Contributions of Medium Resolution Satellite Data to Technical Capabilities for RED

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Contributions of Medium Resolution Satellite Data to Technical Capabilities for RED"

Transcription

1 Contributions of Medium Resolution Satellite Data to Technical Capabilities for RED R. DeFries, University of Maryland D. Morton, University of Maryland M. Hansen, University of South Dakota Y. Shimabukuro, INPE

2 GOFC/GOLD RED WORKING GROUP CONCEPTUAL FRAMEWORK

3 Table 1. Utility of optical sensors at multiple resolutions for deforestation monitoring* Sensor resolution Examples of current sensors Utility for monitoring Very high (<5m) IKONOS, QuickBird Validation over small areas of results from coarser resolution analysis High (10-60m) Landsat, SPOT HRV, AWiFs LISS III, CBERS Primary tool to identify deforestation Cost Very high Low/medium (historical) to medium/high (recent) Medium ( m) MODIS, SPOT Vegetation Consistent global annual monitoring to identify large clearings (>10-20 ha) and locate hotspots for further analysis with high resolution Low or free * Data from optical sensors have been widely used for deforestation monitoring. Data from Lidar and Radar (ERS1/2 SAR, JERS-1, ENVISAT-ASAR and ALOS PALSAR) have been demonstrated to be useful in project studies, however, so far are not widely used operationally for tropical deforestation monitoring. (from DeFries et al., in press)

4 Contributions of Medium Resolution Data to RED ADVANTAGES: Free data, less data-intensive analysis Daily coverage helps with cloud problems CAN BE USED FOR: Rapidly identifying major areas of change Real-time deforestation monitoring for large clearings Determining fate of land use following deforestation to improve accuracy of emission estimates

5 Contribution #1: Real-time deforestation monitoring with MODIS data for clearings >25ha

6 Low : Goal to identify deforestation locations from MODIS data that is: -FAST: as automated # Sinop as possible -EASY: minimizes data storage and processing time -ACCURATE: minimizes false positives # Nova Mutum 10 Kilometers Landsat May 11, 2004 MODIS July, Kilometers Legend deforestation identified by MODIS NDVI 16 day composite through July 6 Value High : 9997 Low : Kilometers Legend NDVI 16 day composite through July 6 Value High : 9997

7 Field Validation in central Mato Grosso July, 2004 Goal to identify deforestation locations from MODIS data that is: # Sinop -FAST: as automated as possible -EASY: minimizes data storage and processing time -ACCURATE: minimizes false Nova Mutum positives # 200 Kilometers Legend deforestation identified by MODIS NDVI 16 day composite through July 6 Value High : 9997 Low : -3000

8 HIGH ACCURACY IN RAPID IDENTIFICATION OF LARGE DEFORESTATION EVENTS WITH MODIS DATA USING VERY SIMPLE METHODS Field Validation of Deforestation Clusters % Number of Clusters % 80% 70% 60% 50% 40% 30% 20% 10% Percent Observed # Correct % Correct to to to to 408 0% Cluster Size (Pixels) BUT NOT A SUBSTITUTE FOR PRECISE ESTIMATES OF AREA DEFORESTED FROM LANDSAT-LIKE ANALYSES (Morton et al., 2005, Earth Interactions)

9 50% of deforestation area in Brazil occurred in annual clearings >100ha Proportion of number of deforested polygons and deforested area in small (<100 ha), medium ( ha) and large (>1000 ha) by state for Data from State Deforested area ( ) (km2) a Percent of number of deforested polygons in size category Percent of deforested area in size category small medium large small medium large Acre < Amapá < Amazonas < Maranhão b < Mato Grosso < Pará < Rondônia < Roraima < Tocantins < Total < a from b 2001 data excluded from analysis of deforestation polygons because they contain spurious large clearings DATA FROM Y. SHIMABUKURO, INPE

10 (Morton et al., 2005, Earth Interactions) Annual Deforestation derived from MODIS with a few days work

11 Contribution #2: Capability to identify major areas of change 2001 MODIS % tree cover at 500m resolution Tree cover 0% 100%

12 Calculate annual metrics using 23 MODIS 16-day composites (MODIS Vegetation product MOD13Q1, 250 m res.) per year 23 MOD13 composites per year, with bands Red, NIR, NDVI 102 Annual Metrics Annual metrics (total 102): Min, max, mean, median of all Red, NIR and NDVI bands throughout one year Red/NIR/NDVI value at the annual min, max, median Red/NIR/NDVI Min, max, mean, median of the four darkest and four brightest values Min, max, mean, median of Red/NIR/NDVI at the four brightest and four darkest values of Red/NIR/NDVI

13 Procedure Ikonos scenes Tree / non-tree classification Aggregate to percent tree cover at Landsat resolution Classify Landsat scenes for percent tree cover Aggregate Landsat percent tree cover to MODIS resolution Classify Annual MODIS Metrics for percent tree cover for each year Analyze for changes from year to year

14 DEFORESTATION DYNAMICS IN THE SOUTHERN AMAZON DERIVED FROM AVHRR 8KM DATA 800 km Early 1980s Tree cover 0% Circa % (From DeFries et al., PNAS, 2002: Hansen and DeFries, Ecosystems, 2004) Circa 2000

15 Stratum 1 no change Stratum 2 Stratum 3 Stratum 4 intense change 500m MODIS % tree cover from multiple years to stratify change areas from 2000 to present Humid tropical forest biome Landsat samples

16 Matt Hansen, South Dakota State University

17 EXAMPLE OF REGIONAL 250m MODIS PERCENT TREE COVER PERCENT WOODY COVER ESTIMATED FOR EACH YEAR USING HIGH RESOLUTION TRAINING DATA AND MODIS- DERIVED METRICS IN REGRESSION TREE

18 Contribution #3: Determining fate of land use following deforestation PRIMARY SECONDARY Pasture Forest Cropland NDVI x 10, Time Series, Quality flag adjusted 2003 Conversion Agriculture Forest Pasture B1 B4 B7 B10 B13 B16 B19 B22 B25 B28 B31 B34 B37 B40 B43 B46 B49 B52 B55 B58 B61 B64 B67 B70 B73 B76 B79 B82 16-day Periods ( to ) Area deforested (km2) Small (<25 ha) Pasture yr 2+ Pasture yr 1 Not in Production Crop yr 2+ Crop yr 1 Soy Price Brazilian Reais (R$) per 60 kg Soy (from Morton et al, 2006) Year of Deforestation 0

19 FATE OF DEFORESTATION IN MATO GROSSO : WHO ARE THE ACTORS? Cropland Expansion Deforestation Forest Not in Production 3,609 km 2 Cerrado Crop 5,770 km 2 Pasture Crop 5,930 km 2 Forest Crop 4,670-5,463 km 2 Forest Pasture 23,463 km 2 Forest Small (<25ha) 5,562 km 2 (Morton et al., PNAS, 2006)

20 Combustion completeness of deforestation fires is function of land management FOREST TO PASTURE FOREST TO CROPLAND FOREST TO REGROWTH PASTURE TO CROPLAND

21 DECAF MODEL TO ESTIMATE GROSS CARBON FLUXES FROM DEFORESTATION AND MAINTENANCE FIRES LAND USE FOLLOWING DEFORESTATION FROM MODIS MODIS ACTIVE FIRES CASA LANDSAT-BASED PRODES DEFORESTATION BURN SCARS FROM PASTURE MAINTENANCE FIRES C EMISSIONS FROM FIRE C t = A t A=burned area E=combustion completeness M=mortality rate D=detritus B=biomass F=fuelwood d b E d D t,d + E b M b B t,b + E F F

22 Percent of Clearings Carbon emissions from deforestation fires are function of land use type following deforestation Maximum Fire Days Crop Pasture NIP Conversions of forest to pasture and not yet in production (NYIP) exhibit lower-frequency fires than cropland conversions Percent contribution of trajectories by area for Forest clearing for Forest pastureclearing for cropland pasture maintenance savanna to cropland forest to cropland forest to pasture forest to regrowth Percent contribution of trajectories to emissions for Pasture Secondary maintenance clearing fires of pasture to cropland

23 Conclusions Price and ease of medium resolution data attractive for operational use Operational real-time monitoring system using MODIS data has been demonstrated Analysis of medium resolution data can help zoom to areas of major change Phenological signal helps determine combustion completeness and land use following deforestation Medium resolution data is complement not substitute to high resolution data

24

INPE s Brazilian Amazon Deforestation and Forest Degradation Program. Dalton M. Valeriano (dalton@dsr.inpe.br) Program Manager

INPE s Brazilian Amazon Deforestation and Forest Degradation Program. Dalton M. Valeriano (dalton@dsr.inpe.br) Program Manager INPE s Brazilian Amazon Deforestation and Forest Degradation Program Dalton M. Valeriano (dalton@dsr.inpe.br) Program Manager Summary PRODES Yearly deforestation inventory DETER - Daily detection of deforestation

More information

Rapid Assessment of Annual Deforestation in the Brazilian Amazon Using MODIS Data

Rapid Assessment of Annual Deforestation in the Brazilian Amazon Using MODIS Data Earth Interactions Volume 9 (2005) Paper No. 8 Page 1 Copyright 2005, Paper 09-008; 8,957 words, 5 Figures, 0 Animations, 7 Tables. http://earthinteractions.org Rapid Assessment of Annual Deforestation

More information

Summary. Deforestation report for the Brazilian Amazon (February 2015) SAD

Summary. Deforestation report for the Brazilian Amazon (February 2015) SAD Summary In February 2015, more than half (59%) of the forest area of the Brazilian Amazon was covered by clouds, a coverage lower than in February 2014 (69%). The States with the highest cloud cover were

More information

Using Remote Sensing to Monitor Soil Carbon Sequestration

Using Remote Sensing to Monitor Soil Carbon Sequestration Using Remote Sensing to Monitor Soil Carbon Sequestration E. Raymond Hunt, Jr. USDA-ARS Hydrology and Remote Sensing Beltsville Agricultural Research Center Beltsville, Maryland Introduction and Overview

More information

Innovation and new land monitoring services for climate change, forests and agroforestry

Innovation and new land monitoring services for climate change, forests and agroforestry Innovation and new land monitoring services for climate change, forests and agroforestry Martin Herold Wageningen University Center for Geoinformation Current distribution of aboveground biomass Terrestrial

More information

A land cover map for the Brazilian Legal Amazon using SPOT-4 VEGETATION data and machine learning algorithms

A land cover map for the Brazilian Legal Amazon using SPOT-4 VEGETATION data and machine learning algorithms A land cover map for the Brazilian Legal Amazon using SPOT-4 VEGETATION data and machine learning algorithms João Manuel de Brito Carreiras 1 José Miguel Cardoso Pereira 1 Manuel Lameiras Campagnolo 2

More information

Supporting Online Material for Achard (RE 1070656) scheduled for 8/9/02 issue of Science

Supporting Online Material for Achard (RE 1070656) scheduled for 8/9/02 issue of Science Supporting Online Material for Achard (RE 1070656) scheduled for 8/9/02 issue of Science Materials and Methods Overview Forest cover change is calculated using a sample of 102 observations distributed

More information

Operational Space- Based Crop Mapping Protocols at AAFC A. Davidson, H. McNairn and T. Fisette.

Operational Space- Based Crop Mapping Protocols at AAFC A. Davidson, H. McNairn and T. Fisette. Operational Space- Based Crop Mapping Protocols at AAFC A. Davidson, H. McNairn and T. Fisette. Science & Technology Branch. Agriculture and Agri-Food Canada. 1. Introduction Space-Based Crop Mapping at

More information

Review for Introduction to Remote Sensing: Science Concepts and Technology

Review for Introduction to Remote Sensing: Science Concepts and Technology Review for Introduction to Remote Sensing: Science Concepts and Technology Ann Johnson Associate Director ann@baremt.com Funded by National Science Foundation Advanced Technological Education program [DUE

More information

TerraAmazon - The Amazon Deforestation Monitoring System - Karine Reis Ferreira

TerraAmazon - The Amazon Deforestation Monitoring System - Karine Reis Ferreira TerraAmazon - The Amazon Deforestation Monitoring System - Karine Reis Ferreira GEOSS Users & Architecture Workshop XXIV: Water Security & Governance - Accra Ghana / October 2008 INPE National Institute

More information

Report of the technical assessment of the proposed forest reference emission level of Brazil submitted in 2014

Report of the technical assessment of the proposed forest reference emission level of Brazil submitted in 2014 United Nations FCCC/TAR/2014/BRA Distr.: General 1 December 2014 English only Report of the technical assessment of the proposed forest reference emission level of Brazil submitted in 2014 Summary This

More information

Monitoring forest emissions

Monitoring forest emissions WORKING PAPER Monitoring forest emissions A review of methods Sheila Wertz-Kanounnikoff CIFOR Working Paper No. 39 Monitoring forest emissions A review of methods Sheila Wertz-Kanounnikoff November 2008

More information

Methods for Monitoring Forest and Land Cover Changes and Unchanged Areas from Long Time Series

Methods for Monitoring Forest and Land Cover Changes and Unchanged Areas from Long Time Series Methods for Monitoring Forest and Land Cover Changes and Unchanged Areas from Long Time Series Project using historical satellite data from SACCESS (Swedish National Satellite Data Archive) for developing

More information

SEMI-AUTOMATED CLOUD/SHADOW REMOVAL AND LAND COVER CHANGE DETECTION USING SATELLITE IMAGERY

SEMI-AUTOMATED CLOUD/SHADOW REMOVAL AND LAND COVER CHANGE DETECTION USING SATELLITE IMAGERY SEMI-AUTOMATED CLOUD/SHADOW REMOVAL AND LAND COVER CHANGE DETECTION USING SATELLITE IMAGERY A. K. Sah a, *, B. P. Sah a, K. Honji a, N. Kubo a, S. Senthil a a PASCO Corporation, 1-1-2 Higashiyama, Meguro-ku,

More information

VCS REDD Methodology Module. Methods for monitoring forest cover changes in REDD project activities

VCS REDD Methodology Module. Methods for monitoring forest cover changes in REDD project activities 1 VCS REDD Methodology Module Methods for monitoring forest cover changes in REDD project activities Version 1.0 May 2009 I. SCOPE, APPLICABILITY, DATA REQUIREMENT AND OUTPUT PARAMETERS Scope This module

More information

Evaluation of Wildfire Duration Time Over Asia using MTSAT and MODIS

Evaluation of Wildfire Duration Time Over Asia using MTSAT and MODIS Evaluation of Wildfire Duration Time Over Asia using MTSAT and MODIS Wataru Takeuchi * and Yusuke Matsumura Institute of Industrial Science, University of Tokyo, Japan Ce-504, 6-1, Komaba 4-chome, Meguro,

More information

APPLICATION OF MULTITEMPORAL LANDSAT DATA TO MAP AND MONITOR LAND COVER AND LAND USE CHANGE IN THE CHESAPEAKE BAY WATERSHED

APPLICATION OF MULTITEMPORAL LANDSAT DATA TO MAP AND MONITOR LAND COVER AND LAND USE CHANGE IN THE CHESAPEAKE BAY WATERSHED APPLICATION OF MULTITEMPORAL LANDSAT DATA TO MAP AND MONITOR LAND COVER AND LAND USE CHANGE IN THE CHESAPEAKE BAY WATERSHED S. J. GOETZ Woods Hole Research Center Woods Hole, Massachusetts 054-096 USA

More information

Global environmental information Examples of EIS Data sets and applications

Global environmental information Examples of EIS Data sets and applications METIER Graduate Training Course n 2 Montpellier - february 2007 Information Management in Environmental Sciences Global environmental information Examples of EIS Data sets and applications Global datasets

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/328/5983/1275/dc1 Supporting Online Material for The Incidence of Fire in Amazonian Forests with Implications for REDD Luiz E. O. C. Aragão* and Yosio E. Shimabukuro

More information

Overview. 1. Types of land dynamics 2. Methods for analyzing multi-temporal remote sensing data:

Overview. 1. Types of land dynamics 2. Methods for analyzing multi-temporal remote sensing data: Vorlesung Allgemeine Fernerkundung, Prof. Dr. C. Schmullius Change detection and time series analysis Lecture by Martin Herold Wageningen University Geoinformatik & Fernerkundung, Friedrich-Schiller-Universität

More information

UK Global Forest Monitoring Network: Forest Carbon Tracking

UK Global Forest Monitoring Network: Forest Carbon Tracking UK Global Forest Monitoring Network: Forest Carbon Tracking Andy Shaw Director, Knowledge Exchange, NCEO Head of Strategic Business Development, ISIC GMES/GEO Forum, ISIC, 2011 What is happening to the

More information

Land Use/Land Cover Map of the Central Facility of ARM in the Southern Great Plains Site Using DOE s Multi-Spectral Thermal Imager Satellite Images

Land Use/Land Cover Map of the Central Facility of ARM in the Southern Great Plains Site Using DOE s Multi-Spectral Thermal Imager Satellite Images Land Use/Land Cover Map of the Central Facility of ARM in the Southern Great Plains Site Using DOE s Multi-Spectral Thermal Imager Satellite Images S. E. Báez Cazull Pre-Service Teacher Program University

More information

Moving Ahead with REDD

Moving Ahead with REDD Moving Ahead with REDD Issues, Options and Implications Edited by Arild Angelsen Disclaimer Any views expressed in this book are those of the authors. They do not necessarily represent the views of the

More information

National Institute for Space Research (INPE) Earth Science System Center (CCST)

National Institute for Space Research (INPE) Earth Science System Center (CCST) National Institute for Space Research (INPE) Earth Science System Center (CCST) Lincoln Muniz Alves lincoln.alves@inpe.br Acknowledgment: Ana Paula Aguiar, Milton Kampel, Simone Costa, Nelson Ferreira,

More information

Quantifying the impact of cloud obscuration on remote sensing of active fires in the Brazilian Amazon

Quantifying the impact of cloud obscuration on remote sensing of active fires in the Brazilian Amazon Available online at www.sciencedirect.com Remote Sensing of Environment 112 (2008) 456 470 www.elsevier.com/locate/rse Quantifying the impact of cloud obscuration on remote sensing of active fires in the

More information

Remote Sensing of Environment

Remote Sensing of Environment Remote Sensing of Environment 115 (2011) 1706 1720 Contents lists available at ScienceDirect Remote Sensing of Environment journal homepage: www.elsevier.com/locate/rse Mapping canopy damage from understory

More information

Resolutions of Remote Sensing

Resolutions of Remote Sensing Resolutions of Remote Sensing 1. Spatial (what area and how detailed) 2. Spectral (what colors bands) 3. Temporal (time of day/season/year) 4. Radiometric (color depth) Spatial Resolution describes how

More information

Monitoring a Changing Environment with Synthetic Aperture Radar. Alaska Satellite Facility National Park Service Don Atwood

Monitoring a Changing Environment with Synthetic Aperture Radar. Alaska Satellite Facility National Park Service Don Atwood Monitoring a Changing Environment with Synthetic Aperture Radar Don Atwood Alaska Satellite Facility 1 Entering the SAR Age 2 SAR Satellites RADARSAT-1 Launched 1995 by CSA 5.6 cm (C-Band) HH Polarization

More information

Improving global data on forest area & change Global Forest Remote Sensing Survey

Improving global data on forest area & change Global Forest Remote Sensing Survey Improving global data on forest area & change Global Forest Remote Sensing Survey work by FAO and partners - Adam Gerrand, E. Lindquist, R. D Annunzio, M. Wilkie, FAO, - F. Achard et al. TREES team at

More information

National and Sub-national Carbon monitoring tools developed at the WHRC

National and Sub-national Carbon monitoring tools developed at the WHRC National and Sub-national Carbon monitoring tools developed at the WHRC Nadine Laporte Woods Hole Research Center A. Baccini, W. Walker, S. Goetz, M. Sun, J. Kellndorfer Kigali, 20 th June 2011 Why measuring

More information

INPE Spatial Data Infrastructure for Big Spatiotemporal Data Sets. Karine Reis Ferreira (INPE-Brazil)

INPE Spatial Data Infrastructure for Big Spatiotemporal Data Sets. Karine Reis Ferreira (INPE-Brazil) INPE Spatial Data Infrastructure for Big Spatiotemporal Data Sets Karine Reis Ferreira (INPE-Brazil) INPE (Brazil) and Big Data I work at INPE (Brazilian National Institute for Space Research). Main gate

More information

Using Remote Sensing Imagery to Evaluate Post-Wildfire Damage in Southern California

Using Remote Sensing Imagery to Evaluate Post-Wildfire Damage in Southern California Graham Emde GEOG 3230 Advanced Remote Sensing February 22, 2013 Lab #1 Using Remote Sensing Imagery to Evaluate Post-Wildfire Damage in Southern California Introduction Wildfires are a common disturbance

More information

Research on Soil Moisture and Evapotranspiration using Remote Sensing

Research on Soil Moisture and Evapotranspiration using Remote Sensing Research on Soil Moisture and Evapotranspiration using Remote Sensing Prof. dr. hab Katarzyna Dabrowska Zielinska Remote Sensing Center Institute of Geodesy and Cartography 00-950 Warszawa Jasna 2/4 Field

More information

Preface. Ko Ko Lwin Division of Spatial Information Science University of Tsukuba 2008

Preface. Ko Ko Lwin Division of Spatial Information Science University of Tsukuba 2008 1 Preface Remote Sensing data is one of the primary data sources in GIS analysis. The objective of this material is to provide fundamentals of Remote Sensing technology and its applications in Geographical

More information

REDD+ for the Guiana Shield

REDD+ for the Guiana Shield REDD+ for the Guiana Shield Technical and Regional Platform for the Development of REDD+ in the Guiana Shield Project Owner: Office National des Forêts (ONF) Partners: ONFI / GFC and OCC (Guyana) / IEF-AP

More information

REPORT: MAPPING AND MONITORING OF THE SOY MORATORIUM.

REPORT: MAPPING AND MONITORING OF THE SOY MORATORIUM. REPORT: MAPPING AND MONITORING OF THE SOY MORATORIUM. MARCH, 2008. SUMMARY To carry out the Soy Moratorium Mapping and Monitoring in the Amazon Biome, ABIOVE - Brazilian Vegetable Oilseed Industries Association,

More information

Title: Mapping Canopy Damage from Understory Fires in Amazon Forests Using Annual Time Series of Landsat and MODIS Data

Title: Mapping Canopy Damage from Understory Fires in Amazon Forests Using Annual Time Series of Landsat and MODIS Data Title: Mapping Canopy Damage from Understory Fires in Amazon Forests Using Annual Time Series of Landsat and MODIS Data Authors: Douglas C. Morton a,*, Ruth S. DeFries b,c, Jyoteshwar Nagol a, Carlos M.

More information

Moderate- and high-resolution Earth Observation data based forest and agriculture monitoring in Russia using VEGA Web-Service

Moderate- and high-resolution Earth Observation data based forest and agriculture monitoring in Russia using VEGA Web-Service Moderate- and high-resolution Earth Observation data based forest and agriculture monitoring in Russia using VEGA Web-Service Sergey BARTALEV and Evgeny LOUPIAN Space Research Institute, Russian Academy

More information

Let s SAR: Mapping and monitoring of land cover change with ALOS/ALOS-2 L-band data

Let s SAR: Mapping and monitoring of land cover change with ALOS/ALOS-2 L-band data Let s SAR: Mapping and monitoring of land cover change with ALOS/ALOS-2 L-band data Rajesh Bahadur THAPA, Masanobu SHIMADA, Takeshi MOTOHKA, Manabu WATANABE and Shinichi rajesh.thapa@jaxa.jp; thaparb@gmail.com

More information

The 250 m global land cover change product from the Moderate Resolution Imaging Spectroradiometer of NASA s Earth Observing System

The 250 m global land cover change product from the Moderate Resolution Imaging Spectroradiometer of NASA s Earth Observing System int. j. remote sensing, 2000, vol. 21, no. 6 & 7, 1433 1460 The 250 m global land cover change product from the Moderate Resolution Imaging Spectroradiometer of NASA s Earth Observing System X. ZHAN, R.

More information

Brazil s Response to Lower Commodity Prices Will Infrastructure Improvements Support Further Expansion?

Brazil s Response to Lower Commodity Prices Will Infrastructure Improvements Support Further Expansion? Brazil s Response to Lower Commodity Prices Will Infrastructure Improvements Support Further Expansion? By Dr. Michael Cordonnier www.soybeansandcorn.com soycorn@comcast.net 630-325-0192 (Chicago) Overview

More information

Monitoring Overview with a Focus on Land Use Sustainability Metrics

Monitoring Overview with a Focus on Land Use Sustainability Metrics Monitoring Overview with a Focus on Land Use Sustainability Metrics Canadian Roundtable for Sustainable Crops. Nov 26, 2014 Agriclimate, Geomatics, and Earth Observation Division (ACGEO). Presentation

More information

Data Processing Flow Chart

Data Processing Flow Chart Legend Start V1 V2 V3 Completed Version 2 Completion date Data Processing Flow Chart Data: Download a) AVHRR: 1981-1999 b) MODIS:2000-2010 c) SPOT : 1998-2002 No Progressing Started Did not start 03/12/12

More information

Forest Carbon Monitoring: A Review of Selected Remote Sensing and Carbon Measurement Tools for REDD+

Forest Carbon Monitoring: A Review of Selected Remote Sensing and Carbon Measurement Tools for REDD+ Forest Carbon Monitoring: A Review of Selected Remote Sensing and Carbon Measurement Tools for REDD+ October 2011 Revised July 2012 United States Department of Agriculture Forest Service RSAC-10018-RPT1

More information

Mapping Forest-Fire Damage with Envisat

Mapping Forest-Fire Damage with Envisat Mapping Forest-Fire Damage with Envisat Mapping Forest-Fire Damage Federico González-Alonso, S. Merino-de-Miguel, S. García-Gigorro, A. Roldán-Zamarrón & J.M. Cuevas Remote Sensing Laboratory, INIA, Ministry

More information

A remote sensing instrument collects information about an object or phenomenon within the

A remote sensing instrument collects information about an object or phenomenon within the Satellite Remote Sensing GE 4150- Natural Hazards Some slides taken from Ann Maclean: Introduction to Digital Image Processing Remote Sensing the art, science, and technology of obtaining reliable information

More information

ANALYSIS OF FOREST CHANGE IN FIRE DAMAGE AREA USING SATELLITE IMAGES

ANALYSIS OF FOREST CHANGE IN FIRE DAMAGE AREA USING SATELLITE IMAGES ANALYSIS OF FOREST CHANGE IN FIRE DAMAGE AREA USING SATELLITE IMAGES Joon Mook Kang, Professor Joon Kyu Park, Ph.D Min Gyu Kim, Ph.D._Candidate Dept of Civil Engineering, Chungnam National University 220

More information

MASS PROCESSING OF REMOTE SENSING DATA FOR ENVIRONMENTAL EVALUATION IN EUROPE

MASS PROCESSING OF REMOTE SENSING DATA FOR ENVIRONMENTAL EVALUATION IN EUROPE MASS PROCESSING OF REMOTE SENSING DATA FOR ENVIRONMENTAL EVALUATION IN EUROPE Lic. Adrián González Applications Research Earth Science Conference 2014 29.07.2014 Earth Science San Conference Francisco

More information

Automatic land-cover map production of agricultural areas using supervised classification of SPOT4(Take5) and Landsat-8 image time series.

Automatic land-cover map production of agricultural areas using supervised classification of SPOT4(Take5) and Landsat-8 image time series. Automatic land-cover map production of agricultural areas using supervised classification of SPOT4(Take5) and Landsat-8 image time series. Jordi Inglada 2014/11/18 SPOT4/Take5 User Workshop 2014/11/18

More information

MODIS IMAGES RESTORATION FOR VNIR BANDS ON FIRE SMOKE AFFECTED AREA

MODIS IMAGES RESTORATION FOR VNIR BANDS ON FIRE SMOKE AFFECTED AREA MODIS IMAGES RESTORATION FOR VNIR BANDS ON FIRE SMOKE AFFECTED AREA Li-Yu Chang and Chi-Farn Chen Center for Space and Remote Sensing Research, National Central University, No. 300, Zhongda Rd., Zhongli

More information

Tropical Deforestation and Habitat Fragmentation in the Amazon: Satellite Data from 1978 to 1988

Tropical Deforestation and Habitat Fragmentation in the Amazon: Satellite Data from 1978 to 1988 Reproduced, with permission, from: Skole, D., and C. Tucker. 1993. Tropical deforestation and habitat fragmentation in the Amazon: Satellite data from 1978 to 1988. Science 260: 1905-09. Tropical Deforestation

More information

.FOR. Forest inventory and monitoring quality

.FOR. Forest inventory and monitoring quality .FOR Forest inventory and monitoring quality FOR : the asset to manage your forest patrimony 2 1..FOR Presentation.FOR is an association of Belgian companies, created in 2010 and supported by a university

More information

Technical paper. Summary

Technical paper. Summary UNITED NATIONS Distr. GENERAL FCCC/TP/2009/1 31 May 2009 ENGLISH ONLY Cost of implementing methodologies and monitoring systems relating to estimates of emissions from deforestation and forest degradation,

More information

The use of Satellite Remote Sensing for Offshore Environmental Benchmarking

The use of Satellite Remote Sensing for Offshore Environmental Benchmarking The use of Satellite Remote Sensing for Offshore Environmental Benchmarking Michael King Fugro NPA Limited Fugro NPA (Formerly Nigel Press Associates) World leading Satellite Remote Sensing & Geoscience

More information

Mapping regional land cover with MODIS data for biological conservation: Examples from the Greater Yellowstone Ecosystem, USA and Pará State, Brazil

Mapping regional land cover with MODIS data for biological conservation: Examples from the Greater Yellowstone Ecosystem, USA and Pará State, Brazil Remote Sensing of Environment 92 (2004) 67 83 www.elsevier.com/locate/rse Mapping regional land cover with MODIS data for biological conservation: Examples from the Greater Yellowstone Ecosystem, USA and

More information

Policy Opportunities for Human Dimensions Science: The Challenge of Frontier Governance

Policy Opportunities for Human Dimensions Science: The Challenge of Frontier Governance Policy Opportunities for Human Dimensions Science: The Challenge of Frontier Governance How can we avoid the typical sequence of resource depletion on the expanding frontier? Amazon Jobs/Income Most tropical

More information

Spectral Response for DigitalGlobe Earth Imaging Instruments

Spectral Response for DigitalGlobe Earth Imaging Instruments Spectral Response for DigitalGlobe Earth Imaging Instruments IKONOS The IKONOS satellite carries a high resolution panchromatic band covering most of the silicon response and four lower resolution spectral

More information

Active Fire Monitoring: Product Guide

Active Fire Monitoring: Product Guide Active Fire Monitoring: Product Guide Doc.No. Issue : : EUM/TSS/MAN/15/801989 v1c EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49 6151 807 555 Date : 14 April 2015 http://www.eumetsat.int

More information

ArcGIS Agricultural Land Use Maps from the Mississippi Cropland Data Layer

ArcGIS Agricultural Land Use Maps from the Mississippi Cropland Data Layer ArcGIS Agricultural Land Use Maps from the Mississippi Cropland Data Layer Fred L. Shore, Ph.D. Mississippi Department of Agriculture and Commerce Jackson, MS, USA fred_shore@nass.usda.gov Rick Mueller

More information

SAMPLE MIDTERM QUESTIONS

SAMPLE MIDTERM QUESTIONS Geography 309 Sample MidTerm Questions Page 1 SAMPLE MIDTERM QUESTIONS Textbook Questions Chapter 1 Questions 4, 5, 6, Chapter 2 Questions 4, 7, 10 Chapter 4 Questions 8, 9 Chapter 10 Questions 1, 4, 7

More information

The Big Data Lab for Interdisciplinary SpatiallyEnabled Science (BLISS)

The Big Data Lab for Interdisciplinary SpatiallyEnabled Science (BLISS) The Big Data Lab for Interdisciplinary SpatiallyEnabled Science (BLISS) Goal Setting up a large database of time series of changes in land use for most of the agricultural areas of the planet Agenda The

More information

Time and Trees on the Map Land Cover Database 4

Time and Trees on the Map Land Cover Database 4 Time and Trees on the Map Land Cover Database 4 Key steps producing LCDB v3.0, v3.3 & v4.0 What s planned in v4.1 Applications using LCDB Data quality feedback Research results Satellite data processing

More information

Information Contents of High Resolution Satellite Images

Information Contents of High Resolution Satellite Images Information Contents of High Resolution Satellite Images H. Topan, G. Büyüksalih Zonguldak Karelmas University K. Jacobsen University of Hannover, Germany Keywords: satellite images, mapping, resolution,

More information

AAFC Medium-Resolution EO Data Activities for Agricultural Risk Assessment

AAFC Medium-Resolution EO Data Activities for Agricultural Risk Assessment AAFC Medium-Resolution EO Data Activities for Agricultural Risk Assessment North American Drought Monitor (NADM) Ottawa, Ontario, Canada. October 15-17 2008. A. Davidson 1, A. Howard 1,2, K. Sun 1, M.

More information

Who is responsible for the destruction of the Amazon rainforest?

Who is responsible for the destruction of the Amazon rainforest? The dictionary defines deforestation as the removal of a forest where the land is then used for a non-forest use. In recent years, deforestation has become a significant issue with the loss of large areas

More information

Deforestation and climate change

Deforestation and climate change Deforestation and climate CONTENTS Deforestation in protected areas 4 Methodology 5 Assessment results 8 ARPA s effect 11 Influence from management objective and use 14 Influence of the scope of administration

More information

The Idiots Guide to GIS and Remote Sensing

The Idiots Guide to GIS and Remote Sensing The Idiots Guide to GIS and Remote Sensing 1. Picking the right imagery 1 2. Accessing imagery 1 3. Processing steps 1 a. Geocorrection 2 b. Processing Landsat images layerstacking 4 4. Landcover classification

More information

A new SPOT4-VEGETATION derived land cover map of Northern Eurasia

A new SPOT4-VEGETATION derived land cover map of Northern Eurasia INT. J. REMOTE SENSING, 2003, VOL. 24, NO. 9, 1977 1982 A new SPOT4-VEGETATION derived land cover map of Northern Eurasia S. A. BARTALEV, A. S. BELWARD Institute for Environment and Sustainability, EC

More information

SPOT Satellite Earth Observation System Presentation to the JACIE Civil Commercial Imagery Evaluation Workshop March 2007

SPOT Satellite Earth Observation System Presentation to the JACIE Civil Commercial Imagery Evaluation Workshop March 2007 SPOT Satellite Earth Observation System Presentation to the JACIE Civil Commercial Imagery Evaluation Workshop March 2007 Topics Presented Quick summary of system characteristics Formosat-2 Satellite Archive

More information

The use of Earth Observation technology to support the implementation of the Ramsar Convention

The use of Earth Observation technology to support the implementation of the Ramsar Convention Wetlands: water, life, and culture 8th Meeting of the Conference of the Contracting Parties to the Convention on Wetlands (Ramsar, Iran, 1971) Valencia, Spain, 18-26 November 2002 COP8 DOC. 35 Information

More information

Environmental Remote Sensing GEOG 2021

Environmental Remote Sensing GEOG 2021 Environmental Remote Sensing GEOG 2021 Lecture 4 Image classification 2 Purpose categorising data data abstraction / simplification data interpretation mapping for land cover mapping use land cover class

More information

IMAGINES_VALIDATIONSITESNETWORK ISSUE 1.00. EC Proposal Reference N FP7-311766. Name of lead partner for this deliverable: EOLAB

IMAGINES_VALIDATIONSITESNETWORK ISSUE 1.00. EC Proposal Reference N FP7-311766. Name of lead partner for this deliverable: EOLAB Date Issued: 26.03.2014 Issue: I1.00 IMPLEMENTING MULTI-SCALE AGRICULTURAL INDICATORS EXPLOITING SENTINELS RECOMMENDATIONS FOR SETTING-UP A NETWORK OF SITES FOR THE VALIDATION OF COPERNICUS GLOBAL LAND

More information

Industrial area with Hangar. Land area: 90.000 sqm Hangar area: 5.000 sqm Office area: 250 sqm Brazil Espírito Santo Serra Highway BR 101 North

Industrial area with Hangar. Land area: 90.000 sqm Hangar area: 5.000 sqm Office area: 250 sqm Brazil Espírito Santo Serra Highway BR 101 North Industrial area with Hangar Land area: 90.000 sqm Hangar area: 5.000 sqm Office area: 250 sqm Brazil Espírito Santo Serra Highway BR 101 North Property Location Brasil, Espírito Santo, Serra - Highway

More information

Global land cover mapping: conceptual and historical background

Global land cover mapping: conceptual and historical background Space Research Institute Russian Academy of Sciences Global land cover mapping: conceptual and historical background Sergey BARTALEV with acknowledged contribution from: Etienne Bartholomé and Philippe

More information

Remote sensing and GIS applications in coastal zone monitoring

Remote sensing and GIS applications in coastal zone monitoring Remote sensing and GIS applications in coastal zone monitoring T. Alexandridis, C. Topaloglou, S. Monachou, G.Tsakoumis, A. Dimitrakos, D. Stavridou Lab of Remote Sensing and GIS School of Agriculture

More information

MODIS direct broadcast data for enhanced forecasting and real-time environmental decision making. The role of Remote Sensing in Wildfire Management

MODIS direct broadcast data for enhanced forecasting and real-time environmental decision making. The role of Remote Sensing in Wildfire Management MODIS direct broadcast data for enhanced forecasting and real-time environmental decision making The role of Remote Sensing in Wildfire Management Natural Disasters Natural disasters are continuously increasing

More information

Analysis of MODIS leaf area index product over soybean areas in Rio Grande do Sul State, Brazil

Analysis of MODIS leaf area index product over soybean areas in Rio Grande do Sul State, Brazil Analysis of MODIS leaf area index product over soybean areas in Rio Grande do Sul State, Brazil Rodrigo Rizzi 1 Bernardo Friedrich Theodor Rudorff 1 Yosio Edemir Shimabukuro 1 1 Instituto Nacional de Pesquisas

More information

JACIE Science Applications of High Resolution Imagery at the USGS EROS Data Center

JACIE Science Applications of High Resolution Imagery at the USGS EROS Data Center JACIE Science Applications of High Resolution Imagery at the USGS EROS Data Center November 8-10, 2004 U.S. Department of the Interior U.S. Geological Survey Michael Coan, SAIC USGS EROS Data Center coan@usgs.gov

More information

Brazil February Production Update and Weekly Crop Condition Report

Brazil February Production Update and Weekly Crop Condition Report February 27, 2014 Informa Economics South American Crop Reporting Service Brazil February Production Update and Weekly Crop Condition Report The Informa Economics staff in Brazil conducted its survey between

More information

Monitoring alterations in vegetation cover and land use in the Upper Paraguay River Basin Brazilian Portion Period of Analysis: 2002 to 2008

Monitoring alterations in vegetation cover and land use in the Upper Paraguay River Basin Brazilian Portion Period of Analysis: 2002 to 2008 Monitoring alterations in vegetation cover and land use in the Upper Paraguay River Basin Brazilian Portion Period of Analysis: 2002 to 2008 Introduction The Upper Paraguay River Basin encompasses international

More information

River Flood Damage Assessment using IKONOS images, Segmentation Algorithms & Flood Simulation Models

River Flood Damage Assessment using IKONOS images, Segmentation Algorithms & Flood Simulation Models River Flood Damage Assessment using IKONOS images, Segmentation Algorithms & Flood Simulation Models Steven M. de Jong & Raymond Sluiter Utrecht University Corné van der Sande Netherlands Earth Observation

More information

WATER BODY EXTRACTION FROM MULTI SPECTRAL IMAGE BY SPECTRAL PATTERN ANALYSIS

WATER BODY EXTRACTION FROM MULTI SPECTRAL IMAGE BY SPECTRAL PATTERN ANALYSIS WATER BODY EXTRACTION FROM MULTI SPECTRAL IMAGE BY SPECTRAL PATTERN ANALYSIS Nguyen Dinh Duong Department of Environmental Information Study and Analysis, Institute of Geography, 18 Hoang Quoc Viet Rd.,

More information

Geospatial Software Solutions for the Environment and Natural Resources

Geospatial Software Solutions for the Environment and Natural Resources Geospatial Software Solutions for the Environment and Natural Resources Manage and Preserve the Environment and its Natural Resources Our environment and the natural resources it provides play a growing

More information

Report 2005 EUR 21579 EN

Report 2005 EUR 21579 EN Feasibility study on the use of medium resolution satellite data for the detection of forest cover change caused by clear cutting of coniferous forests in the northwest of Russia Report 2005 EUR 21579

More information

Short technical report. Understanding the maps of risk assessment of deforestation and carbon dioxide emissions using scenarios for 2020

Short technical report. Understanding the maps of risk assessment of deforestation and carbon dioxide emissions using scenarios for 2020 Short technical report Understanding the maps of risk assessment of deforestation and carbon dioxide emissions using scenarios for 2020 National Institute for Space Research - INPE November 12, 2010. São

More information

GIS. and ge and. (May, 2015)

GIS. and ge and. (May, 2015) GIS and Remote Sensing Support for the Assessment of Historic Forest Cover Chang ge and GHG Emissions in Sanamxay District, Lao PDR (May, 2015) GIS and Remote Sensing Support for the Assessment of Historic

More information

Earth remote sensing systems of middle and low resolution

Earth remote sensing systems of middle and low resolution Earth remote sensing systems of middle and low resolution Serial on-line remote sensing satellites delivering data available on the world market V.I. Gershenzon (ScanEx R&D Center) In 1980, graduated from

More information

Land Cover Mapping of the Comoros Islands: Methods and Results. February 2014. ECDD, BCSF & Durrell Lead author: Katie Green

Land Cover Mapping of the Comoros Islands: Methods and Results. February 2014. ECDD, BCSF & Durrell Lead author: Katie Green Land Cover Mapping of the Comoros Islands: Methods and Results February 2014 ECDD, BCSF & Durrell Lead author: Katie Green About the ECDD project The ECDD project was run by Bristol Conservation & Science

More information

Deforestation in the Amazon

Deforestation in the Amazon Deforestation in the Amazon By Rhett A Butler Rainforests once covered 14% of the earth's land surface; now they cover a mere 6% and experts estimate that the last remaining rainforests could be consumed

More information

16 th IOCCG Committee annual meeting. Plymouth, UK 15 17 February 2011. mission: Present status and near future

16 th IOCCG Committee annual meeting. Plymouth, UK 15 17 February 2011. mission: Present status and near future 16 th IOCCG Committee annual meeting Plymouth, UK 15 17 February 2011 The Meteor 3M Mt satellite mission: Present status and near future plans MISSION AIMS Satellites of the series METEOR M M are purposed

More information

Measurement and Monitoring of the World s Forests

Measurement and Monitoring of the World s Forests RFF REPORT Measurement and Monitoring of the World s Forests A Review and Summary of Remote Sensing Technical Capability, 2009 2015 Matthew Fagan and Ruth DeFries DECEMBER 2009 Preface This report is part

More information

APPLICATION OF GOOGLE EARTH FOR THE DEVELOPMENT OF BASE MAP IN THE CASE OF GISH ABBAY SEKELA, AMHARA STATE, ETHIOPIA

APPLICATION OF GOOGLE EARTH FOR THE DEVELOPMENT OF BASE MAP IN THE CASE OF GISH ABBAY SEKELA, AMHARA STATE, ETHIOPIA APPLICATION OF GOOGLE EARTH FOR THE DEVELOPMENT OF BASE MAP IN THE CASE OF GISH ABBAY SEKELA, AMHARA STATE, ETHIOPIA Abineh Tilahun Department of Geography and environmental studies, Adigrat University,

More information

Obtaining and Processing MODIS Data

Obtaining and Processing MODIS Data Obtaining and Processing MODIS Data MODIS is an extensive program using sensors on two satellites that each provide complete daily coverage of the earth. The data have a variety of resolutions; spectral,

More information

Supervised Classification workflow in ENVI 4.8 using WorldView-2 imagery

Supervised Classification workflow in ENVI 4.8 using WorldView-2 imagery Supervised Classification workflow in ENVI 4.8 using WorldView-2 imagery WorldView-2 is the first commercial high-resolution satellite to provide eight spectral sensors in the visible to near-infrared

More information

Nature Values Screening Using Object-Based Image Analysis of Very High Resolution Remote Sensing Data

Nature Values Screening Using Object-Based Image Analysis of Very High Resolution Remote Sensing Data Nature Values Screening Using Object-Based Image Analysis of Very High Resolution Remote Sensing Data Aleksi Räsänen*, Anssi Lensu, Markku Kuitunen Environmental Science and Technology Dept. of Biological

More information

Environmental Regularization of Rural Lands in the Cerrado Biome CAR-FIP Project Brazilian Investment Plan Forest Investment Program (FIP) Climate

Environmental Regularization of Rural Lands in the Cerrado Biome CAR-FIP Project Brazilian Investment Plan Forest Investment Program (FIP) Climate Environmental Regularization of Rural Lands in the Cerrado Biome CAR-FIP Project Brazilian Investment Plan Forest Investment Program (FIP) Climate Investment Funds (CIF) Problem Tree High emission of Greenhouse

More information

U.S. Geological Survey Earth Resources Operation Systems (EROS) Data Center

U.S. Geological Survey Earth Resources Operation Systems (EROS) Data Center U.S. Geological Survey Earth Resources Operation Systems (EROS) Data Center World Data Center for Remotely Sensed Land Data USGS EROS DATA CENTER Land Remote Sensing from Space: Acquisition to Applications

More information

Land Use/ Land Cover Mapping Initiative for Kansas and the Kansas River Watershed

Land Use/ Land Cover Mapping Initiative for Kansas and the Kansas River Watershed Land Use/ Land Cover Mapping Initiative for Kansas and the Kansas River Watershed Kansas Biological Survey Kansas Applied Remote Sensing Program April 2008 Previous Kansas LULC Projects Kansas LULC Map

More information

Geospatial intelligence and data fusion techniques for sustainable development problems

Geospatial intelligence and data fusion techniques for sustainable development problems Geospatial intelligence and data fusion techniques for sustainable development problems Nataliia Kussul 1,2, Andrii Shelestov 1,2,4, Ruslan Basarab 1,4, Sergii Skakun 1, Olga Kussul 2 and Mykola Lavreniuk

More information

European Forest Data Centre Biosoil/Biodiversity Forest Type Map 2006 P. Kempeneers, JRC T. Durant F. Sedano, JRC L. Seebach, JRC J. San-Miguel-Ayanz, JRC EC -, IES Land Management and Natural Hazard Unit

More information