Common Multiples(LCMs) NA1
Calculate Highest Common Factors(HCFs) & Least Common Multiples(LCMs) NA1 What are the multiples of 5? The multiples are in the five times table What are the factors of 90? Each of these is a pair of factors.
More informationCONTENTS. Please note:
CONTENTS Introduction...iv. Number Systems... 2. Algebraic Expressions.... Factorising...24 4. Solving Linear Equations...8. Solving Quadratic Equations...0 6. Simultaneous Equations.... Long Division
More informationRadicals  Multiply and Divide Radicals
8. Radicals  Multiply and Divide Radicals Objective: Multiply and divide radicals using the product and quotient rules of radicals. Multiplying radicals is very simple if the index on all the radicals
More informationLesson Plan. N.RN.3: Use properties of rational and irrational numbers.
N.RN.3: Use properties of rational irrational numbers. N.RN.3: Use Properties of Rational Irrational Numbers Use properties of rational irrational numbers. 3. Explain why the sum or product of two rational
More information23. RATIONAL EXPONENTS
23. RATIONAL EXPONENTS renaming radicals rational numbers writing radicals with rational exponents When serious work needs to be done with radicals, they are usually changed to a name that uses exponents,
More informationContents. Subtraction (Taking Away)... 6. Multiplication... 7 by a single digit. by a two digit number by 10, 100 or 1000
This booklet outlines the methods we teach pupils for place value, times tables, addition, subtraction, multiplication, division, fractions, decimals, percentages, negative numbers and basic algebra Any
More informationSunny Hills Math Club Decimal Numbers Lesson 4
Are you tired of finding common denominators to add fractions? Are you tired of converting mixed fractions into improper fractions, just to multiply and convert them back? Are you tired of reducing fractions
More informationA Yearlong Pathway to Complete MATH 1111: College Algebra
A Yearlong Pathway to Complete MATH 1111: College Algebra A yearlong path to complete MATH 1111 will consist of 12 Learning Support (LS) classes and MATH 1111. The first semester will consist of the
More informationCubes and Cube Roots
CUBES AND CUBE ROOTS 109 Cubes and Cube Roots CHAPTER 7 7.1 Introduction This is a story about one of India s great mathematical geniuses, S. Ramanujan. Once another famous mathematician Prof. G.H. Hardy
More informationComparing and Plotting Rational Numbers on a Number Line
Comparing and Plotting Rational Numbers on a Number Line Student Probe Plot 4 on the number Lesson Description In this lesson students will plot rational numbers on a number This lesson is limited to positive
More informationThe gas can has a capacity of 4.17 gallons and weighs 3.4 pounds.
hundred million$ ten million$ million$ 00,000,000 0,000,000,000,000 00,000 0,000,000 00 0 0 0 0 0 0 0 0 0 Session 26 Decimal Fractions Explain the meaning of the values stated in the following sentence.
More informationPrime and Composite Numbers
Prime and Composite Numbers Student Probe Is 27 a prime number or a composite number? Is 17 a prime number or a composite number? Answer: 27 is a composite number, because it has factors other than 1 and
More informationUNDERSTANDING ALGEBRA JAMES BRENNAN. Copyright 2002, All Rights Reserved
UNDERSTANDING ALGEBRA JAMES BRENNAN Copyright 00, All Rights Reserved CONTENTS CHAPTER 1: THE NUMBERS OF ARITHMETIC 1 THE REAL NUMBER SYSTEM 1 ADDITION AND SUBTRACTION OF REAL NUMBERS 8 MULTIPLICATION
More information2.3 Solving Equations Containing Fractions and Decimals
2. Solving Equations Containing Fractions and Decimals Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Solve equations containing fractions
More informationUseful Number Systems
Useful Number Systems Decimal Base = 10 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Binary Base = 2 Digit Set = {0, 1} Octal Base = 8 = 2 3 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7} Hexadecimal Base = 16 = 2
More informationPREPARATION FOR MATH TESTING at CityLab Academy
PREPARATION FOR MATH TESTING at CityLab Academy compiled by Gloria Vachino, M.S. Refresh your math skills with a MATH REVIEW and find out if you are ready for the math entrance test by taking a PRETEST
More informationReady, Set, Go! Math Games for Serious Minds
Math Games with Cards and Dice presented at NAGC November, 2013 Ready, Set, Go! Math Games for Serious Minds Rande McCreight Lincoln Public Schools Lincoln, Nebraska Math Games with Cards Close to 20 
More informationWSMA Decimal Numbers Lesson 4
Thousands Hundreds Tens Ones Decimal Tenths Hundredths Thousandths WSMA Decimal Numbers Lesson 4 Are you tired of finding common denominators to add fractions? Are you tired of converting mixed fractions
More informationPreAlgebra Lecture 6
PreAlgebra Lecture 6 Today we will discuss Decimals and Percentages. Outline: 1. Decimals 2. Ordering Decimals 3. Rounding Decimals 4. Adding and subtracting Decimals 5. Multiplying and Dividing Decimals
More informationSummary Of Mental Maths Targets EYFS Yr 6. Year 3. Count from 0 in multiples of 4 & 8, 50 & 100. Count back in 100s, 10s, 1s eg.
Autumn 1 Say the number names in order to 10. Read and write from 1 to 20 in numerals and words. Count in steps of 2, 3, and 5 from 0, and in tens from any number, forward and backward. Count from 0 in
More informationZeroknowledge games. Christmas Lectures 2008
Security is very important on the internet. You often need to prove to another person that you know something but without letting them know what the information actually is (because they could just copy
More informationVieta s Formulas and the Identity Theorem
Vieta s Formulas and the Identity Theorem This worksheet will work through the material from our class on 3/21/2013 with some examples that should help you with the homework The topic of our discussion
More informationAdding & Subtracting Integers
WARDEN AVE P.S. Adding & Subtracting Integers Number Sense & Numeration Unit #1 Grade 7 Math 20142015 School Year This miniunit will run from September 1526 and must be handed in on Friday Sept. 26th
More informationSOLVING EQUATIONS WITH RADICALS AND EXPONENTS 9.5. section ( 3 5 3 2 )( 3 25 3 10 3 4 ). The OddRoot Property
498 (9 3) Chapter 9 Radicals and Rational Exponents Replace the question mark by an expression that makes the equation correct. Equations involving variables are to be identities. 75. 6 76. 3?? 1 77. 1
More informationSolution Guide Chapter 14 Mixing Fractions, Decimals, and Percents Together
Solution Guide Chapter 4 Mixing Fractions, Decimals, and Percents Together Doing the Math from p. 80 2. 0.72 9 =? 0.08 To change it to decimal, we can tip it over and divide: 9 0.72 To make 0.72 into a
More informationDecimals and other fractions
Chapter 2 Decimals and other fractions How to deal with the bits and pieces When drugs come from the manufacturer they are in doses to suit most adult patients. However, many of your patients will be very
More informationDiscrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 Proofs Intuitively, the concept of proof should already be familiar We all like to assert things, and few of us
More informationALGEBRA 2 CRA 2 REVIEW  Chapters 16 Answer Section
ALGEBRA 2 CRA 2 REVIEW  Chapters 16 Answer Section MULTIPLE CHOICE 1. ANS: C 2. ANS: A 3. ANS: A OBJ: 53.1 Using Vertex Form SHORT ANSWER 4. ANS: (x + 6)(x 2 6x + 36) OBJ: 64.2 Solving Equations by
More informationDomain of a Composition
Domain of a Composition Definition Given the function f and g, the composition of f with g is a function defined as (f g)() f(g()). The domain of f g is the set of all real numbers in the domain of g such
More informationx 41 = (x²)²  (1)² = (x² + 1) (x²  1) = (x² + 1) (x  1) (x + 1)
Factoring Polynomials EXAMPLES STEP 1 : Greatest Common Factor GCF Factor out the greatest common factor. 6x³ + 12x²y = 6x² (x + 2y) 5x  5 = 5 (x  1) 7x² + 2y² = 1 (7x² + 2y²) 2x (x  3)  (x  3) =
More informationMath 10C: Numbers, Radicals, and Exponents PRACTICE EXAM
Math 10C: Numbers, Radicals, and Exponents PRACTICE EXAM 1. 1.273958... belongs to: The set of integers. The set of rationals. The set of irrationals. None of the above. 2. 7.4 belongs to: The set of integers.
More informationFree PreAlgebra Lesson 55! page 1
Free PreAlgebra Lesson 55! page 1 Lesson 55 Perimeter Problems with Related Variables Take your skill at word problems to a new level in this section. All the problems are the same type, so that you can
More informationThe Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.
The Prime Numbers Before starting our study of primes, we record the following important lemma. Recall that integers a, b are said to be relatively prime if gcd(a, b) = 1. Lemma (Euclid s Lemma). If gcd(a,
More informationTo discuss this topic fully, let us define some terms used in this and the following sets of supplemental notes.
INFINITE SERIES SERIES AND PARTIAL SUMS What if we wanted to sum up the terms of this sequence, how many terms would I have to use? 1, 2, 3,... 10,...? Well, we could start creating sums of a finite number
More informationLAYOUT OF THE KEYBOARD
Dr. Charles Hofmann, LaSalle hofmann@lasalle.edu Dr. Roseanne Hofmann, MCCC rhofman@mc3.edu  DISPLAY CONTRAST
More informationMethod To Solve Linear, Polynomial, or Absolute Value Inequalities:
Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with
More informationMATHCOUNTS TOOLBOX Facts, Formulas and Tricks
MATHCOUNTS TOOLBOX Facts, Formulas and Tricks MATHCOUNTS Coaching Kit 40 I. PRIME NUMBERS from 1 through 100 (1 is not prime!) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 II.
More informationSIMPLIFYING ALGEBRAIC FRACTIONS
Tallahassee Community College 5 SIMPLIFYING ALGEBRAIC FRACTIONS In arithmetic, you learned that a fraction is in simplest form if the Greatest Common Factor (GCF) of the numerator and the denominator is
More informationM 1310 4.1 Polynomial Functions 1
M 1310 4.1 Polynomial Functions 1 Polynomial Functions and Their Graphs Definition of a Polynomial Function Let n be a nonnegative integer and let a, a,..., a, a, a n n1 2 1 0, be real numbers, with a
More informationThe GED math test gives you a page of math formulas that
Math Smart 643 The GED Math Formulas The GED math test gives you a page of math formulas that you can use on the test, but just seeing the formulas doesn t do you any good. The important thing is understanding
More informationPreAlgebra  Integers
0.1 PreAlgebra  Integers Objective: Add, Subtract, Multiply and Divide Positive and Negative Numbers. The ability to work comfortably with negative numbers is essential to success in algebra. For this
More informationThis is a square root. The number under the radical is 9. (An asterisk * means multiply.)
Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize
More informationSection 4.1 Rules of Exponents
Section 4.1 Rules of Exponents THE MEANING OF THE EXPONENT The exponent is an abbreviation for repeated multiplication. The repeated number is called a factor. x n means n factors of x. The exponent tells
More informationChapter 7  Roots, Radicals, and Complex Numbers
Math 233  Spring 2009 Chapter 7  Roots, Radicals, and Complex Numbers 7.1 Roots and Radicals 7.1.1 Notation and Terminology In the expression x the is called the radical sign. The expression under the
More informationPreliminary Mathematics
Preliminary Mathematics The purpose of this document is to provide you with a refresher over some topics that will be essential for what we do in this class. We will begin with fractions, decimals, and
More informationUnit 1 Number Sense. In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions.
Unit 1 Number Sense In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions. BLM Three Types of Percent Problems (p L34) is a summary BLM for the material
More informationAnswers to Basic Algebra Review
Answers to Basic Algebra Review 1. 1.1 Follow the sign rules when adding and subtracting: If the numbers have the same sign, add them together and keep the sign. If the numbers have different signs, subtract
More informationPOLYNOMIAL FUNCTIONS
POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a
More informationQuick Reference ebook
This file is distributed FREE OF CHARGE by the publisher Quick Reference Handbooks and the author. Quick Reference ebook Click on Contents or Index in the left panel to locate a topic. The math facts listed
More informationMath 3000 Section 003 Intro to Abstract Math Homework 2
Math 3000 Section 003 Intro to Abstract Math Homework 2 Department of Mathematical and Statistical Sciences University of Colorado Denver, Spring 2012 Solutions (February 13, 2012) Please note that these
More informationGRADES 7, 8, AND 9 BIG IDEAS
Table 1: Strand A: BIG IDEAS: MATH: NUMBER Introduce perfect squares, square roots, and all applications Introduce rational numbers (positive and negative) Introduce the meaning of negative exponents for
More informationWorking with whole numbers
1 CHAPTER 1 Working with whole numbers In this chapter you will revise earlier work on: addition and subtraction without a calculator multiplication and division without a calculator using positive and
More informationPreAlgebra  Order of Operations
0.3 PreAlgebra  Order of Operations Objective: Evaluate expressions using the order of operations, including the use of absolute value. When simplifying expressions it is important that we simplify them
More informationYears after 2000. US Student to Teacher Ratio 0 16.048 1 15.893 2 15.900 3 15.900 4 15.800 5 15.657 6 15.540
To complete this technology assignment, you should already have created a scatter plot for your data on your calculator and/or in Excel. You could do this with any two columns of data, but for demonstration
More informationGuidance paper  The use of calculators in the teaching and learning of mathematics
Guidance paper  The use of calculators in the teaching and learning of mathematics Background and context In mathematics, the calculator can be an effective teaching and learning resource in the primary
More informationSession 6 Number Theory
Key Terms in This Session Session 6 Number Theory Previously Introduced counting numbers factor factor tree prime number New in This Session composite number greatest common factor least common multiple
More informationContinued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
More informationMath Review. for the Quantitative Reasoning Measure of the GRE revised General Test
Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important
More informationExpression. Variable Equation Polynomial Monomial Add. Area. Volume Surface Space Length Width. Probability. Chance Random Likely Possibility Odds
Isosceles Triangle Congruent Leg Side Expression Equation Polynomial Monomial Radical Square Root Check Times Itself Function Relation One Domain Range Area Volume Surface Space Length Width Quantitative
More informationUnit 11 Fractions and decimals
Unit 11 Fractions and decimals Five daily lessons Year 4 Spring term (Key objectives in bold) Unit Objectives Year 4 Use fraction notation. Recognise simple fractions that are Page several parts of a whole;
More informationIntegers, I, is a set of numbers that include positive and negative numbers and zero.
Grade 9 Math Unit 3: Rational Numbers Section 3.1: What is a Rational Number? Integers, I, is a set of numbers that include positive and negative numbers and zero. Imagine a number line These numbers are
More informationSolving Rational Equations
Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,
More informationLesson on Repeating and Terminating Decimals. Dana T. Johnson 6/03 College of William and Mary dtjohn@wm.edu
Lesson on Repeating and Terminating Decimals Dana T. Johnson 6/03 College of William and Mary dtjohn@wm.edu Background: This lesson would be embedded in a unit on the real number system. The set of real
More informationSession 29 Scientific Notation and Laws of Exponents. If you have ever taken a Chemistry class, you may have encountered the following numbers:
Session 9 Scientific Notation and Laws of Exponents If you have ever taken a Chemistry class, you may have encountered the following numbers: There are approximately 60,4,79,00,000,000,000,000 molecules
More informationMESSAGE TO TEACHERS: NOTE TO EDUCATORS:
MESSAGE TO TEACHERS: NOTE TO EDUCATORS: Attached herewith, please find suggested lesson plans for term 1 of MATHEMATICS Grade 11 Please note that these lesson plans are to be used only as a guide and teachers
More information