view the Intergalactic Medium The Milky Way s HI Clouds in the Halo of our Galaxy Gerhard Hensler Galaxies Gas Environment Infall Outflow Stripping

Size: px
Start display at page:

Download "view the Intergalactic Medium The Milky Way s HI Clouds in the Halo of our Galaxy Gerhard Hensler Galaxies Gas Environment Infall Outflow Stripping"

Transcription

1 Galaxies and their Interaction with the Intergalactic Medium Galaxies Gas Environment Infall Outflow Stripping Gerhard Hensler Institute of Astronomy University Observ. Observ. of Vienna The Spiral Galaxies view Reminder: Our own Milky Way is a typical spiral galaxy with characteristics: gaseous and stellar Disk with Spiral Arms, central Bulge, old spherical stellar Halo NGC 891 The Milky Way s view NIR: old cool stars: flat disk, centrally concentrated; Sun not in the galactic center; central peanut-shaped Bulge CO: molecular gas: very flat, central disk; northern extentions; single structures (clouds) in the outermost regions 21cm: dense flat HI gaseous disk; diffuse fraying structures M 73 HI Clouds in the Halo of our Galaxy

2 Infalling HI Gas; the Milky Way is : HVCs Infalling Gas stems partly from the tidal disruption of satellite galaxies. Gas bridges between the Magellanic Clouds and the Milky Way s Disk The M81 Group Gas Infall triggers M82 SB Model parameters: Model: R cl = 1 kpc V cl = 10 km/s T cl = 5000 K M cl depending on length here: z = 6 kpc Cloud Infall chemo-dynamical Simulation Hirche 2003 Infalling cloud enhances SF without hitting the disk. Hot gas outflow decelerates infall.

3 Hot Gas is expelled from Galaxies into the Halo The turbulent Milky Way Observations (round view) in different wavelength ranges reveal dynamical structures: H-alpha: ionized gas patchy, but diffusely extended FIR: produced by warm dust; thick disk with diffuse filaments : a starburst galaxy Supernova Remnants massive Stars (> M ) explode as Supernovae (typeii); Most of their mass is ejected at high energies (1051 ergs) in fastly expanding bubbles; Hitting an inhomogeneous environment, shock fronts and clumps form; Shock fronts radiate in collisionally excited em. lines, the bubble s interior cools by X-ray emission Vela Supernova Remnant Radio at 6cm: n-thermal radiation of hot gas (magnetic field) within the disk: spots stem from Supernova Bubbles; Loops and filaments indicate gaseous outflows. Superbubbles HII-Region W4 Cumulative Stellar Winds + Explosions in Stellar Associations form Superbubbles of hot Gas Superbubbles expand out of the gaseous disk and feed a hot gaseous halo

4 Superbubble Models Magnetic Fields in Galaxies Stars are born in associations. Massive stars have short lifetimes (few Mio. years). Sequential supernova explos.s form huge hot gas Bubbles. Superbubbles expand out of a Galaxy. Mass loading due to cloud evaporation. Supernova gas is metal rich. Galaxies are losing metals. Vehement expansion leads to froth of ionization stages. T and Z determinations diffic. X-ray gas in our Milky Way (RASS) Magn. fields parallel to the gal. plane are bent vertically due to superbubble s overpressure and open to the halo; CR diffusion facilitates galactic winds Breitschwerdt et al Dwarf Galaxies (low masses) can expel all their Gas into the Intergalactic Space. Gas is stripped off by tidal and dynamical drag leading to des and dsphs. Sculptur (Carignan 1996) bright spots: hot bubbles red: soft ( kev) blue: hard ( kev) light blue: middle ( kev) Leo A

5 The Virgo Cluster X-ray Gas in Galaxy Clusters Virgo Coma ellipticals: M86 M84 M87 spirals: D = 16.8 Mpc T 10 7 K n cm -3 Z Z Galactic disks within a hot ICM: evaporation? Galaxies on their passage through the ICM Cowie & Songaila Preliminary conclusions: (thin) Galactic disks cannot form in a hot ICM environment. Is their a cluster galaxy population that reflects the formation epoch? Galactic disks should be evaporated within 1-10 Gyrs. Present spiral clusters galaxies are formed in the field and falling into the grav. potential. But! Does evaporation act as in analytical approaches? B Hα e.g. NGC 4522 (Kenney & Koopmann, 1999)

6 τ λ λ NGC 4569 flies through the Virgo Cluster ICM R image of NGC 4569 X-ray contours of the Virgo Cluster (Boselli, private) (Schindler et al., 1999) Hydrodynamic al Simulations Model parameters: T ICM = 5x10 7 K Ma = 0.7, 1.5 n ICM = 10-3 cm -3 M ISM = 10 9 M M disk = M s = 133 pc Self gravitation and cooling let clumps grow and stabilize. Aims: How does the stripped material evolve? Additional effect of heat conduction (and radiation)? (Schumacher 2003) Relative motion of gaseous galaxies in the cluster gas leads to ram-pressure stripping Gas outflows: e.g. NGC 4569 (Tschöke, G.H., Junkes 2001) Ram pressure: Bindingenergy density: kick off timescale: p e ram grav = ρ = ρ esc v Gyrs v ISM esc v 2 ICM v 2 rot 1cm n -3 v km/s v How to treat RPS dynamically? esc mean free path of electrons : mean free path within HI gas : e HI 6 2 (T/10 K) 3 ( n /10 cm ( n /1 cm 3 3 pc ) pc ) R contours over Hα (soft) X-ray contours over Hα Hydrodynamical treatment requires multi-scale description!

7 Conclusions Galaxies intimately coupled to their environm. Interstellar and Intergalactic Media are at extreme plasma states. Astrophysical Objects are ideal Laboratories of Plasmaphysics. IS clouds Galact. wind

Chapter 15.3 Galaxy Evolution

Chapter 15.3 Galaxy Evolution Chapter 15.3 Galaxy Evolution Elliptical Galaxies Spiral Galaxies Irregular Galaxies Are there any connections between the three types of galaxies? How do galaxies form? How do galaxies evolve? P.S. You

More information

Modeling Galaxy Formation

Modeling Galaxy Formation Galaxy Evolution is the study of how galaxies form and how they change over time. As was the case with we can not observe an individual galaxy evolve but we can observe different galaxies at various stages

More information

In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees.

In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees. In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees. A panoramic painting of the Milky Way as seen from Earth, done by Knut Lundmark in the 1940 s. The

More information

8.1 Radio Emission from Solar System objects

8.1 Radio Emission from Solar System objects 8.1 Radio Emission from Solar System objects 8.1.1 Moon and Terrestrial planets At visible wavelengths all the emission seen from these objects is due to light reflected from the sun. However at radio

More information

13 Space Photos To Remind You The Universe Is Incredible

13 Space Photos To Remind You The Universe Is Incredible 13 Space Photos To Remind You The Universe Is Incredible NASA / Via photojournal.jpl.nasa.gov New ultraviolet images from NASA s Galaxy Evolution Explorer shows a speeding star that is leaving an enormous

More information

165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars

165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars Name Date Period 30 GALAXIES AND THE UNIVERSE SECTION 30.1 The Milky Way Galaxy In your textbook, read about discovering the Milky Way. (20 points) For each item in Column A, write the letter of the matching

More information

Origins of the Cosmos Summer 2016. Pre-course assessment

Origins of the Cosmos Summer 2016. Pre-course assessment Origins of the Cosmos Summer 2016 Pre-course assessment In order to grant two graduate credits for the workshop, we do require you to spend some hours before arriving at Penn State. We encourage all of

More information

A Universe of Galaxies

A Universe of Galaxies A Universe of Galaxies Today s Lecture: Other Galaxies (Chapter 16, pages 366-397) Types of Galaxies Habitats of Galaxies Dark Matter Other Galaxies Originally called spiral nebulae because of their shape.

More information

The Solar Journey: Modeling Features of the Local Bubble and Galactic Environment of the Sun

The Solar Journey: Modeling Features of the Local Bubble and Galactic Environment of the Sun The Solar Journey: Modeling Features of the Local Bubble and Galactic Environment of the Sun P.C. Frisch and A.J. Hanson Department of Astronomy and Astrophysics University of Chicago and Computer Science

More information

Nuclear fusion in stars. Collapse of primordial density fluctuations into galaxies and stars, nucleosynthesis in stars

Nuclear fusion in stars. Collapse of primordial density fluctuations into galaxies and stars, nucleosynthesis in stars Nuclear fusion in stars Collapse of primordial density fluctuations into galaxies and stars, nucleosynthesis in stars The origin of structure in the Universe Until the time of formation of protogalaxies,

More information

lecture 10. The Milky Way s Interstellar Medium Birgitta Nordström, Copenhagen, & Gerhard Hensler, Vienna

lecture 10. The Milky Way s Interstellar Medium Birgitta Nordström, Copenhagen, & Gerhard Hensler, Vienna IX. The Milky Way gas distribution lecture 10. The Milky Way s Interstellar Medium Birgitta Nordström, Copenhagen, & Gerhard Hensler, Vienna 1 2 1 1. HI Gas HI is observed by the 21cm hyperfine-structure

More information

IV. Molecular Clouds. 1. Molecular Cloud Spectra

IV. Molecular Clouds. 1. Molecular Cloud Spectra IV. Molecular Clouds Dark structures in the ISM emit molecular lines. Dense gas cools, Metals combine to form molecules, Molecular clouds form. 1. Molecular Cloud Spectra 1 Molecular Lines emerge in absorption:

More information

The Evolution of GMCs in Global Galaxy Simulations

The Evolution of GMCs in Global Galaxy Simulations The Evolution of GMCs in Global Galaxy Simulations image from Britton Smith Elizabeth Tasker (CITA NF @ McMaster) Jonathan Tan (U. Florida) Simulation properties We use the AMR code, Enzo, to model a 3D

More information

Answers for the Student Worksheet for the Hubble Space Telescope Scavenger Hunt

Answers for the Student Worksheet for the Hubble Space Telescope Scavenger Hunt Instructions: Answers are typed in blue. Answers for the Student Worksheet for the Hubble Space Telescope Scavenger Hunt Crab Nebula What is embedded in the center of the nebula? Neutron star Who first

More information

The Messier Objects As A Tool in Teaching Astronomy

The Messier Objects As A Tool in Teaching Astronomy The Messier Objects As A Tool in Teaching Astronomy Dr. Jesus Rodrigo F. Torres President, Rizal Technological University Individual Member, International Astronomical Union Chairman, Department of Astronomy,

More information

The Chemical Composition of a Molecular Cloud at the Outer Edge of the Galaxy

The Chemical Composition of a Molecular Cloud at the Outer Edge of the Galaxy Carnegie Observatories Astrophysics Series, Vol. 4: Origin and Evolution of the Elements, 2003 ed. A. McWilliam and M. Rauch (Pasadena: Carnegie Observatories, http://www.ociw.edu/ociw/symposia/series/symposium4/proceedings.html)

More information

7. In which part of the electromagnetic spectrum are molecules most easily detected? A. visible light B. radio waves C. X rays D.

7. In which part of the electromagnetic spectrum are molecules most easily detected? A. visible light B. radio waves C. X rays D. 1. Most interstellar matter is too cold to be observed optically. Its radiation can be detected in which part of the electromagnetic spectrum? A. gamma ray B. ultraviolet C. infrared D. X ray 2. The space

More information

Class #14/15 14/16 October 2008

Class #14/15 14/16 October 2008 Class #14/15 14/16 October 2008 Thursday, Oct 23 in class You ll be given equations and constants Bring a calculator, paper Closed book/notes Topics Stellar evolution/hr-diagram/manipulate the IMF ISM

More information

UNIT V. Earth and Space. Earth and the Solar System

UNIT V. Earth and Space. Earth and the Solar System UNIT V Earth and Space Chapter 9 Earth and the Solar System EARTH AND OTHER PLANETS A solar system contains planets, moons, and other objects that orbit around a star or the star system. The solar system

More information

NGUYEN LUONG QUANG. Président du jury: J. Le Bourlot Rapporteurs: H. Beuther, T. Moore Examinateurs: I. Bonnell, F. Boulanger, F. Combes, F.

NGUYEN LUONG QUANG. Président du jury: J. Le Bourlot Rapporteurs: H. Beuther, T. Moore Examinateurs: I. Bonnell, F. Boulanger, F. Combes, F. NGUYEN LUONG QUANG Supervisors: Frédérique Motte (CEA Saclay) Marc Sauvage (CEA Saclay) Président du jury: J. Le Bourlot Rapporteurs: H. Beuther, T. Moore Examinateurs: I. Bonnell, F. Boulanger, F. Combes,

More information

Malcolm S. Longair. Galaxy Formation. With 141 Figures and 12 Tables. Springer

Malcolm S. Longair. Galaxy Formation. With 141 Figures and 12 Tables. Springer Malcolm S. Longair Galaxy Formation With 141 Figures and 12 Tables Springer Contents Part I Preliminaries 1. Introduction, History and Outline 3 1.1 Prehistory 3 1.2 The Theory of the Expanding Universe

More information

Lecture 6: distribution of stars in. elliptical galaxies

Lecture 6: distribution of stars in. elliptical galaxies Lecture 6: distribution of stars in topics: elliptical galaxies examples of elliptical galaxies different classes of ellipticals equation for distribution of light actual distributions and more complex

More information

Top 10 Discoveries by ESO Telescopes

Top 10 Discoveries by ESO Telescopes Top 10 Discoveries by ESO Telescopes European Southern Observatory reaching new heights in astronomy Exploring the Universe from the Atacama Desert, in Chile since 1964 ESO is the most productive astronomical

More information

Faber-Jackson relation: Fundamental Plane: Faber-Jackson Relation

Faber-Jackson relation: Fundamental Plane: Faber-Jackson Relation Faber-Jackson relation: Faber-Jackson Relation In 1976, Faber & Jackson found that: Roughly, L! " 4 More luminous galaxies have deeper potentials Can show that this follows from the Virial Theorem Why

More information

The Hidden Lives of Galaxies. Jim Lochner, USRA & NASA/GSFC

The Hidden Lives of Galaxies. Jim Lochner, USRA & NASA/GSFC The Hidden Lives of Galaxies Jim Lochner, USRA & NASA/GSFC What is a Galaxy? Solar System Distance from Earth to Sun = 93,000,000 miles = 8 light-minutes Size of Solar System = 5.5 light-hours What is

More information

Class 2 Solar System Characteristics Formation Exosolar Planets

Class 2 Solar System Characteristics Formation Exosolar Planets Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System

More information

1 A Solar System Is Born

1 A Solar System Is Born CHAPTER 3 1 A Solar System Is Born SECTION Formation of the Solar System BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a nebula? How did our solar system

More information

Galaxy Classification and Evolution

Galaxy Classification and Evolution name Galaxy Classification and Evolution Galaxy Morphologies In order to study galaxies and their evolution in the universe, it is necessary to categorize them by some method. A classification scheme generally

More information

arxiv:astro-ph/0403054v1 2 Mar 2004

arxiv:astro-ph/0403054v1 2 Mar 2004 Radio continuum observations of the Virgo cluster spiral NGC 4522 The signature of ram pressure arxiv:astro-ph/0403054v1 2 Mar 24 B. Vollmer 1 CDS, Observatoire astronomique de Strasbourg, UMR 7550, 11

More information

Observing the Universe

Observing the Universe Observing the Universe Stars & Galaxies Telescopes Any questions for next Monday? Light Doppler effect Doppler shift Doppler shift Spectra Doppler effect Spectra Stars Star and planet formation Sun Low-mass

More information

Defining Characteristics (write a short description, provide enough detail so that anyone could use your scheme)

Defining Characteristics (write a short description, provide enough detail so that anyone could use your scheme) GEMS COLLABORATON engage The diagram above shows a mosaic of 40 galaxies. These images were taken with Hubble Space Telescope and show the variety of shapes that galaxies can assume. When astronomer Edwin

More information

Cosmic Journey: Teacher Packet

Cosmic Journey: Teacher Packet Cosmic Journey: Teacher Packet Compiled by: Morehead State University Star Theatre with help from Bethany DeMoss Table of Contents Table of Contents 1 Corresponding Standards 2 Vocabulary 4 Sizing up the

More information

Ellipticals. Elliptical galaxies: Elliptical galaxies: Some ellipticals are not so simple M89 E0

Ellipticals. Elliptical galaxies: Elliptical galaxies: Some ellipticals are not so simple M89 E0 Elliptical galaxies: Ellipticals Old view (ellipticals are boring, simple systems)! Ellipticals contain no gas & dust! Ellipticals are composed of old stars! Ellipticals formed in a monolithic collapse,

More information

Astro 102 Test 5 Review Spring 2016. See Old Test 4 #16-23, Test 5 #1-3, Old Final #1-14

Astro 102 Test 5 Review Spring 2016. See Old Test 4 #16-23, Test 5 #1-3, Old Final #1-14 Astro 102 Test 5 Review Spring 2016 See Old Test 4 #16-23, Test 5 #1-3, Old Final #1-14 Sec 14.5 Expanding Universe Know: Doppler shift, redshift, Hubble s Law, cosmic distance ladder, standard candles,

More information

The Milky Way Galaxy is Heading for a Major Cosmic Collision

The Milky Way Galaxy is Heading for a Major Cosmic Collision The Milky Way Galaxy is Heading for a Major Cosmic Collision Roeland van der Marel (STScI) [based on work with a team of collaborators reported in the Astrophysical Journal July 2012] Hubble Science Briefing

More information

How Do Galeries Form?

How Do Galeries Form? 8-5-2015see http://www.strw.leidenuniv.nl/ franx/college/ mf-sts-2015-c9-1 8-5-2015see http://www.strw.leidenuniv.nl/ franx/college/ mf-sts-2015-c9-2 Galaxy Formation Leading questions for today How do

More information

Science Standard 4 Earth in Space Grade Level Expectations

Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Our Solar System is a collection of gravitationally interacting bodies that include Earth and the Moon. Universal

More information

The Interstellar Medium Astronomy 216 Spring 2005

The Interstellar Medium Astronomy 216 Spring 2005 The Interstellar Medium Astronomy 216 Spring 2005 Al Glassgold & James Graham University of California, Berkeley The Interstellar Medium/Media (ISM) What is the ISM? Just what it says: The stuff between

More information

Dinamica del Gas nelle Galassie II. Star formation

Dinamica del Gas nelle Galassie II. Star formation Dinamica del Gas nelle Galassie II. Star formation Overview on ISM Molecular clouds: composition and properties. Plasmas Charge neutrality, infinite conductivity; Field freezing; Euler equation with magnetic

More information

Star Clusters and Stellar Dynamics

Star Clusters and Stellar Dynamics Ay 20 Fall 2004 Star Clusters and Stellar Dynamics (This file has a bunch of pictures deleted, in order to save space) Stellar Dynamics Gravity is generally the only important force in astrophysical systems

More information

Detailed Mass Map of CL 0024+1654 from Strong Lensing

Detailed Mass Map of CL 0024+1654 from Strong Lensing Detailed Mass Map of CL 0024+1654 from Strong Lensing Tyson, Kochanski, & Dell Antonio (1998) HST WFPC2 image of CL0024+1654 slides based on presentation by Yue Zhao Rutgers Physics 690 February 21, 2008

More information

The CGM around Dwarf Galaxies

The CGM around Dwarf Galaxies The CGM around Dwarf Galaxies Rongmon Bordoloi STScI + the COS-Halos Team What is the CGM? Shen et al. 212 jectedcolumndensityinacubeof5(proper)kpc Diffuse gas, including metals and dust, o2en on extending

More information

WHERE DID ALL THE ELEMENTS COME FROM??

WHERE DID ALL THE ELEMENTS COME FROM?? WHERE DID ALL THE ELEMENTS COME FROM?? In the very beginning, both space and time were created in the Big Bang. It happened 13.7 billion years ago. Afterwards, the universe was a very hot, expanding soup

More information

Solar Ast ro p h y s ics

Solar Ast ro p h y s ics Peter V. Foukal Solar Ast ro p h y s ics Second, Revised Edition WI LEY- VCH WILEY-VCH Verlag Co. KCaA Contents Preface 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.1.1 2.1.2 2.2 2.2.1 2.2.2 2.2.3 2.3

More information

Simulation of Spiral Density Waves with Rotating, Shallow water

Simulation of Spiral Density Waves with Rotating, Shallow water Simulation of Spiral Density Waves with Rotating, Shallow water R. Merrill, C. Buckey, M. Katschke, T. Manuszak, and J. Pinkney Department of Physics and Astronomy Ohio Northern University Abstract We

More information

Star Formation in the Large Magellanic Cloud: Tracing an Evolution of Giant Molecular Clouds

Star Formation in the Large Magellanic Cloud: Tracing an Evolution of Giant Molecular Clouds Star Formation in the Large Magellanic Cloud: Tracing an Evolution of Giant Molecular Clouds Toshikazu Onishi Osaka Prefecture University Yasuo Fukui; Akiko Kawamura; Norikazu Mizuno; Tetsuhiro Minamidani;

More information

COMPARISON OF GAS AND DUST COOLING RATES IN NEARBY GALAXIES

COMPARISON OF GAS AND DUST COOLING RATES IN NEARBY GALAXIES IC 10 Henize 2-10 NGC 253 COMPARISON OF GAS AND DUST COOLING RATES IN NEARBY GALAXIES E.Bayet: LRA-LERMA-ENS (Paris) Antennae IC 342 M 83 NGC 6946 INTRODUCTION : OBJECTS : warm and dense molecular clouds

More information

Lecture 3 Properties and Evolution of Molecular Clouds. Spitzer space telescope image of Snake molecular cloud (IRDC G11.11-0.11

Lecture 3 Properties and Evolution of Molecular Clouds. Spitzer space telescope image of Snake molecular cloud (IRDC G11.11-0.11 Lecture 3 Properties and Evolution of Molecular Clouds Spitzer space telescope image of Snake molecular cloud (IRDC G11.11-0.11 From slide from Annie Hughes Review CO t in clouds HI: Atomic Hydrogen http://www.atnf.csiro.au/research/lvmeeting/magsys_pres/

More information

Heating & Cooling in Molecular Clouds

Heating & Cooling in Molecular Clouds Lecture 8: Cloud Stability Heating & Cooling in Molecular Clouds Balance of heating and cooling processes helps to set the temperature in the gas. This then sets the minimum internal pressure in a core

More information

arxiv:astro-ph/0101553v1 31 Jan 2001

arxiv:astro-ph/0101553v1 31 Jan 2001 Evidence for Large Stellar Disks in Elliptical Galaxies. Andreas Burkert and Thorsten Naab Max-Planck-Institut für Astronomie, D-69242 Heidelberg, Germany arxiv:astro-ph/0101553v1 31 Jan 2001 Abstract.

More information

Magellanic Cloud planetary nebulae as probes of stellar evolution and populations. Letizia Stanghellini

Magellanic Cloud planetary nebulae as probes of stellar evolution and populations. Letizia Stanghellini Magellanic Cloud planetary nebulae as probes of stellar evolution and populations Letizia Stanghellini Planetary nebulae beyond the Milky Way - May 19-21, 2004 1 Magellanic Cloud PNe The known distances,

More information

Modelling clumpy! galactic disks

Modelling clumpy! galactic disks Modelling clumpy! galactic disks Simone Bianchi INAF-Osservatorio Astrofisico di Arcetri, Firenze with TRADING! Transfer of RAdiation through Dust IN Galaxies (Bianchi 2008) Radiative Transfer models"

More information

Activity: Multiwavelength Bingo

Activity: Multiwavelength Bingo ctivity: Multiwavelength background: lmost everything that we know about distant objects in the Universe comes from studying the light that is emitted or reflected by them. The entire range of energies

More information

Resultados Concurso Apex 2014-A

Resultados Concurso Apex 2014-A Resultados Concurso Apex 2014-A Propuesta: 2014A/04 Investigador Principal: Guido Garay, Universidad de Chila Título: SuperMALT: determining the physical and chemical evolution of high-mass starforming

More information

Populations and Components of the Milky Way

Populations and Components of the Milky Way Chapter 2 Populations and Components of the Milky Way Our perspective from within the Milky Way gives us an opportunity to study a disk galaxy in detail. At the same time, it s not always easy to relate

More information

X-ray Emission from Elliptical Galaxies

X-ray Emission from Elliptical Galaxies The Nature of Elliptical Galaxies, Proceedings of the Second Stromlo Symposium, Eds. M. Arnaboldi, G.S. Da Costa & P. Saha X-ray Emission from Elliptical Galaxies Craig L. Sarazin Department of Astronomy,

More information

The Universe Inside of You: Where do the atoms in your body come from?

The Universe Inside of You: Where do the atoms in your body come from? The Universe Inside of You: Where do the atoms in your body come from? Matthew Mumpower University of Notre Dame Thursday June 27th 2013 Nucleosynthesis nu cle o syn the sis The formation of new atomic

More information

L3: The formation of the Solar System

L3: The formation of the Solar System credit: NASA L3: The formation of the Solar System UCL Certificate of astronomy Dr. Ingo Waldmann A stable home The presence of life forms elsewhere in the Universe requires a stable environment where

More information

Low-Mass X-Ray Binary Models for Ellipticals NGC3379 and NGC4278

Low-Mass X-Ray Binary Models for Ellipticals NGC3379 and NGC4278 Low-Mass X-Ray Binary Models for Ellipticals NGC3379 and NGC4278 Tassos Fragos with V. Kalogera, K. Belczynski, G. Fabbiano et al. Department of Physics and Astronomy Northwestern University MODEST 7b

More information

1.1 A Modern View of the Universe" Our goals for learning: What is our place in the universe?"

1.1 A Modern View of the Universe Our goals for learning: What is our place in the universe? Chapter 1 Our Place in the Universe 1.1 A Modern View of the Universe What is our place in the universe? What is our place in the universe? How did we come to be? How can we know what the universe was

More information

8 Radiative Cooling and Heating

8 Radiative Cooling and Heating 8 Radiative Cooling and Heating Reading: Katz et al. 1996, ApJ Supp, 105, 19, section 3 Thoul & Weinberg, 1995, ApJ, 442, 480 Optional reading: Thoul & Weinberg, 1996, ApJ, 465, 608 Weinberg et al., 1997,

More information

Dwarf Elliptical andFP capture the Planets

Dwarf Elliptical andFP capture the Planets Rough subdivision Normal ellipticals. Giant ellipticals (ge s), intermediate luminosity (E s), and compact ellipticals (ce s), covering a range of luminosities from M B 23 m to M B 15 m. Dwarf ellipticals

More information

Herschel far- infrared surveys of nearby galaxy clusters Jon Davies and the HeViCS team. Scan maps at: 100μm 160μm 250μm 350μm 500μm

Herschel far- infrared surveys of nearby galaxy clusters Jon Davies and the HeViCS team. Scan maps at: 100μm 160μm 250μm 350μm 500μm Herschel far- infrared surveys of nearby galaxy clusters Jon Davies and the HeViCS team Scan maps at: 100μm 160μm 250μm 350μm 500μm HeViCS consor-um Members Davies, J. I.; Baes, M.; Bendo, G. J.; Bianchi,

More information

Data Provided: A formula sheet and table of physical constants is attached to this paper. DARK MATTER AND THE UNIVERSE

Data Provided: A formula sheet and table of physical constants is attached to this paper. DARK MATTER AND THE UNIVERSE Data Provided: A formula sheet and table of physical constants is attached to this paper. DEPARTMENT OF PHYSICS AND ASTRONOMY Autumn Semester (2014-2015) DARK MATTER AND THE UNIVERSE 2 HOURS Answer question

More information

Week 1-2: Overview of the Universe & the View from the Earth

Week 1-2: Overview of the Universe & the View from the Earth Week 1-2: Overview of the Universe & the View from the Earth Hassen M. Yesuf (hyesuf@ucsc.edu) September 29, 2011 1 Lecture summary Protein molecules, the building blocks of a living organism, are made

More information

ASTRONOMY AND ASTROPHYSICS. Deep search for CO emission in the Low Surface Brightness galaxy Malin 1. J. Braine 1, F. Herpin 1,2, and S.J.E.

ASTRONOMY AND ASTROPHYSICS. Deep search for CO emission in the Low Surface Brightness galaxy Malin 1. J. Braine 1, F. Herpin 1,2, and S.J.E. Astron. Astrophys. 358, 494 498 (2000) Deep search for CO emission in the Low Surface Brightness galaxy Malin 1 ASTRONOMY AND ASTROPHYSICS J. Braine 1, F. Herpin 1,2, and S.J.E. Radford 3 1 Observatoire

More information

Polarization, magnetic fields and radio galaxies in galaxy clusters. Gianfranco Gentile Universiteit Gent / Vrije Universiteit Brussel (Belgium)

Polarization, magnetic fields and radio galaxies in galaxy clusters. Gianfranco Gentile Universiteit Gent / Vrije Universiteit Brussel (Belgium) Polarization, magnetic fields and radio galaxies in galaxy clusters Gianfranco Gentile Universiteit Gent / Vrije Universiteit Brussel (Belgium) Outline - Part 1: Introduction - Part 2: Perseus cluster

More information

Study Guide: Solar System

Study Guide: Solar System Study Guide: Solar System 1. How many planets are there in the solar system? 2. What is the correct order of all the planets in the solar system? 3. Where can a comet be located in the solar system? 4.

More information

Brief ideas for a long discussion

Brief ideas for a long discussion Brief ideas for a long discussion 1. Disk formation/survival in mergers 2. Bulgeless galaxies 3. Global z~2 to z~0 evolution 4. Interface between Cold flows / Disks / Outflows 5. Emergence of a bimodality

More information

National Aeronautics and Space Administration. Teacher s. Science Background. GalaxY Q&As

National Aeronautics and Space Administration. Teacher s. Science Background. GalaxY Q&As National Aeronautics and Space Administration Science Background Teacher s GalaxY Q&As 1. What is a galaxy? A galaxy is an enormous collection of a few million to several trillion stars, gas, and dust

More information

THE FORMATION OF THE HIGH-VELOCITY CLOUDS OF THE MILKY WAY

THE FORMATION OF THE HIGH-VELOCITY CLOUDS OF THE MILKY WAY THE FORMATION OF THE HIGH-VELOCITY CLOUDS OF THE MILKY WAY Antonino Marasco Kapteyn Astronomical Institute, Groningen In collaboration with: Filippo Fraternali (University of Bologna) Federico Marinacci

More information

Introduction to the Solar System

Introduction to the Solar System Introduction to the Solar System Lesson Objectives Describe some early ideas about our solar system. Name the planets, and describe their motion around the Sun. Explain how the solar system formed. Introduction

More information

starbursts are formation of stars from galaxy collisions(gas compresses); they are not "bursts" outward. but "inward" to make stars;

starbursts are formation of stars from galaxy collisions(gas compresses); they are not bursts outward. but inward to make stars; HIGHLIGHTS(PARTLY FROM OUTLINE) #Ch. 14, from center of milky way(sgr A, is our 4 million Msun black hole; NGC-4258 has 40 million Msun black hole assuming only thing within 0.2 pc from center on pg. 441):

More information

Stellar Evolution. The Basic Scheme

Stellar Evolution. The Basic Scheme Stellar Evolution The Basic Scheme Stars live for a very long time compared to human lifetimes. Even though stellar life-spans are enormous, we know how stars are born, live, and die. All stars follow

More information

The Size & Shape of the Galaxy

The Size & Shape of the Galaxy name The Size & Shape of the Galaxy The whole lab consists of plotting two graphs. What s the catch? Aha visualizing and understanding what you have plotted of course! Form the Earth Science Picture of

More information

Gamma Rays from Molecular Clouds and the Origin of Galactic Cosmic Rays. Stefano Gabici APC, Paris

Gamma Rays from Molecular Clouds and the Origin of Galactic Cosmic Rays. Stefano Gabici APC, Paris Gamma Rays from Molecular Clouds and the Origin of Galactic Cosmic Rays Stefano Gabici APC, Paris The Origin of galactic Cosmic Rays Facts: the spectrum is (ALMOST) a single power law -> CR knee at few

More information

Ay 20 - Lecture 9 Post-Main Sequence Stellar Evolution. This file has many figures missing, in order to keep it a reasonable size.

Ay 20 - Lecture 9 Post-Main Sequence Stellar Evolution. This file has many figures missing, in order to keep it a reasonable size. Ay 20 - Lecture 9 Post-Main Sequence Stellar Evolution This file has many figures missing, in order to keep it a reasonable size. Main Sequence and the Range of Stellar Masses MS is defined as the locus

More information

Structure formation in modified gravity models

Structure formation in modified gravity models Structure formation in modified gravity models Kazuya Koyama Institute of Cosmology and Gravitation University of Portsmouth Dark energy v modified gravity Is cosmology probing the breakdown of general

More information

First Discoveries. Asteroids

First Discoveries. Asteroids First Discoveries The Sloan Digital Sky Survey began operating on June 8, 1998. Since that time, SDSS scientists have been hard at work analyzing data and drawing conclusions. This page describes seven

More information

How To Understand The Shock Cloud Interaction In Supernova Remnants

How To Understand The Shock Cloud Interaction In Supernova Remnants Advances in Space Research 35 (2005) 1012 1016 www.elsevier.com/locate/asr Multi-phase interstellar clouds in the Vela SNR resolved with XMM-Newton M. Miceli a, *, F. Bocchino b, A. Maggio b, F. Reale

More information

The Expanding Universe

The Expanding Universe Stars, Galaxies, Guided Reading and Study This section explains how astronomers think the universe and the solar system formed. Use Target Reading Skills As you read about the evidence that supports the

More information

The Formation of Dwarf Early-Type Galaxies. Reynier Peletier Kapteyn Astronomical Institute, Groningen

The Formation of Dwarf Early-Type Galaxies. Reynier Peletier Kapteyn Astronomical Institute, Groningen The Formation of Dwarf Early-Type Galaxies Reynier Peletier Kapteyn Astronomical Institute, Groningen From Kormendy et al. (2009) Definition of dwarf ellipticals: -15 < MB < -18 Here to be discussed the

More information

The Birth and Assembly of Galaxies: the Relationship Between Science Capabilities and Telescope Aperture

The Birth and Assembly of Galaxies: the Relationship Between Science Capabilities and Telescope Aperture The Birth and Assembly of Galaxies: the Relationship Between Science Capabilities and Telescope Aperture Betsy Barton Center for Cosmology University of California, Irvine Grateful acknowledgements to:

More information

Chapter 12 Asteroids, Comets, and Dwarf Planets. Asteroid Facts. What are asteroids like? Asteroids with Moons. 12.1 Asteroids and Meteorites

Chapter 12 Asteroids, Comets, and Dwarf Planets. Asteroid Facts. What are asteroids like? Asteroids with Moons. 12.1 Asteroids and Meteorites Chapter 12 Asteroids, Comets, and Dwarf Planets Their Nature, Orbits, and Impacts What are asteroids like? 12.1 Asteroids and Meteorites Our goals for learning:! What are asteroids like?! Why is there

More information

HIGHLIGHTS OF RECENT RESULTS FROM THE VERITAS GAMMA-RAY OBSERVATORY TAUP-2015 TORINO. Lucy Fortson. VERITAS Collaboration. Fortson, TAUP 2015, Torino

HIGHLIGHTS OF RECENT RESULTS FROM THE VERITAS GAMMA-RAY OBSERVATORY TAUP-2015 TORINO. Lucy Fortson. VERITAS Collaboration. Fortson, TAUP 2015, Torino HIGHLIGHTS OF RECENT RESULTS FROM THE VERITAS GAMMA-RAY OBSERVATORY TAUP-2015 TORINO Lucy Fortson forlucy the VERITAS Collaboration Fortson, TAUP 2015, Torino 1 499 PMTs 3.5o field of view 0.15o spacing

More information

Lesson 3: Isothermal Hydrostatic Spheres. B68: a self-gravitating stable cloud. Hydrostatic self-gravitating spheres. P = "kt 2.

Lesson 3: Isothermal Hydrostatic Spheres. B68: a self-gravitating stable cloud. Hydrostatic self-gravitating spheres. P = kt 2. Lesson 3: Isothermal Hydrostatic Spheres B68: a self-gravitating stable cloud Bok Globule Relatively isolated, hence not many external disturbances Though not main mode of star formation, their isolation

More information

Schmidt s Conjecture and Star Formation in Giant Molecular Clouds and Galaxies

Schmidt s Conjecture and Star Formation in Giant Molecular Clouds and Galaxies Schmidt s Conjecture and Star Formation in Giant Molecular Clouds and Galaxies With: Marco Lombardi, University of Milan Joao Alves, University of Vienna Jan Forbrich, University of Vienna Carlos Roman-Zuniga,

More information

What do we know? What don t we know? What could we do?

What do we know? What don t we know? What could we do? What do we know? What don t we know? What could we do? yes (in the absence of evidence for it to be atypical) any well observed star is a peculiar star (G. Meynet) nothing is peculiar once we understand

More information

What is the Sloan Digital Sky Survey?

What is the Sloan Digital Sky Survey? What is the Sloan Digital Sky Survey? Simply put, the Sloan Digital Sky Survey is the most ambitious astronomical survey ever undertaken. The survey will map one-quarter of the entire sky in detail, determining

More information

8. The evolution of stars a more detailed picture

8. The evolution of stars a more detailed picture 8. The evolution of stars a more detailed picture 8.1Pre Main-Sequence Evolution Evolution onto the main sequence begins with a cloud of cold gas which contracts under self-gravity. Potential Energy is

More information

TELESCOPE AS TIME MACHINE

TELESCOPE AS TIME MACHINE TELESCOPE AS TIME MACHINE Read this article about NASA s latest high-tech space telescope. Then, have fun doing one or both of the word puzzles that use the important words in the article. A TELESCOPE

More information

Chapter 6 Atmospheric Aerosol and Cloud Processes Spring 2015 Cloud Physics Initiation and development of cloud droplets Special interest: Explain how droplet formation results in rain in approximately

More information

Using Photometric Data to Derive an HR Diagram for a Star Cluster

Using Photometric Data to Derive an HR Diagram for a Star Cluster Using Photometric Data to Derive an HR Diagram for a Star Cluster In In this Activity, we will investigate: 1. How to use photometric data for an open cluster to derive an H-R Diagram for the stars and

More information

Introduction and Origin of the Earth

Introduction and Origin of the Earth Page 1 of 5 EENS 1110 Tulane University Physical Geology Prof. Stephen A. Nelson Introduction and Origin of the Earth This page last updated on 30-Jul-2015 Geology, What is it? Geology is the study of

More information

Exceptionally massive and bright, the earliest stars changed the course of cosmic history

Exceptionally massive and bright, the earliest stars changed the course of cosmic history THE FIRST STARS IN THE UNIVERSE Exceptionally massive and bright, the earliest stars changed the course of cosmic history BY RICHARD B. LARSON AND VOLKER BROMM ILLUSTRATIONS BY DON DIXON We live in a universe

More information

Summary: Four Major Features of our Solar System

Summary: Four Major Features of our Solar System Summary: Four Major Features of our Solar System How did the solar system form? According to the nebular theory, our solar system formed from the gravitational collapse of a giant cloud of interstellar

More information

Relating Accretion Rate and Jet Power in Elliptical Galaxies

Relating Accretion Rate and Jet Power in Elliptical Galaxies Relating Accretion Rate and Jet Power in Elliptical Galaxies Robert Dunn Institute of Astronomy, Cambridge Steve Allen (KIPAC), Andy Fabian (IoA), Greg Taylor (UNM) & Chris Reynolds (Maryland) MNRAS, in

More information

Lecture 7 Formation of the Solar System. Nebular Theory. Origin of the Solar System. Origin of the Solar System. The Solar Nebula

Lecture 7 Formation of the Solar System. Nebular Theory. Origin of the Solar System. Origin of the Solar System. The Solar Nebula Origin of the Solar System Lecture 7 Formation of the Solar System Reading: Chapter 9 Quiz#2 Today: Lecture 60 minutes, then quiz 20 minutes. Homework#1 will be returned on Thursday. Our theory must explain

More information

Elliptical Galaxies. Houjun Mo. April 19, 2004. Basic properties of elliptical galaxies. Formation of elliptical galaxies

Elliptical Galaxies. Houjun Mo. April 19, 2004. Basic properties of elliptical galaxies. Formation of elliptical galaxies Elliptical Galaxies Houjun Mo April 19, 2004 Basic properties of elliptical galaxies Formation of elliptical galaxies Photometric Properties Isophotes of elliptical galaxies are usually fitted by ellipses:

More information

Lecture 19: Planet Formation I. Clues from the Solar System

Lecture 19: Planet Formation I. Clues from the Solar System Lecture 19: Planet Formation I. Clues from the Solar System 1 Outline The Solar System:! Terrestrial planets! Jovian planets! Asteroid belt, Kuiper belt, Oort cloud Condensation and growth of solid bodies

More information